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a b s t r a c t

We study the problem of selling an item to strategic buyers in the presence of positive
historical externalities, where the value of a product increases asmore people buy and use it.
This increase in the value of the product is the result of resolving bugs or security holes after
more usage. We consider a continuum of buyers that are partitioned into typeswhere each
type has a valuation function based on the actions of other buyers. Given a fixed sequence
of prices, or price trajectory, buyers choose a day onwhich to purchase the product, i.e. they
have to decidewhether to purchase the product early in the game or later aftermore people
already own it. We model this strategic setting as a game, study existence and uniqueness
of the equilibria, and design an FPTAS to compute an approximately revenue-maximizing
pricing trajectory for the seller in two special cases: the symmetric settings in which there
is just a single buyer type, and the linear settings that are characterized by an initial type-
independent bias and a linear type-dependent influenceability coefficient.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Many products like softwares, electronics, or automobiles evolve over time. When a consumer considers buying such a
product, he faces a tradeoff betweenbuying a possibly sub-par early version versuswaiting for a fully functional later version.
Consider, for example, the dilemma faced by a consumer who wishes to purchase the latest Windows operating system. By
buying early, the consumer takes full advantage of all the new features. However, operating systems may have more bugs
and security holes at the beginning, and hence a consumermay prefer to wait with the rationale that, if more people already
own the operating system, thenmore bugswill have already been uncovered and corrected. The key observation is, themore
people that use the operating system, or any product for that matter, the more inherent value it accrues. In other words, the
product exhibits a particular type of externality, a so-called historical externality.1

✩ A preliminary version of this paper appeared with the same name in WINE 2010 AhmadiPourAnari et al. (2010) [1].
∗ Corresponding author. Tel.: +98 9124660470.
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accrues value as more consumers buy it simply because the product is used in conjunction with other consumers.
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How should a company price a product in the presence of historical externalities? A low introductory price may attract
early adopters and hence help the company extract greater revenue from future customers. On the other hand, too low a
price will result in significant revenue loss from the initial sales. Often, when faced with such a dilemma, a company will
offer an initial promotional price at the product’s release in a limited-time offer, and then raise the price after some time. For
example, when releasing Windows 7, Microsoft announced a two-week pre-order option for the Home Premium Upgrade
version at a discounted price of $50; thereafter the price rose to $120, where it has remained since the pre-sale ended on
July 11th, 2009. Additionally, beta testers, who can be interpreted as consumers who ‘‘bought’’ the product even prior to
release, received the release version of Windows 7 for free (as is often the case with software beta-testers).2

We study this phenomenon in the following stylized model: a monopolistic seller wishes to derive a pricing and
marketing plan for a productwith historical externalities. To this end, she commits to a price trajectory. Potential consumers
observe the price trajectory of the seller and make simultaneous decisions regarding the day on which they will buy the
product (and whether to buy at all). The payoff of a consumer is a function of the day on which he bought the product, the
price on that day, and the set of consumers who bought before him. We compute the equilibria of the resulting sequential
game and observe that the revenue-maximizing price trajectories for the seller are increasing, as in theWindows 7 example
above.

A few words are in order about our model. First, we focus on settings in which the seller has the ability to commit to
a price trajectory. Such commitments are observed in many settings especially at the outset of a new product (see the
Windows 7 example described above) and have been assumed in prior models in the economics literature on pricing as well
as in other games in the form of Stackelberg strategies (see Section 1.2). Further, commitment increases revenue: clearly a
seller who commits to price trajectories can extract at least as much revenue as a seller who does not (or cannot). This is
because he can commit to the outcome that would have happened in the absence of commitment. Notice that in our game of
complete information in the presence of rational agents, the seller (in fact, all the players) can precisely predict the outcome
of the game without commitment. We further observe via example in Section 2 that in fact commitment enables a seller to
extract unboundedly higher revenue than in settingswithout commitment. Second, we assume a consumer’s payoff is only a
function of past purchases; i.e. consumers have no utility for future purchases. Wemotivate this in theWindows 7 example
by arguing that bugs are resolved in proportion to usage rates. Of course, strictly speaking, consumers of Windows 7 benefit
from future purchases as well via software updates and the like. However, this forward-looking benefit is substantially
dampened in comparison to past benefits by safety and security risks, and time commitments involved in updates. Another
justification for our payoff model comes from consumers’ uncertainties regarding products. In many settings, consumers
have signals regarding the value of a product (say an electronic gadget like the iPad for example), but do not observe its
precise value until the time of purchase. Past purchases and the ensuing online reviews may help consumers improve their
estimates of their values prior to purchase, an especially important factor for risk-adverse buyers.

1.1. Our results

We focus on the non-atomic setting inwhichwe have a continuum of consumers so that each consumer is infinitesimally
small and therefore his own action has a negligible effect on the actions of others. Consumers are drawn from a (possibly
infinite) set of types. These types capture varying behavior among consumer groups. We study a sequential game in which
the seller first commits to a price trajectory and then the consumers simultaneously choose when andwhether to buy in the
induced normal-form game among them.We study subgame perfect equilibria. We first observe in Section 3 that equilibria
exist due to a slight generalization of a paper of [18].

We then turn to the question of uniqueness in Section 4. We focus on well-behaved equilibria in which consumers with
non-negative utility always purchase the product (thus indifferent consumers purchase the product). In general multiple
such equilibria may exist. However, in an aggregate model in which the value function of each consumer type depends
only on the aggregate behavior of the population (i.e. the total fraction of potential consumers that have bought the product
and not the total fraction of various types), then we are able to show that when they exist, well-behaved equilibria of this
game are unique in the sense that the fraction of purchases per-type-per-day is fixed among all equilibria. This enables us
to search for the revenue-maximizing price trajectory. In Section 5, we address this question in settings in which we either
have just one type or there aremultiple typeswhose valuation functions are linear in the aggregate, both ofwhich are special
cases of the aggregate model discussed above. For each price trajectory, we define its revenue to be the amount of money
consumers spend on the product. We first show that given oracle access to the valuation functions, an optimal solution can
be found only with infinitely many queries. We then design an FPTAS to find the revenue-maximizing price trajectory for a
monopolistic seller in these settings. We do this via a reduction to a novel rectangular covering problem in which we must
find the discounted area-maximizing set of rectangles that fit underneath a given curve. We study the rectangular covering
problem in Section 6.

In summary, we get the following main result for the settings described above: first, every price trajectory has well-
behaved equilibria that are revenue-unique and revenue-maximal among all possible consumer equilibria. Second, it is

2 Historical prices, announced upon the press release, can be found in archived versions of various technology news websites such as Ars Technica [22]
and the Microsoft blog [16]. The current prices were accessed on Microsoft’s website at the time of submission.
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possible to (approximately) compute the revenue-maximizing price trajectory. Hence, the strategy tuple in which the seller
announces this (approximately) revenue-maximizing price trajectory and the consumers respond by playing awell-behaved
equilibrium is an (approximately) subgame perfect equilibrium of our game.3

1.2. Related work

Ourwork falls in the long line of literature investigating pricing andmarketing of products that exhibit externalities [2–5,
7,10–12,14,15,19,20,24]. Among these, the paper of [5] is most closely related to our own work. [5] analyzed the two and
infinite period pricing problems in the presence of linear historical externalities and the study equilibria of the induced
games both with and without commitment. They observe, as we do, that optimal price trajectories are increasing. The
historical externalities that we study generalize the externalities of [5], and in this more general model, we solve for
the optimal price sequence for any fixed number of price periods. Most of the remaining externalities literature studies
externalities in which consumers care about the total population of users of a product and hence their utility is affected by
future sales aswell as past sales. Although thephenomenon studied is different fromours, someof themodeling assumptions
in these papers are similar to ours. For example, in the economics literature [7], also consider a seller that commits to a price
trajectory and then observe that the revenue-maximizing price sequence with fully rational consumers (playing a Bayesian
equilibrium) is increasing. Similar to ourmodel, they study the pricing problem in the presence of a continuumof consumers.

