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Multi-dimensional screening is hard

» We often impose structure: increasing differences (single crossing)

Here: screening two types

» Impose only quasilinearity
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Results

A general characterization of optimal mechanisms

Two applications
© Bundling
@ Vertical and horizontal differentiation
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Model

Two types {t1, to}, probabilities 1 — g, g
A set of “alternatives’ A

Value v(t,a), v(t,0) =0
» Payoff v(t,a) — p

Cost c(a) normalized to zero

Goal: profit-maximizing IC&IR mechanisms
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Model

Two types {t1, to}, probabilities 1 — g, g
A set of “alternatives’ A

Value v(t,a), v(t,0) =0
» Payoff v(t,a) — p

Cost c(a) normalized to zero

Goal: profit-maximizing IC&IR mechanisms

» Today: allow for randomization. (x, p) : {t1,t2} — A(A) x R
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Application 1: Bundling

A = set of all subsets of products {1,...,n}.
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Application 2: Vertical and Horizontal differentiation
A = all points within the circle.
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Application 1: Bundling with additive values

A = set of all subsets of products
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Application 2: Vertical and Horizontal differentiation
A = all points within the circle
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Back to General Model

Two types {t1, to}, probabilities 1 — g, q
A set of “alternatives” A

Value v(t, a)
> Payoff v(t,a) — p

Cost c(a) normalized to zero
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Result

First-best mechanism:
© Give each type "best alternative”
@ Charge value
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Result

First-best mechanism:
© Give each type "best alternative”
@ Charge value

a(t) := argmax v(t, a)
First-best is feasible (is IC) if

0> V(tl, 5(t2)) — V(tz, é(tg)); 0> V(tg, §(t1)) — V(tl, 5(1’1)) (1)

Proposition

If (1) = First-best mechanism is feasible and therefore optimal.
If not (1) = see next slide.
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Result continued

0> V(tl,é(tz)) — V(tz, 5(1‘2)); 0> V(tz, §(t1)) — V(tl, §(t1))

Proposition (continued)
Suppose v(to, a(t1)) > v(t1, a(t1)).
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Result continued

0> V(tl,é(tz)) — V(tz, §(t2)); 0> V(tg, §(t1)) — V(tl, 5(1’1))

Proposition (continued)
Suppose (WLOG) v(tz,3(t1)) > v(t1,a(t1)). Then for all distributions
Q t, is “the high type”:

@ Its allocation is efficient: it gets a(tp)
© Its IC binds (pins down payment given t's allocation-payment)

Q t; is “the low type”:
@ Its IR binds (pins down payment given t,'s allocation)
@ Allocation € arg max v(t1, a) — qv(t, a),s.t. v(ta,a) > v(t1,a)
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Allocation of t; when v(ty, a(t1)) > v(t1, a(t1))
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Allocation of t; when v(ty, a(t1)) > v(t1, a(t1))

allocation = argmax vy — qva (s.t., vo > vq)
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Allocation of t; when v(ty, a(t1)) > v(t1, a(t1))

allocation = argmax vy — qva (s.t., vo > vq)
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Vertical + Horizontal differentiation
c(a)=c-s(a), v(t,a)=a-t

T wace
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Vertical + Horizontal differentiation result
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Vertical 4+ Horizontal differentiation result
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Vertical 4+ Horizontal differentiation result
ti(q) = 1T1qt1 — it

W a(q)
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Bundling result
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Bundling result
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Bundling result

As g T, u(t2) = v(t2, S) — v(t1, S) decreases
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Bundling result
As g T, u(t2) = v(t2, S) — v(t1, S) decreases
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Bundling result

As g T, u(t2) = v(t2, S) — v(t1, S) decreases

For g > g*, S remains fixed
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Bundling result

As g T, u(t2) = v(t2, S) — v(t1, S) decreases

For g > g*, S remains fixed
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A general characterization of optimal mechanisms with two types

> A simple comparison specifies which type is high and which is low

Two applications
© Bundling
» Products might be added to distort allocation

@ Vertical and horizontal differentiation
> Allocation is distorted away from the low type
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A general characterization of optimal mechanisms with two types

> A simple comparison specifies which type is high and which is low

Two applications
© Bundling
» Products might be added to distort allocation

@ Vertical and horizontal differentiation
> Allocation is distorted away from the low type

Thanks!
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