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Multi-dimensional screening is hard

▶ We often impose structure: increasing differences (single crossing)

Here: screening two types

▶ Impose only quasilinearity
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Results

A general characterization of optimal mechanisms

Two applications

1 Bundling

2 Vertical and horizontal differentiation
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Model

Two types {t1, t2}, probabilities 1− q, q

A set of “alternatives” A

Value v(t, a), v(t, 0) = 0

▶ Payoff v(t, a)− p

Cost c(a) normalized to zero

Goal: profit-maximizing IC&IR mechanisms

▶ Today: allow for randomization. (x , p) : {t1, t2} → ∆(A)× R
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Application 1: Bundling

with additive values

A = set of all subsets of products {1, . . . , n}.

v(t,S) =
∑

i∈S v(t, i).

v1

v2
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Application 2: Vertical and Horizontal differentiation
A = all points within the circle.

v(t, a) = t · a.

t2

t1

a
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Increasing Differences

A ⊂ R+, 0 ∈ A
▶ ∀a > a′, v(t2, a)− v(t2, a

′) > v(t1, a)− v(t1, a
′)

▶ when a′ = 0 :

▶ E.g., v(t, a) = t · a

Then
1 IR2 is implied by IR1 and IC2 and can be relaxed

⇒ IR1 holds with equality
⇒ IC2 holds with equality

2 Solve the problem subject to IC1
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Application 1: Bundling with additive values

A = set of all subsets of products

v1

v2

v1 = v2
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Application 2: Vertical and Horizontal differentiation
A = all points within the circle

a
t2

t1
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Back to General Model

Two types {t1, t2}, probabilities 1− q, q

A set of “alternatives” A

Value v(t, a)

▶ Payoff v(t, a)− p

Cost c(a) normalized to zero
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Result

First-best mechanism:

1 Give each type “best alternative”

2 Charge value

ā(t) := argmax v(t, a)

First-best is feasible (is IC) if

0 ≥ v(t1, ā(t2))− v(t2, ā(t2)); 0 ≥ v(t2, ā(t1))− v(t1, ā(t1)) (1)

Proposition

If (1) ⇒ First-best mechanism is feasible and therefore optimal.
If not (1) ⇒ see next slide.
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Result continued

0 ≥ v(t1, ā(t2))− v(t2, ā(t2)); 0 ≥ v(t2, ā(t1))− v(t1, ā(t1))

Proposition (continued)

Suppose

(WLOG)

v(t2, ā(t1)) > v(t1, ā(t1)).

Then for all distributions
1 t2 is “the high type”:

a Its allocation is efficient: it gets ā(t2)
b Its IC binds (pins down payment given t1’s allocation-payment)

2 t1 is “the low type”:

c Its IR binds (pins down payment given t1’s allocation)
d Allocation ∈ argmax v(t1, a)− qv(t2, a), s.t. v(t2, a) ≥ v(t1, a)
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Proposition (continued)

Suppose (WLOG) v(t2, ā(t1)) > v(t1, ā(t1)).
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b Its IC binds (pins down payment given t1’s allocation-payment)

2 t1 is “the low type”:

c Its IR binds (pins down payment given t1’s allocation)
d Allocation ∈ argmax v(t1, a)− qv(t2, a), s.t. v(t2, a) ≥ v(t1, a)

12 / 17



Result continued
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Allocation of t1 when v(t2, ā(t1)) > v(t1, ā(t1))

allocation = argmax v1 − qv2 (s.t., v2 ≥ v1)

v1

v2

v1 = v2

ā1

ā2
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Vertical + Horizontal differentiation
c(a) = c · s(a), v(t, a) = a · t

t
a

t2

t1
t1

t2
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Vertical + Horizontal differentiation result

t̃1(q) =
1

1−q t1 −
q

1−q t2

1

2

3.a

3.b

t1

t2

t̃1(q)
a(q)t̃1(q)

a(q)

t1

t2

t̃1(q)
a(q)t̃1(q)

a(q)
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Bundling result

As q ↑, u(t2) = v(t2,S)− v(t1,S) decreases
For q > q∗,S remains fixed

v1

v2

v1 = v2

v1 − qv2

✗

q∗

q
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A general characterization of optimal mechanisms with two types

▶ A simple comparison specifies which type is high and which is low

Two applications
1 Bundling

▶ Products might be added to distort allocation

2 Vertical and horizontal differentiation
▶ Allocation is distorted away from the low type

Thanks!
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