In the computer science literature [2,12,6] study algorithmic questions regarding revenue maximization over social
networks for productswith externalities. However, theirmodels assumenaive behavior for consumers. Namely, they assume
consumers actmyopically, buying the product on the first day inwhich it offers thempositive utilitywithout reasoning about
future prices and sales that could affect optimal buying behavior and long-term utility. Furthermore, [12] allow the seller
to use adaptive price discrimination. In contrast, we model consumers as fully rational agents that strategically choose the
day on which to buy based on full information regarding all future states of the world and a sequence of public posted
prices. While the correct model of pricing and consumer behavior probably lies somewhere between these two extremes,
we believe studying fully rational consumers is an important first step in relaxing myopic assumptions. [6] study such a
model in which players act strategically. They study a two stage pricing problem in which the seller first determines the
prices for a divisible good, and then the buyers simultaneously decide about the amount of consumption. In contrast to
our model and similar to [12], the seller is allowed to use price discrimination. Also, the strategy of buyers in their setting
is the amount of consumption, not the time in which consumption happens. They assume that each player’s utility is a
non-decreasing function of the consumption of other buyers. Similar to ourmodel, they study the subgame perfect equilibria
of the two-stage game. They study the structural properties of the optimal prices, as well as the algorithmic problem of
finding the optimal price sequence.

Our work can be viewed as an analysis of the optimal commitment strategy of a seller in the presence of historical
externalities. [23] first studied optimal commitment strategies, called Stackelberg strategies, in the Cournot’s duopoly
model [9], proving that a firmwho can commit has strategic advantage. The computational aspects of Stackelberg strategies
have been studied in generic normal form [8,21] and extensive form games [17]. [17] suggested polynomial-time algorithms
for various models of perfect information extensive form games and proved NP-hardness of the problem with imperfect
information even with two players. A perfect information extensive form game is one in which at every stage of the game,
every player is exactly aware of what has happened earlier in the game. This does not happen in games with simultaneous
move, as in our game.

2. Model

We wish to study the sale of a good by a monopolistic seller over k days to a set of potential consumers or buyers.
We model our setting as a sequential game whose players consist of the monopolistic seller and a continuum of potential
consumers or buyers b ∈ [0, 1]. In our game, the seller moves first, selecting a price trajectory p = (p1, . . . , pk)where pi ∈ R
assigns a (possibly negative) price pi to each day i. The buyers move next, selecting a day on which to buy the product given
the complete price trajectory, as described below.

The buyers are partitioned into n types T1, . . . , Tn where for t ∈ {1, . . . , n}, Tt is a subinterval of [0, 1].4 We say that a
buyer b has type t if b ∈ Tt . The strategy set A = {1, . . . , k}∪ {∅} indicates the day on which the product is bought (∅ is used
to indicate that the product was not purchased). Hence the strategy profile of the buyer population can be represented by
a (k + 1) × n matrix X = {Xi,t}i=1,...,k+1;t=1,...,n where entry Xi,t indicates the fraction of buyers that are of type t and buy
the product before day i, and we define X1,t = 0 for all t . Note that by normalization


t Xk+1,t ≤ 1 and 1 −


t Xk+1,t is

the fraction of buyers that do not buy the product at any time. Corresponding to this matrix X we also define the marginal
strategy profilematrix x = {xi,t}i=1,...,k;t=1,...,n where xi,t = Xi+1,t − Xi,t is the fraction of buyers who are of type t and buy on

3 Wemust also define what happens off the equilibrium path in subgame perfect equilibria; here we assume that for any price trajectory announced by
the seller, the consumer respond by playing a well-behaved equilibrium.
4 Later, we will generalize this to infinitely many types.
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day i. In the special case when there is only 1 type, we use Xi as a scalar to denote the fraction of buyers who buy before day
i and xi as a scalar to denote the fraction of buyers who buy on day i.

Given a strategy profile X , we define the value of buyers of type t buying on day i by a value function F t
i (Xi) where Xi is

the i’th row of X (hence buyers are indifferent to future buying decisions). Note the explicit dependence of F on time, which
allows F t

i (Xi) to be different than F t
j (Xj), for i ≠ j. The revenue-maximization results in Section 5 further assume that the

dependence of F t
i (Xi) on i is of the form F t

i (Xi) = β iF t(Xi) for β ∈ [0, 1]. This special case is of particular interest as the β
factor models settings in which the value degrades over time due to, for example, a reduction in the novelty of the product.

Given a strategy profile X , the payoff of buyers of type t who buy on day i is defined to be F t
i (Xi) − pi. We additionally

allow buyers to have a discount factor α such that their payoff is (1 − α)i(F t
i (Xi) − pi). Thus α represents the way in which

agents discount future payoffs with respect to present payoffs. We say that a strategy profile X is a Nash equilibrium of the
induced subgame given by price trajectory p, or equivalently X ∈ NE(p), if for any buyer of type t who buys on day i we
have i ∈ argmaxj(F t

j (Xj) − pj)(1 − α)j, and the strategy is ∅ whenever the maximum is not positive (in which case the
buyer’s payoff is zero). We call an equilibriumwell-behaved if all indifferent buyers buy, i.e. a buyer does not buy if and only
if his payoff (1 − α)i(F t

i (Xi) − pi) is negative on all days 1 ≤ i ≤ k. We say that (p, X) is a (well-behaved) equilibrium if
the profile X is a (well-behaved) Nash equilibrium for the subgame of price trajectory p. Equivalently, a marginal strategy
profile x of a strategy profile X is a (well-behaved) Nash equilibrium for the subgame of price trajectory p if the profile X is
a (well-behaved) Nash equilibrium for the subgame of price trajectory p.

Given a price trajectory p and a marginal strategy profile x that arises in the subgame induced by p, we define the payoff
of the seller to be the revenue of x for p, which is R(p, x) =

k
i=1
n

t=1 xi,tpi(1 − α)i. A subgame perfect equilibrium of the
sequential game is then a price trajectory p∗ and a set ofmarginal strategy profiles xp for each possible price trajectory p such
that: (1) xp is a Nash equilibrium of the subgame induced by p, and (2) p∗ maximizes R(p, xp). The outcome of this subgame
perfect equilibrium is (p∗, xp∗) and its revenue is R(p∗, xp∗).

We are interested in computing the outcome in a revenue-maximizing subgame perfect equilibrium. To do so, we must
compute a price trajectory which maximizes the revenue of the seller in equilibrium. Note that this is equal to finding the
best response of the seller given the strategies {xp} of the buyers. We solve this problem for special settings in which there
exist revenue-maximizing well-behaved equilibria in NE(p) for any price trajectory p, allowing us to maximize over them.
These settings are as follows. For the purpose of these definitions, we allow each buyer to have a unique type and hence
there are infinitely many types. We will use b ∈ [0, 1] to denote the type of buyer b.

Definition 1. The aggregate model: The value function of each type in this model is a function of the aggregate behavior of
the population and is invariant with respect to the behavior of each separate type. That is, the value function of buyer b is
a function of Xi only, where Xi is a scalar indicating the total fraction of all buyers who buy before day i. In this instance,
we overload the notation for the value function and let F b

i (Xi) indicate the value of buyer b (hence F b
i (·) now maps the unit

interval to the non-negative reals).

Definition 2. The linear model: This is a special case of the aggregate model which is defined by a function Fi, an initial bias
I ∈ R+, and a function C : [0, 1] → R+ so that the value of buyer b is F b

i (Xi) = I + C(b) · Fi(Xi). We further define the
commonly-known distribution C : R → [0, 1] such that C(c∗) indicates the fraction of buyers bwith C(b) ≤ c∗.

Definition 3. The symmetric model: In this version we only have one type, that is, F b
i = Fi for all b.

We note that alternatively, one could model this pricing game as a sequential game with multiple stages where in each
day i the seller selects a price pi and then buyers simultaneously choose whether to buy or not. Such a model is appropriate
when it is not possible for a seller to commit to a price trajectory in advance. Again, in this setting, one could study the
subgame perfect equilibria and analyze the resulting revenue. The revenue with commitment is at least as high as that
without commitment, since the seller can commit to the outcome of the game without commitment. The example below
shows that the revenue without commitment can actually be unboundedly less.

