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Abstract

We characterize profit-maximizing menus in screening settings in which the

agent has one of two privately-known types. We assume that utilities are quasi-

linear but impose no other restrictions (such as increasing differences) on the

agent’s utility or the set of alternatives. Our characterization clarifies the role of

increasing differences in the standard setting and shows when randommenus are

beneficial. We describe applications to vertical and horizontal differentiation

and multi-product bundling.

1 Introduction

Screening settings, in which a profit-maximizing principal faces a privately-informed

agent, have been studied extensively in the economics literature, beginning with the

seminal contributions of Mussa and Rosen (1978), Riley and Zeckhauser (1983), and

Maskin and Riley (1984). The principal designs a menu of (alternative, price) options,

and the agent maximizes his (quasi-linear) utility by choosing either an optimal option

from the menu or his outside option. The agent’s private information (his type)

determines his utility from the outside option and the various alternatives.

A leading example is second-degree price discrimination with alternatives that

correspond to different quantities or qualities of a product. In this case, it is nat-

ural to order the alternatives from worst (lowest quantity/quality) to best (highest

quantity/quality) and to assume that the agent’s private information concerns his
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marginal willingness to pay (for quantity/quality). This results in “increasing differ-

ences,” which states that for any pair of alternatives, higher types are willing to pay

more than lower types in order to obtain the better alternative instead of the worse

one. Increasing differences is commonly assumed in the screening literature and plays

a crucial role in characterizing the optimal (profit maximizing) menus.

Many natural settings, however, involve alternatives and types that are not nat-

urally ordered from “best” to “worst” or from “low” to “high.” One example, which

we consider in Section 5.1, is product differentiation in which each product has a

horizontal value and a vertical value. All types like higher vertical values, but types

may differ in their ideal horizontal value.1 Thus, one type is not necessarily “higher”

or “lower” than another, and one product is not necessarily “better” or “worse” than

another with a different horizontal value. Which products and at what prices should

the principal offer to maximize his profit? And what distortions (relative to efficiency)

will the optimal products entail? Another example, which we consider in Section 5.2,

is bundling multiple products. Each type has a valuation for each product, and a

type’s valuation for a bundle is the sum of the type’s valuations for the products

in the bundle. We impose no restrictions on types’ valuations for each product, so

one type is not necessarily “higher” or “lower” than another, and one bundle is not

necessarily “better” or “worse” than another. Which bundles should the principal

offer and at what prices? This question has been considered in the literature, which

we discuss in Section 1.2, but has proven difficult to analyze. We return to these

examples below.

To analyze such settings, we investigate a screening model in which the agent has

one of only two possible types, but his (quasi-linear) utility from the various alterna-

tives is otherwise unrestricted. In particular, we do not assume that the alternatives

or the types are ordered in a particular way, so neither type is necessarily “high”

or “low.” Our main results provide a complete, geometric characterization of the

optimal menus.

The key to the characterization is our notion of an uncontested type. A type

is uncontested if his valuation for his efficient alternative weakly exceeds the other

type’s valuation for this alternative. Otherwise, the type is contested. We show that

1Standard second-degree price discrimination corresponds to all types having the same ideal
horizontal value.
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the principal faces no tradeoff between maximizing an uncontested type’s valuation

for his allocated alternative and minimizing the resulting information rent for the

other type. Thus, in any optimal menu an uncontested type obtains his efficient

alternative and the other type’s payoff is zero, regardless of the probabilities of the

two types. In particular, the “first-best” is implementable if and only if both types

are uncontested.2

We show that at least one of the types is uncontested. So, if the other type is

contested, an optimal menu is pinned down by the contested type’s alternative. If

the probability of the contested type is high, then it is more important to assign

him a high-valuation alternative and charge him his valuation than to minimize the

uncontested type’s resulting information rent. This generates information rent for

the uncontested type, so the price he is charged for his efficient alternative is reduced

to make him indifferent between his and the contested type’s alternative (at their

respective prices). As the probability of the uncontested type increases, decreasing his

information rent becomes more important, even at the price of further distorting the

contested type’s allocation away from efficiency. Unlike in the standard settings with

increasing differences, where the only possible distortion in the low type’s allocation

is a “downward” distortion, in our setting there may be many possible directions for

the distortion in the contested type’s allocation, and our characterization identifies

the optimal distortion. If the probability of the uncontested type is high enough, it

may be optimal to reduce his information rent to zero. This can be done by having

the contested type obtain his most valuable alternative among those he values weakly

more than the uncontested type. When this happens, both types are charged their

valuations for their allocated alternatives and obtain zero utility, but unlike in the

standard setting, neither type is necessarily excluded.3

An important special case of our setting is when the set of valuation pairs across al-

ternatives is convex. This arises naturally in some applications, such as our combined

vertical and horizontal product differentiation, and also when random alternatives are

allowed, because randomization convexifies the set of valuation pairs. Our characteri-

zation of the optimal menus provides sharper predictions in this case. It also allows us

2The “first-best” refers to selling each type his efficient alternative for a price equal to his valuation
for that alternative.