Example. We study the outcome of the sequential game without commitment. We consider buyers b ∈ [0, 1] with utility
function F b(X) = (1+ a|X |)b for a non-negative constant a, and focus on a setting with k = 2 days. In a strategy profile, the
seller picks a price p1 for day 1 and a price p2(S) for any subset S ⊆ 2[0,1] of buyers that remain in day 2. Each buyer decides
whether to buy on day 1 given any possible announcement p1 of the seller, and also whether to buy on day 2 given any
possible announcement p2 of the seller and decisions S of other buyers. A strategy profile is a subgame perfect equilibrium if
each player is playing a best response given the strategies of others. In particular, this implies that the seller must set p2(S)
equal to the revenue-maximizing price for buyers S.

Assume a subgame perfect equilibrium in which the prices on path of play are p1 and p2, and subsets S1, S2 ⊆ 2[0,1] buy
at days 1 and 2, respectively. We claim p1 ≥ p2. Suppose for contradiction that p1 < p2. First note that if |S1| = 0, then
buying on day 1 gives higher utility that buying on day 2, and therefore S2 = ∅. But this gives the seller zero revenue at day
2 which is not his best strategy as he can lower the price of day 2 and gain positive revenue. So assume from now on that
|S1| > 0. The set of buyers who buy at the first day are the ones who have non-negative utility of buying on day 1, and also
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more utility of buying on day 1 than day 2. The first constraint is equal to having b ≥ p1, and the second to having b such that
b(1+ 0)− p1 > b(1+ a|S1|)− p2, or equivalently b <

p2−p1
a|S1|

(remember that we assumed |S1| > 0). Let b∗
=

p2−p1
a|S1|

. The set
of buyers buying on day 1 is equal to the buyers with b satisfying p1 ≤ b and also b < b∗. Our assumption that |S1| > 0 now
implies that p1 < b∗. We observe that p2 ∈ (p1(1+ a|S1|), b∗(1+ a|S1|)), as can be seen from the equality p2 = a|S1|b∗

+ p1
and the inequality b∗ > p1. By the properties of subgame-perfect equilibria, the seller has to play his best response in the
subgame induced at day 2. In day 2 the utilities of players are outside the interval (p1(1 + a|S1|), b∗(1 + a|S1|)). In fact the
utility of player b at day 2 is in the interval (p1(1 + a|S1|), b∗(1 + a|S1|)) if and only if p1 < b and b < b∗ which implies the
player b bought in day 1. So p2 ∈ (p1(1 + a|S1|), b∗(1 + a|S1|)) cannot be a revenue-maximizing price. We conclude that in
any subgame perfect equilibrium, the seller has to set the first price at least equal to second price, and no player will buy in
the first day. The highest revenue for the seller is to set the price of the second day equal to the monopoly price (and any
weakly higher price for the first day), which gives revenue 1/4.

Now consider the game with commitment in which the seller selects a price trajectory (p1, p2) and then buyers choose
their actions. Now the profile of strategies p1 = 1/2, p2 =

8+3a
16 , S1 = [1/2, 3/4], S2 = [3/4, 1] is an equilibrium, and its

revenue is 1/4 + 3a/64. We conclude by observing that the ratio of the revenue with commitment to that without goes to
infinity as a grows.

An important observation is that without externalities (when a = 0), both equilibria would have been the same, with
revenue equal to the optimal revenue of the 1-stage game. This is in fact true for any form of utility functions.

3. Existence

In this sectionwe study the existence of equilibria in the subgame induced by a given price trajectory p. For the aggregate
model, the existence of equilibria follows from a result of [18]. Here we use Kakutani’s fixed point theorem [13] to prove
a slight generalization of this result applicable to models with finitely many types and continuous valuation functions. We
also give examples of games with a non-continuous valuation function in which no equilibria exist.

Note thatwhile the above theorems prove existence of equilibria, they do not guarantee that the equilibria are necessarily
well-behaved (i.e. all indifferent buyers buy at some point). Well-behaved equilibriamay not exist. Furthermore, evenwhen
they exist they do not necessarilymaximize revenue. However, for the linear and symmetricmodels thatwe focus on,we can
show that well-behaved equilibria do in fact exist andmaximize revenue. The existence results are presented in Section 3.1;
the results in Section 5 imply the revenue-maximizing property.

We show the pricing game has an equilibrium whenever buyers have finitely many types and continuous valuation
functions F t

i , 1 ≤ t ≤ n, 1 ≤ i ≤ k. To do so, we define a set-valued function on the space of marginal strategy profile
matrices whose fixed point is an equilibrium of our game and show the existence of a fixed point using Kakutani’s fixed
point theorem (KFPT).

We start by defining the notation used in the statement of KFPT. For arbitrary sets S1 and S2, let φ : S1 → 2S2

be a set-valued function, i.e. a function from S1 to the power set of S2. We say that φ has a closed graph if the set
{(s1, s2)|s1 ∈ S1, s2 ∈ φ(s1)} is a closed subset of S1 × S2 in the product topology.

Theorem 1. Kakutani Fixed Point Theorem (KFPT) [13]: Let S be a non-empty, compact and convex subset of Euclidean space Rn

for some n. Let φ : S → 2S be a set-valued function on S with a closed graph and the property that φ(s) is non-empty and convex
for all s ∈ S. Then φ has a fixed point s such that s ∈ φ(s).

We are now ready to prove the equilibrium’s existence. We define φ to be the correspondence that maps strategy profile
matrices to the set of best-response matrices. That is, for a strategy profile x, φ(x) is a strategy profile in which each buyer
chooses the action that gives him maximum utility, assuming that other buyers are using strategy x. After showing that
the mapping φ has the desired properties, we invoke KFPT to show that this mapping has a fixed point. This implies that
existence of a strategy profile in which each buyer is playing best response to the actions of others, and is therefore by
definition an equilibrium.

Theorem 2. If valuation functions are increasing and continuous, then the subgame induced by any price trajectory p has an
equilibrium in the general model with finitely many types.

Proof. Let S be a subset of the Euclidean space Rk×n consisting of all valid marginal profile matrices x. Also let µ(t) = |Tt |
be the length of Tt for each type t (recall that Tt is a subinterval of [0, 1]). Each x ∈ S is a marginal strategy profile matrix
x = (x1,1, . . . , xk,n), where xi,t is the fraction of buyers who are of type t and choose to buy on day i, with the constraint
that for each 1 ≤ t ≤ n, the inequality


i xi,t ≤ µ(t) holds. Define φ : S → 2S to be the function assigning each x ∈ S the

set of all marginal strategy profile matrices y ∈ φ(x) which are simultaneous best-responses to the profile x. Formally, φ(x)
consists of all y satisfying the following conditions:

1. A buyer buys in y only if they get non-negative utility in x:


i yi,t > 0 only if there exists j such that F t
j (Xj) − pj ≥ 0,

2. If some type has a positive utility in x, then they all buy in y: if F t
j (Xj) − pj > 0 then


i yi,t ≥ µ(t),

3. If a buyer buys in y, then he does so on a daywhich gives himmaximumutility in x i.e. for every day i and type t , if yi,t > 0
then i ∈ argmaxj F t

j (Xj) − pj.
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If the conditions of the KFPT hold, we get a fixed point x ∈ S; i.e. a point x for which x ∈ φ(x). As discussed above, any
such fixed point is an equilibrium of our game. Now let us prove that the set S and the function φ satisfy the conditions of
KFPT. Set S can be defined as the set of points x ∈ Rk×n satisfying the following linear inequalities, i.e. ∀i, t : xi,t ≥ 0, and
∀t :


i xi,t ≤ µ(t). As a result, S, being the intersection of half-spaces, is a polyhedron, and clearly is closed and convex.

The set S is also bounded, because each xi,t lies in the interval [0, µ(t)]. So S is a compact and convex subset of Rk×n.
Let x be an arbitrary point in S. The set φ(x) can be defined as the intersection of S, and a set of (possibly open) half-spaces

defined by linear inequalities listed in the conditions above. Thus, φ(x) is a convex set. It is also nonempty as each buyer
of each type t has a well-defined set of best-responses to X , the cumulative corresponding to marginal profile x, which is
either some day j if F t

j (Xj) − pj ≥ 0 or the empty strategy (not buying) otherwise.
It only remains to show that the graph of φ is a closed subset of R2(k×n). We will show that each (x, y) lying outside the

graph is contained in an open neighborhood which also lies outside the graph. This neighborhood will be of the form A× B,
where A is an open neighborhood of x and B is an open neighborhood of y. Since (x, y) is not in the graph, either (x, y) is
not in S × S or y does not satisfy one of the conditions defining φ(x). In the former case, since S × S is closed, we can find a
suitable neighborhood of (x, y) having no intersection with S × S and by extension the graph of φ.

So assume that y does not satisfy at least one of the constraints defining φ(x). Let U : Rk×n
→ Rk×n be the function

assigning each x ∈ S the matrix of utilities {ui,t}, where ui,t = F t
i (Xi)− pi denotes the utility of buying on day i for a buyer of

type t . Assuming the valuation functions are continuous and increasing, U and hence U−1 is continuous and invertible. As
y ∉ φ(x), there is some type t such that either:

1.


j yj,t > 0 and for all days j, uj,t < 0: Let A = {U−1({ui,t}) | ∀j : uj,t < 0}, B = {{yi,t} |


j yj,t > 0},
2. Or maxj uj,t > 0 and


i yi,t < µ(t): Let A = {U−1({ui,t}) | ∃i : ui,t > 0}, B = {{yi,t} |


i yi,t < µ(t)},

3. Or there exists j∗ ∉ argmaxj uj,t and yj∗,t > 0: Let A = {U−1({ui,t}) | ∃i : ui,t > uj∗,t}, B = {{yi,t} | yj∗,t > 0}.

Then A × B is an open neighborhood containing (x, y) since U−1 is continuous and invertible and we are applying it to
an open subset of the domain in each case. Also, A × B has no intersection with the graph of φ, which proves that the graph
of φ is closed. Hence all assumptions of the KFPT hold and we have an equilibrium. �

We next show via an example that the game may have no equilibria when valuation functions are not continuous.

Example 3. Suppose there are two days k = 2 and only one type in the market. Let Fi(X) = 1 if X ≤
1
2 and Fi(X) =

3
2 + X

otherwise, for i = 1, 2. We claim price trajectory p = (0, 1) has no equilibrium. Consider any strategy profile X. If x1 ≤ 1/2, then
the payoff of day 1 is 1 and day 2 is zero, so buyers who do not buy in day one are not playing a best-response, and X is not an
equilibrium. On the other hand, if x1 > 1/2 then the payoff on day 1 is still 1 but the payoff on day 2 is now strictly greater than
3/2 + 1/2 − 1 ≥ 1. Hence the buyers who buy in day one are not playing a best-response and so X is not an equilibrium.

While the previous example is enough to show that continuity is necessary for existence of equilibria, one might notice
that we can resolve the issue by changing the function to Fi(X) = 1 if X < 1

2 , and Fi(X) =
3
2 + X otherwise, for i = 1, 2.

In this case x = (1/2, 1/2) is an equilibrium for price trajectory p = (0, 1). The following example is more robust to the
changes in the valuation function.

Example 4. Assume there are three types and the fraction of each type is 1
3 . The valuation function F t

i (X) = 2 if Xt ′ < 1
3 and

F t
i (X) = 4, where t ′ = 2, 3, 1 respectively for t = 1, 2, 3. Then similar reasoning shows price trajectory p = (1, 2) has no
equilibrium.

3.1. Existence of well-behaved equilibria

Our revenue results assume the existence of revenue-maximizing well-behaved equilibria for all price sequences.
Unfortunately, this does not hold even for the aggregate model, as the following example shows:

Example 5. Suppose there are three days k = 3 and two types in the market, each of which contains half of the total population.
Let F 1

i (Xi) and F 2
i (Xi) be as shown in Fig. 1, for i = 1, 2, 3. Note that these are aggregate valuation functions. Consider the price

trajectory p = (1, 2, 3).
If we assume that a buyer may decide not to buy the product when the utility of buying is 0, then we have an equilibrium in

this example. The vector strategy profile

x =

 0 0.25
0.35 0
0 0.25



is an equilibrium and a 0.15 fraction of type 1will not buy the product. However a case analysis shows there are no well-behaved
equilibria.
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Fig. 1. The valuation function of type 1 and 2.

Fortunately, we can show that for the linear and symmetric models, well-behaved equilibria exist. We actually show
something a bit more general; namely we derive a condition on the utilities that is sufficient to guarantee the existence of
well-behaved equilibria in which either all or no buyers buy.Wewill present the proof for finitely many types for simplicity.
The proof extends to infinitely many types.

Theorem 6. If either mint,i F t
i (0) ≥ mini pi or maxt,i F t

i (0) < mini pi, then there exists a well-behaved equilibrium in the
subgame induced by p.

Proof. If maxt,i F t
i (0) < mini pi then the strategy profile in which no one buys is an equilibrium, because when no one else

is buying, a player of type t would receive utility F t
i (0) − pi from buying at day i, which is negative. Hence everyone would

receive negative utility from buying and the strategy profile is a well-behaved equilibrium in which no buyer buys.
So assume that mint,i F t

i (0) ≥ mini pi. Consider the modified price trajectory (p1 − ϵ, . . . , pk − ϵ) for some ϵ > 0 (recall
that our model permits negative prices). Using this price sequence, all buyers buy on some day since the utility of buying on
the day with theminimum price is strictly positive. Hence the new price trajectory has a well-behaved equilibrium.Wewill
show that thiswell-behaved equilibrium is also an equilibrium for the original price trajectory.Whenprices are all decreased
by the same amount all utilities are also decreased by that same amount. Hence the relative ordering of utilities is the same
for both price trajectories. So after changing the prices back to the original ones, everyone is still buying an optimal day. The
only equilibrium condition that might not hold anymore is the one asserting that buyers only buy when the optimum utility
is non-negative. However, since mint,i F t

i (0) ≥ mini pi, everyone has non-negative utility on the day with the minimum
price and so has non-negative optimal utility. Therefore this is a well-behaved equilibrium for the original price trajectory
in which all buyers buy. �

If F t
i (0) is the same for all i, t , then maxt,i F t

i (0) = mint,i F t
i (0). So at least one of the conditions of Theorem 6 holds and

we can conclude Corollary 7. Note that for both the symmetric and linear models, F t
i (0) is the same for all i, t .

Corollary 7. If F t
i (0) is the same for all i, t then there is always a well-behaved equilibrium.

4. Uniqueness of equilibria

The following example shows that if we allow the valuation functions to be sensitive to the behavior of each type
separately, our game might have more than one equilibrium, with different revenues for the seller. This holds even when
all the valuation functions are continuous.

Example 8. Assume that there are two types and F t
i (Y ) = Yt ′ +2where t = 1, 2 and t ′ ≠ t. In other words a valuation functions

depends only on the behavior of buyers of the other type. The population of type 1 buyers are 0.3 and the population of type 2
buyers are 0.7. Suppose that the seller wants to sell the product in two days and p1 = 1 and p2 = 1.2.

Two strategy profiles x =


0.3 0
0 0.7


and x′

=


0 0.7
0.3 0


are equilibria of this game. In the first equilibrium all the

type 1 (respectively 2) buyers buy the product on day 1 (respectively 2). The revenue is 0.3 × 1 + 0.7 × 1.2 = 1.14 in this
equilibrium. In the second one all the type 1 (respectively 2) buyers buy the product on day 2 (respectively 1). The revenue is
0.7 × 1 + 0.3 × 1.2 = 1.06 in this equilibrium.

Here we show that well-behaved equilibria are revenue-unique, that is, they all have the same revenue. We show this
for an infinite number of types in the aggregate model which generalizes both the linear and symmetric models. We will
show that in all of the well-behaved equilibria the fraction of people buying on a certain day is the same. In turn, it implies
that the revenues of all well-behaved equilibria are the same and hence the well-behaved equilibria are revenue-unique. In
what follows, we consider the equilibria of a fixed price sequence p. We start with a definition. Consider two well-behaved
equilibria x and y. Partition the set of k days to two sets as follows. Call a day i a level 1 day, denoted i ∈ D1(x, y), if Xi < Yi.
Otherwise, if Xi ≥ Yi, we call i a level 2 day, denoted i ∈ D2(x, y).
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Lemma 9. Assume that there exist two distinct well-behaved equilibria x and y in the subgame induced by p. Then there exists a
buyer whose strategy in x is a day in D1(x, y) and whose strategy in y is a day in D2(x, y).

Proof. Since x ≠ y, assume without loss of generality that there exists a day î such that Xî < Yî. Let S1 be the set of buyers
buy on a level 1 day in x and S2 be the set of buyers who buy on a level 2 day in y. Wewant to show that S1∩S2 is a non-empty
set. Define S = S1 ∪ S2. We show that |S1| + |S2| > |S|. Therefore S1 and S2 have a nonempty intersection whose elements
are the buyers we are looking for. We do this by showing that |S1| + |S2| > min(Xk+1, Yk+1) ≥ |S|.

First observe that |S| ≤ min(Xk+1, Yk+1) since

• If b ∈ S1 then b buys on some level 1 day i ∈ D1(x, y) in x. Therefore his utility on day i in y is non-negative. As y is a
well-behaved equilibrium, this means that bmust buy on some day in y. Thus b buys in both x and y.

• If b ∈ S2 then b buys on some level 2 day in y and so similar reasoning shows that bmust also buy on some day in x. Thus
again b buys in both x and y.

Hence |S| ≤ min(Xk+1, Yk+1) as claimed.
Next let zi be equal to xi for i ∈ D1(x, y), and equal to yi for i ∈ D2(x, y).5 Note that |S1| + |S2| =


i∈D1(x,y)

xi +
i∈D2(x,y)

yi =
k

i=1 zi. Thus it suffices to show that
k

i=1 zi > min(Xk+1, Yk+1. Let Zi = z1 + · · · + zi−1. We show that
Zk+1 > min(Xk+1, Yk+1). To do so we use the following claim:

Claim 10. For each day i if Zi ≥ (respectively >)min(Xi, Yi), then we have Zi+1 ≥ (respectively >)min(Xi+1, Yi+1).

Proof. For day i, there are four possibilities: If i and i− 1 are level 1 days, then Zi+1 = Zi + zi = Zi + xi ≥ (>)Xi + xi = Xi+1.
If i is a level 1 day and i − 1 is a level 2 day, then Zi+1 = Zi + zi = Zi + xi ≥ (>)Yi + xi > Xi + xi = Xi+1. Note
that in this case we get strict inequality even assuming weak inequality for i. If i is a level 2 day and i − 1 is a level 1
day, then Zi+1 = Zi + zi = Zi + yi ≥ (>)Xi + yi ≥ Yi + yi = Yi+1. Finally, if i and i − 1 are both level 2 days, then
Zi+1 = Zi + zi = Zi + yi ≥ (>)Yi + yi = Yi+1. �

Now we complete the proof of the lemma by making the following two observations: First, for i = 1, we have
X1 = Y1 = Z1 = 0 so by induction for all i we have Zi ≥ min(Xi, Yi). Second, recall that there exists a day î of level 1, and
since day 1 is level 2, there must be a day i that falls in the second case of the claim for which wemust have Zi > min(Xi, Yi).
Then by induction we will have Zk+1 > min(Xk+1, Yk+1). �

Theorem 11. Let F b
i (X) be a strictly increasing function for each buyer b and day i. For a price sequence p and two well-behaved

equilibria x and y in the induced subgame, we have Xi = Yi for all i.

Proof. Assume for contradiction that we have two well-behaved equilibria x and y and a day i for which Xi ≠ Yi. Again
assume without loss of generality that Xi < Yi. By Lemma 9 we know that there exists a buyer b who buys on a level 1 day
in x and buys on a level 2 day in y. Assume that b buys on day i in x and on day j in y. Then F b

i (Xi) − pi ≥ F b
j (Xj) − pj and

F b
j (Yj) − pj ≥ F b

i (Yi) − pi. Adding the two inequalities we get: F b
i (Xi) + F b

j (Yj) ≥ F b
j (Xj) + F b

i (Yi). On the other hand since i
is a level 1 day, Xi < Yi; hence by monotonicity F b

i (Xi) < F b
i (Yi). Since j is a level 2 day, Xj ≥ Yj; hence F b

j (Yj) ≤ F b
j (Xj). The

addition of these two inequalities contradicts the previous one. �

5. Revenue maximization

In this section, we solve the revenue-maximizing problem in two special cases: the discounted version of the symmetric
model, and the general linear model without discount factors. In both cases, we provide an FPTAS to compute the revenue-
maximizing price sequence. Before proceeding, however, we show with simple examples that given oracle access to the
value functions, it is impossible to find the optimal solution with finite number of queries. This implies that we only hope
for approximation schemes for the problem.

Example 12. Let us first consider the symmetric model. Fix a parameter a > 1/2. Assume that for X ≥ a, F(X) = X, and
F(X) = 0 otherwise. Assume also that k = 2. In this instance, the unique optimum solution is the price sequence (0, a), with the
well-behaved equilibrium (1/2, 1/2). The optimal revenue is therefore a/2. In order to compute the optimal solution, an algorithm
needs to find a, and therefore to make infinite number of queries to the function F .

We can modify the above instance to make it also an instance of the linear model. Set Ib = 0. Also set Cb = 0 if b ≤ 1/2, and
Cb = 1 otherwise. Again, the unique optimal solution is to set prices (0, a), and an optimal algorithm needs to make infinitely
many queries to the function F in order to find a.

5 Strictly speaking z is not a valid marginal strategy profile as some buyers will buy in two different days in z.
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Fig. 2. The discounted RCP problem. The blue area is the total area covered by rectangles, discounted by the index of each rectangle.

5.1. Symmetric model

Since all players in this model have the same valuation function F , the marginal strategy profile matrix will reduce to the
vector x = (x1, . . . , xk). Also, fixing p and x, the utility of buyer b for the item on day i is F b

i (Xi) = F(Xi)β
i(1−α)i−pi(1−α)i,

and the revenue R(p, x) =


i xipi(1 − α)i. By renaming qi = pi(1 − α)i and γ = β(1 − α), the utility of buyer b for the
item on day i will be F(Xi)γ

i
− qi, and the revenue becomes


i xiqi. Using this new notation, we may assume without loss

of generality that the only discount factor is γ . For convenience, we use p for the discounted prices q.
Since we only have one type in this model, we know that the utility of buying in day i is equal among all players. We

use the term utility of a day i, denoted by ui, for ui = F(Xi)γ
i
− pi. Define u(p, x) = maxi ui. Consider a price sequence

and its equilibrium strategy profile x. We get the following properties immediately from the facts that players are utility
maximizers: (i) players are allowed to choose inaction and have utility zero, (ii) they choose to buy if there is a day with a
strictly positive utility. First, if there is a day i with xi > 0, then u(p, x) ≥ 0 and ui = u(p, x). Second, if there is a day i with
ui > 0, then

k
i=1 xi = 1.

First, we observe the following lemma:

Lemma 13. Let p̂ be the revenue-maximizing price vector that results in equilibrium x̂. Then u(p̂, x̂) = 0.

Proof. Assume for contradiction that u(p̂, x̂) = w > 0. Let ŵ = (w, . . . , w) be a vector of length k with all of its elements
equal to w, and consider the price sequence p̂ + ŵ and vector x̂. The utility of each day decreases by the same amount ŵ,
and the set of maximizers have positive utility, that is, u(p̂+ ŵ, x̂) ≥ 0. Therefore, each day iwith x̂i > 0 is still a maximizer
with ui ≥ 0.We conclude that x̂ is an equilibrium for p̂+ŵ. Since


i x̂i = 1, this price sequence has strictly greater revenue,

contradicting the optimality of p̂. �

Assume that there is a price sequence p with equilibrium x and u(p, x) = 0 such that for some day i, we have xi = 0
and xi+1 > 0. Then we can define a new price sequence p̃ which is equal to p except that p̃j = pj+1/γ for each j ≥ i. Also
define the vector x̃ to be equal to x except that x̃j = xj+1 for each j ≥ i, and x̃k = 0. One can observe that the pair (p̃, x̃) is an
equilibriumwith no less revenue. Sowe can assumewithout loss of generality that for a revenuemaximizing price sequence
p̂ associated with x̂, there exists a k′

≤ k such that xi ≠ 0 if and only if i ≤ k′. For such a price sequence, Lemma 13 shows
that F(Xi)γ

i
− pi = 0 for each 1 ≤ i ≤ k′. As a result, we have Xi = F−1(pi/γ i), which is well-defined as F is increasing.

Now set p′
t = pt/γ t . The fraction of people buying on day i and paying price pi is equal to xi = F−1(p′

i+1) − F−1(p′

i). So
the revenue is


i xipi =


i(F

−1(p′

i+1) − F−1(p′

i))p
′

iγ
i. This sum is equal to the sum of the areas of a number of rectangles,

discounted by γ , that are fit under the graph of F (see Fig. 2). So the revenuemaximization problem reduces to the following
rectangular covering problem.

Definition 4 (Rectangular Covering Problem (RCP)). Given an increasing function F and an integer k, find a sequence p of size
at most k that maximizes the discounted total area of the rectangles fit under the graph of F , that is,

p ∈ argmax
p′


t

(F−1(p′

t+1) − F−1(p′

t))p
′

tγ
t .

In Section 6.1, we present an FPTAS to solve the RCP for concave valuation function and then show how to generalize the
proof to non-concave functions in Section 6.2. See Section 6 for a general treatment of different versions of the RCP.

5.2. Linear model

To solve the problem in the linear version, we first study the properties of any equilibrium in Section 5.2.1. We also show
how to derive prices and the total revenue from vector x. Then we study the revenue maximization problem in the linear
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version in Section 5.2.2. We prove that we can approximate the maximum revenue by solving the RCP for a specific curve.
This curve is obtained from the function F and the distribution function C.

5.2.1. Equilibrium properties:
Fix a price sequence pwith an equilibrium x. Since we do not have discounts, we can assume without loss that for some

k′
≤ k, a purchase happens in day i if and only if i ≤ k′ (just remove the days with no purchase to the end). So we can

assume that for all i < j ≤ k′, we have Xi < Xj. The utility of a buyer b for buying on day i is Ib + CbF(Xi) − pi. In order to
concentrate on network externalities, for now we restrict the model and assume that Ib is always equal to a fixed constant
I for all buyers. Then the utility can be written as I + CbF(Xi) − pi.

Consider the set of points qi = (F(Xi), pi), 1 ≤ i ≤ k′. Define ŝ(i, j) to be equal to (pi − pj)/(F(Xi) − F(Xj)), which is the
slope of the line between points qi and qj. Also let s(i) = ŝ(i, i + 1). In Lemma 14, we prove that s is non-decreasing in i.
Lemma 15 then shows that the utility of buyer b will be maximized on day i if and only if Cb ∈ [s(i − 1), s(i)]. Finally, we
use these lemmas in Lemma 16 to show how to find a price vector given x. We use these properties in the next section in
order to find the desirable equilibrium.

For a fixed b, let i > j be two distinct days. The player prefers day i to j if I + CbF(Xi) − pi ≥ I + CbF(Xj) − pj. The above
inequality can be written as (recall that we know Xi > Xj, and therefore F(Xi) > F(Xj)):Cb ≥

pi−pj
F(Xi)−F(Xj)

. The converse is also
true. If Cb is less than (pi − pj)/(F(Xi) − F(Xj)), then day jwill be preferred to day i.

Lemma 14. For the function s defined above, s(i) is non-decreasing in i.

Proof. Let i, i+ 1, i+ 2 be three consecutive days, and let b be a buyer who chooses to buy on day i+ 1. For b, day i+ 1 is at
least as good as days i, i + 2. Hence Cb must be greater than or equal to s(i) and less than or equal to s(i + 1). We conclude
that s(i + 1) ≥ s(i). �

Lemma 15. If Cb ∈ [s(i − 1), s(i)] then b will have the maximum utility buying on day i.

Proof. Assume that Cb ∈ [s(i − 1), s(i)]. For each j > i, the utility of day i is at least as good as that of day j, because
Cb ≤ s(i) ≤ ŝ(i, j). Similarly for each j < i, the utility of day i is at least as good as that of day j, because Cb ≥ s(i−1) ≥ ŝ(j, i).
The two special cases Cb ∈ [0, s(1)] and Cb ∈ [s(k − 1), ∞) are dealt with using the same arguments. �

This lemma enables us to find the key relation between prices and vector x.

Lemma 16. In an equilibrium, the following holds for each 2 ≤ i ≤ k: pi − pi−1 = (F(Xi) − F(Xi−1))C
−1(Xi).

Proof. The fraction of people who buy on day i is exactly the fractionwhose Cb’s lie inside interval [s(i−1), s(i)]. So we have
xi = Xi+1 − Xi = C(s(i) − s(i− 1)). The two sequences {X1, . . . , Xk} and {C(s(0)), C(s(1)), . . . , C(s(k− 1))} have identical
differences of consecutive terms. They also have identical initial elements X1 = C(s(0)) = 0. Hence they are identical and
we have Xi = C(s(i − 1)).

On the other hand s(i − 1) is equal to pi−pi−1
F(Xi)−F(Xi−1)

by definition. Therefore we can conclude the desirable result. �

5.2.2. Revenue maximization:
We have analyzed the properties of any equilibrium. In this part, we study properties of optimal equilibria. We show in

Lemma 17 that in the revenue-maximizing equilibrium, the first price p1 will be equal to I . Using this result, we express the
total revenue in the revenue-maximizing equilibrium as a function of vector x. Details are in Lemma18. Finally, in Lemma19,
we prove that the revenue maximization problem can be reduced to the RCP, and therefore there exists an FPTAS to solve
the revenue maximization problem (Theorem 23).

Lemma 17. In a revenue-maximizing equilibrium, p1 = I .

Proof. Let x, p be the defining vectors of an equilibrium. Obviously p1 ≤ I , because people who buy on the first day have
nonnegative utility. Now raise all elements of p by I − p1 to get p′. One can verify that x and p′ still define an equilibrium.
The new equilibrium’s revenue is greater than the original one’s. Hence p1 = I in the revenue-maximizing equilibrium. �

Note that by calculating all Xi with respect to vector x, we know the values pi − pi−1 using Lemma 16. On the other hand,
p1 = I in the revenue-maximizing equilibrium. So we can calculate all prices, and therefore x uniquely determines prices.
Let Price(x) be the optimal price vector of x. Vectors x and Price(x) define an equilibrium. Hence it suffices to view everything
as functions of the free variable x. Now we express the revenue in an optimal equilibrium in terms of vector x.

Lemma 18. If x and p correspond to the revenue-maximizing equilibrium, the total revenue can be expressed by the following
formula:

R(p, x) = I +

k
i=2

(1 − Xi)C
−1(Xi)(F(Xi) − F(Xi−1)).
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Fig. 3. Revenue with respect to non-monotone function H .

Proof. Since the utility of buying on the first day is nonnegative for everybody, all buyers would choose to buy, i.e. Xk+1 = 1.
The total revenue can be written as:

R(p, x) =

k
i=1

pixi = p1


k

j=1

xj


+

k
i=2

(pi − pi−1)


k
j=i

xj


.

To interpret the above formula, note that the price change from day i − 1 to day i is exerted on all buyers who have bought
on day i or later. Since

k
j=1 xj = 1, we re-order summations and write R(p, x) = p1 +

k
i=2(pi − pi−1)(1 − Xi). Now we

can substitute for p1 and pi − pi−1 from Lemmas 16 and 17 and write

R(p, x) = I +

k
i=2

(1 − Xi)C
−1(Xi)(F(Xi) − F(Xi−1)). �

The next step is to reduce the problem of maximizing revenue to the RCP. Note that I is a constant in Lemma 18 which
does not affect revenue maximization.

Lemma 19. The problem of maximizing
k

i=2(1 − Xi)C
−1(Xi)(F(Xi) − F(Xi−1)) can be reduced to the RCP.

Proof. Since F is a monotone and hence a bijective function, we can write the revenue as

R =

k
i=2

(1 − F−1(F(Xi)))C
−1(F−1(F(Xi))(F(Xi) − F(Xi−1)).

The above formula which only depends on F(Xi)’s can be interpreted as an RCP instance. Let Fmin = F(0), Fmax = F(1).
We define H : [Fmin, Fmax] → R≥0 as follows : H(x) = (1 − F−1(x))C−1(F−1(x)). Note that the revenue is exactly
R =

k
i=2 H(F(Xi))(F(Xi) − F(Xi−1)). Therefore we want to find values ti = F(Xi)’s in order to maximize R. Revenue R

can be shown as the total area of some rectangles with one corner on curve H (See Fig. 3).
The problem of finding these rectangles is very similar to the RCP. If we define H ′(x) = H(−x) and t ′i = −tk−i then we

can write the revenue as:

R =


H(ti)(ti − ti−1) =


H ′(−ti)(ti − ti−1)

=


H ′(t ′k−i)(t

′

k−i+1 − t ′k−i) =


H ′(t ′j )(t

′

j+1 − t ′j ))

So we should solve the RCP for function H ′. �

We have proved that the revenue maximization problem can be solved using the RCP. Therefore, there exists an FPTAS
to solve this problem (Theorem 23 in Section 6.2).

6. Rectangular covering problem

Recall that in the RCP we want to place k rectangles under the curve F , and maximize the discounted covering area
(see Fig. 2). We propose an FPTAS for this problem for concave functions in Section 6.1 and for bounded slope functions
in Section 6.2. The algorithm described in Lemma 20 can be used to solve the RCP for functions F with F(0) > 0. The
running-time of the algorithm is poly(k, log1+ϵ F(1)/F(0)) in this case. In the remaining part of paper we assume that F is
non-decreasing and F(1) = 1. We prove that these assumptions do not hurt the generality in Section 6.3.
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Fig. 4. The region with area A.

Now we define some restricted versions of the RCP.

Definition 5. δ-RCP: it is an instance of the RCP in which every F(xi) should be greater than or equal to δ.

Definition 6. (δ2, δ1)-RCP: it is an instance of the RCP in which every F(xi) should be outside of a given interval (δ2, δ1).

6.1. Concave functions

In this section we propose an FPTAS for the RCP when the function F is concave and non-decreasing.

Lemma 20. For every ϵ > 0 and δ ≥ 0, the δ-rectangular covering problem can be solved in poly(k, log1+ϵ(F(1)/δ)) time, with
approximation factor 1 + ϵ.

Proof. First, we define a sequence S = (s1, s2, . . . , sm) and then prove that if we choose indices x1, x2, . . . , xk from the
sequence S, we could approximate the optimum revenue. Let si = F−1((1+ ϵ)i−1δ). In fact, F(si+1) = (1+ ϵ)F(si) for every
i < m, s0 = 0 and sm ≤ 1 < sm+1.

Assume that the optimum solution in the RCPis the sequence o1, o2, . . . , ok. Therefore the value of the optimum solution
is OPT =

k
i=0(oi+1 − oi)F(oi)γ i. Let xi be the maximum index of sequence S with value no more than oi. So F(oi) ≤

F(xi)(1 + ϵ). We can bound OPT as follows (in all equations assume that x0 = o0 = 0 and ok+1 = xk+1 = 1).

OPT =

k
i=0

(oi+1 − oi)F(oi)γ i
≤

k
i=0

(oi+1 − oi)(1 + ϵ)F(xi)γ i
= (1 + ϵ)A.

The region with area A has been shown in Fig. 4. First observe A is less than or equal to
k

i=0(xi+1 − xi)F(xi)γ i. This is
because

A =

k
i=0

(oi+1 − oi)F(xi)γ i

=

k
i=1

oi(F(xi−1) − F(xi))γ i
+ ok+1F(xk)γ k+1

≤

k
i=1

xi(F(xi−1) − F(xi))γ i
+ xk+1F(xk)γ k+1

=

k
i=0

(xi+1 − xi)F(xi)γ i,

where the inequality followed since oi ≥ xi for 1 ≤ i ≤ k, and F is a non-decreasing function.
As a result, if we choose indices x1, x2, . . . , xk optimally from the sequence S we can approximate the optimum value

within a factor 1 + ϵ.
Now we design a dynamic programming algorithm to find indices x1, x2, . . . , xk optimally from S. For n ≤ m and r ≤ k,

let A[n, r] be equal to the optimum solution when we select r indices from the subsequence (s1, s2, . . . , sn) of S and also sn
has been selected. We have

A[n, r] = maxn′<n{A[n′, r − 1] + (sn − sn′)F(sn′)γ r
}.
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To see the above equality, first assume that n′ < n is the highest index which is less than n and is selected by the
optimum solution. Then the area between n′ and n is going to be (sn − sn′)F(sn′)γ r . Furthermore, the optimal solution will
find the optimum coveringwhen r−1 indices are chosen from the subsequence (s1, s2, . . . , sn′), whose value is by definition
A[n′, r − 1]. The above equality then states that the optimum solution picks n′ < n in order to maximize value.

Form = Θ(log1+ϵ(F(1)/δ)), the running time of the algorithm is Θ(poly(m, k)). �

Now we are ready to propose an FPTAS for the RCP for concave functions.

Theorem 21. For every ϵ > 0, the rectangular covering problem with concave functions can be solved in poly(k, 1/ log(1 +

ϵ), log(1/ϵ)) time with approximation factor 1 + ϵ.

Proof. Let ϵ′
= ϵ/2. Assume we want to solve the δ-RCP for a concave function F with δ = F(1)( 1

1+ϵ′ )
n, where

n = log1+ϵ′
4(1+2ϵ′)

ϵ′ . Since F is concave, the optimum solution for the RCP OPT is at least F(1)/4. Let the optimum solution
for the δ-RCP be OPTδ and the solution found by Lemma 20 be Aδ . We have proved that Aδ ≥

OPTδ
1+ϵ′ . On the other hand, the

optimum solution for the RCP is at mostOPTδ +δ. So Aδ ≥
OPT−δ
1+ϵ′ =

OPT
1+ϵ′ −

F(1)
(1+ϵ′)n+1 ≥

OPT
1+ϵ′ −

4OPT
(1+ϵ′)n+1 . If we replace (1+ϵ′)n

by 4(1+2ϵ′)

ϵ′ , we can conclude that Aδ ≥
OPT
1+ϵ

.
We have used Lemma 20 with ϵ′ and δ = F(1)( 1

1+ϵ′ )
n. So the algorithm runs in Θ(k, log1+ϵ′ F(1)/δ) = Θ(k, n) time,

where n = Θ(
log(1/ϵ)
log(1+ϵ)

). �

6.2. Functions with bounded slope

In this section we propose an FPTAS to solve the RCP for a function F when γ = 1 and F ′(x) ≤ L.

Lemma 22. For every δ1, δ2, ϵ > 0, the (δ2, δ1)-rectangular covering problem can be solved in poly(k, log1+ϵ ( 1
1−F−1(δ2)

),

log1+ϵ (
1−δ2
δ1−δ2

)) time with approximation factor 1 + ϵ.

Proof. First, we define a sequence S = (s1, s2, . . . , sm) and then prove that if we choose indices x1, x2, . . . , xk from sequence
S, we could approximate the optimum. The sequence S is the union of two sequences S ′ and S ′′, which are constructed as
follows:

• Sequence S ′
= (s′1, s

′

2, . . . , s
′

m′) consists of indices with F(s′i) ≥ δ1. Let s′1 = F−1(δ1) and s′i+1 = F−1((1+ ϵ)(F(s′i)− δ2)+

δ2) and s′m′ = 1. In fact we have F(s′i+1) − δ2 ≤ (1 + ϵ)(F(s′i) − δ2) for every i < m′. The length of the sequence S ′ is
m′

= log1+ϵ(
1−δ2
δ1−δ2

).
• Sequence S ′′

= (s′′1, s
′′

2, . . . , s
′′

m′′) consists of indices with F(s′′i ) ≤ δ2. Let s′′1 = 0 and 1− s′′i = ( 1
1+ϵ

)i−1 and s′′m′′ = F−1(δ2).
In fact we have 1 − s′′i ≤ (1 + ϵ)(1 − s′′i+1). The length of sequence S ′′ is m′′

= log1+ϵ ( 1
1−F−1(δ2)

).

Assume optimum indices are o1, o2, . . . , ok in the (δ2, δ1)-RCP. Let the value of the optimumsolution beO =
k

i=1(oi+1−

oi)F(oi). We know that every F(oi) is outside of the interval (δ2, δ1). For every oi ≤ F−1(δ2), Let xi be the minimum index in
sequence S (S

′′

) with value not less than oi, and for every oi ≥ F−1(δ1), let xi be the maximum index in sequence S (S ′) with
value no more than oi. Assume that xi ∈ S

′′

for every index i < k′ and xi ∈ S ′ for every index i ≥ k′. We can now bound OPT
as follows. (In all equations assume that x0 = o0 = 0 and ok+1 = xk+1 = 1.)

OPT =

k
i=0

(oi+1 − oi)F(oi) =

k′−1
i=0

(oi+1 − oi)F(oi) +

k
i=k′

(oi+1 − oi)F(oi). (1)

The right hand side of above equation can be written as:

k′−1
i=0

(oi+1 − oi)F(oi) =

k′−1
i=0

(1 − oi)(F(oi) − F(oi−1)) − F(ok′−1)(1 − ok′). (2)

And the left hand side can be written as:
k

i=k′
(oi+1 − oi)F(oi) =

k
i=k′

(oi+1 − oi)(F(oi) − F(ok′−1)) + F(ok′−1)(1 − ok′). (3)

Rewrite equality (1) with respect to equality (2) and (3).

OPT =

k′−1
i=0

(1 − oi)(F(oi) − F(oi−1)) +

k
i=k′

(oi+1 − oi)(F(oi) − F(ok′−1)). (4)
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Fig. 5. The region with area A.

For every i < k′, we have (1−oi) ≤ (1+ϵ)(1−xi). On the other hand for every i ≥ k′, we have F(oi)−δ2 ≤ (1+ϵ)(F(xi)−δ2).
Since F(ok′−1) ≤ δ2, we have F(oi) − F(ok′−1) ≤ (1 + ϵ)(F(xi) − F(ok′−1)) for every i ≥ k′. With respect to these facts we
can bound the optimum as follows:

OPT ≤ (1 + ϵ)

k′−1
i=0

(1 − xi)(F(oi) − F(oi−1)) + (1 + ϵ)

k
i=k′

(oi+1 − oi)(F(xi) − F(ok′−1))

= (1 + ϵ)A. (5)

The region with area A has been shown in Fig. 5. It is clear that A is less than or equal to
k

i=1(xi+1 − xi)F(xi). So if we
choose the indices x1, x2, . . . , xk from the sequence S, we can approximate the optimum within a factor 1 + ϵ. Now we
design a dynamic programming algorithm to find the indices x1, x2, . . . , xk from S. For n ≤ m and r ≤ k, let A[n, r] be equal
to the best solution when we select indices from the subsequence (s1, s2, . . . , sn) of S and also sn has been selected. We
have:

A[n, r] = maxn′<n{A[n′, r − 1] + (sn − sn′)F(sn′)}. �

To see the above equality, first assume that n′ < n is the highest index which is less than n and is selected by the
optimum solution. Then the area between n′ and n is going to be (sn − sn′)F(sn′). Furthermore, the optimal solution will find
the optimum covering when r − 1 indices are chosen from the subsequence (s1, s2, . . . , sn′), whose value is by definition
A[n′, r − 1]. The above equality then states that the optimum solution picks n′ < n in order to maximize value.

Consider an instance of the RCP with optimum value OPT . Construct k2 + 1 instances of the (δ2, δ1)-RCP from the RCP
instance. In the i-th instance we set δ2 =

i−1
k2+1

and δ1 =
i

k2+1
and assume that the value of the goal function in the optimum

solution of this instance is OPTi. Assume that o1, o2, . . . , ok are the optimum indices in the RCP instance. It is clear that there
exist 1 ≤ j ≤ k2 + 1 such that every oi is outside of the interval (

j−1
k2+1

,
j

k2+1
). Therefore we have OPT = OPTj. Assume

that we solve all of the k2 + 1 instances of the (δ2, δ1)-RCP using Lemma 22. Let Ai be the output of the algorithm for i-th
instance. We proved in Lemma 22 that OPTi ≤ (1 + ϵ)Ai. So if we return maxiAi as the output for the RCP instance, we can
approximate the optimum within a factor 1 + ϵ. Now, we prove that this algorithm runs in polynomial time. To see this,
we show that if we set δ2 =

i−1
k2+1

and δ1 =
i

k2+1
, then log1+ϵ ( 1

1−F−1(δ2)
) and log1+ϵ (

1−δ2
δ1−δ2

) are polynomial. First we have
1−δ2
δ1−δ2

= k2 + 2 − i which is polynomial with respect to k. On the other hand we have δ2 +
 1
F−1(δ2)

F ′(x)dx = F(1) = 1.

Therefore
 1
F−1(δ2)

F ′(x)dx = 1 − δ2 ≥
1

k2+1
. If we assume that F ′(x) ≤ L we can conclude that 1 − F−1(δ2) ≥

1
L(k+1) . So

1
1−F−1(δ2)

is at most L(k2 + 1) which is polynomial with respect to k and L. Hence, we get the following:

Theorem 23. For every ϵ > 0, the rectangular covering problemwith F ′(x) ≤ L can be solved in poly(k, log1+ϵ k, log1+ϵ L) time,
with approximation factor 1 + ϵ.

6.3. Assumptions about the Function F

Here, we prove that the following assumptions can be made for the RCP without loss of generality.

• F is non-decreasing: Let G(x) = max0≤y≤x F(y). We prove that the best rectangular covering of G and F are exactly the
same. We prove this statement by showing that every optimum solution of the RCP for F is a solution for G with same
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objective value and vice versa. First assume that x1, x2, . . . , xk are optimum indices corresponding to some rectangular
covering of F . For every 1 ≤ i ≤ k, we prove that F(xi) = G(xi). If it is not the case, let j be the smallest index which
F(xj) < G(xj). Let xj′ be the smallest index for which G(xj′) = G(xj). It is clear that F(xj′) is the biggest value in interval
[0, xj]. Now if we replace xj by xj′ in the optimum indices, the change in the objective function will be:

(xj′ − xj−1)F(xj−1)γ
j−1

+ (xj+1 − xj′)F(xj′)γ j
− (xj − xj−1)F(xj−1)γ

j−1
+ (xj+1 − xj)F(xj)γ j.

Note that F(xj′)γ j is greater than F(xj)γ j and F(xj−1)γ
j−1. Therefore, the amount of change in the objective function is

positive, which is a contradiction with optimality of indices x1, x2, . . . , xk. So the sequence (x1, x2, . . . , xk) is a solution
for curve Gwith the same objective value.

On the other hand, assume that (x1, x2, . . . , xk) is an optimum sequence for some rectangular covering of curve G.
Note that G is non-decreasing. If there are two indices xj′ and xj such that xj′ < xj and F(xj′) = F(xj), then xj will not
appear in any optimum solution of G. If we remove indices with this property from the search space, only indices xi with
G(xi) = F(xi) remain. So the sequence (x1, x2, . . . , xk) is a solution for curve F with the same objective value.

• F(1) = 1: Let F(1) = c ≠ 1. Define G(x) =
F(x)
c and solve the problem for G. Assume x1, x2, . . . , xk are indices

corresponding to some rectangular covering for curve G. It is clear that:
k

i=0

(xi+1 − xi)G(xi)γ i
=

1
c

k
i=0

(xi+1 − xi)F(xi)γ i.

So we can convert every solution for covering the area under the curve G to a solution for covering area under curve F
and vice versa. So by solving the RCP for curve Gwe can solve the problem for curve F .

7. Conclusion

In this paper, we studied the problem of optimal item pricing in the presence of historical network externalities
and strategic buyers. We obtained necessary and sufficient conditions on the valuation functions for the existence and
uniqueness of equilibria. We defined the revenue maximization problem in settings in which the equilibrium exists and
is unique, and presented nearly-optimal algorithms for the two special cases of linear and symmetric valuation functions.
The problem of designing algorithms or proving hardness (e.g. inapproximability) for the more general aggregate model
remains open.

We studied the historical externalities setting in which the valuation for a purchase on a given day may depend only
on the purchases on previous purchases. However, in many settings, users may benefit from purchases that happen in the
future. Characterizing equilibria and studying the optimal pricing problems in these settings are interesting subjects of study
for future research.

Finally, one can define and study the externalities model in non-monopolistic settings with competing sellers, and
compare the behavior of equilibria with and without such competing sellers. It would also be interesting to study the
extensions of the classical models of duopoly from algorithmic perspective.
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