3Even though both types obtain zero utility this is not the first-best because the contested type
does not obtain his efficient alternative.
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to characterize when offering random alternatives in the menu strictly increases the

principal’s profit.4 A sufficient condition is that the probability of the uncontested

type is sufficiently high and that, for the contested type’s most valuable alternative

among those he values weakly more than the uncontested type, the contested type’s

valuation strictly exceeds that of the uncontested type.

We illustrate the potential usefulness of our results with the product differentia-

tion and bundling applications mentioned above. The former combines vertical and

horizontal product differentiation and assumes that the cost of production is linear

in a product’s vertical value (and independent of its horizontal value). Both types

are uncontested, so first-best is implementable, if the types’ ideal horizontal values

are sufficiently different given the types’ preference intensities. When this is not the

case, we show that the horizontal value of the contested type’s allocation is optimally

distorted away from both types’ ideal horizontal values, and the distortion increases,

up to a point, in the probability of the uncontested type. The vertical value of

the contested type’s allocation is not distorted unless the contested type’s preference

intensity and probability are sufficiently low. In this case, the contested type is opti-

mally excluded and only the uncontested type is served. When production is costless,

the contested type is only excluded if his probability is sufficiently low and the two

types’ ideal horizontal values are identical. In this sense, the result in the standard

price discrimination setting with costless production that the low type is excluded

when his probability is sufficiently low is non-generic. Turning to the bundling appli-

cation, we show that when one of the types is contested, his allocation can optimally

be distorted in two ways. First, some products may be removed from the contested

type’s efficient bundle if they are valued sufficiently highly by the uncontested type.

Second, and perhaps unexpectedly, some products that both types dislike may be

added to the contested type’s bundle if the uncontested type dislikes these products

sufficiently more than the contested type. These distortions increase, up to a point,

in the probability of the uncontested type.

The rest of the paper is organized as follows. We begin with an illustrative example

in Section 1.1. Section 1.2 surveys the related literature. Section 2 describes the model

and preliminaries. Section 2.1 reviews the standard setting with increasing differences.

4Thanassoulis (2004), Vincent and Manelli (2007), and Daskalakis et al. (2017) provide instances
of randomization strictly increasing a multi-product monopolist’s profit.
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Section 3 analyzes the model, provides the main result, and describes the main parts

of the proof. Section 4 studies the case in which the set of valuation pairs is convex,

and investigates the optimal menus when the principal can offer random alternatives.

Section 5 describes the product differentiation and bundling applications. Section 6

revisits the standard setting with increasing differences and concludes.

1.1 An Example

Consider a restaurant frequented by Theorists and Applied theorists, in proportions

1 − q and q ∈ (0, 1), respectively. The chef knows how to prepare two dishes: steak

and fish.5 Applied theorists are willing to pay up to 60 for steak and up to 20 for

fish. Theorists are willing to pay up to 30 for steak and up to v > 0 for fish.6 Each

customer can eat at most one dish. For different values of v, which dish or dishes

should the restaurant offer and at what prices to maximize its profit? And how does

the answer depend on the proportions of the two customer types? Our main result

(Theorem 1) provides a complete answer. We describe the qualitative features here,

and give the details of the derivation in Appendix B.

Regardless of the proportions of the two types, it is optimal for the restaurant

to offer steak and price it so that Applied theorists order it, and to charge Theorists

their entire willingness to pay for the dish they order (if any). Whether and which

dish the restaurant should target at Theorists depends on the values of v and q. If v

is low and q is high, the restaurant should offer only steak at a price equal to Applied

theorists’ willingness to pay, thereby excluding Theorists. If both v and q are low, the

restaurant should offer only steak at a price equal to Theorists’ willingness to pay, so

all customers order steak. Otherwise, the restaurant should offer both steak and fish,

targeting fish at Theorists by setting its price equal to Theorists’ willingness to pay

for fish and adjusting the price of steak accordingly. Figure 1, (a) summarizes this by

describing which dish (if any) is optimally targeted at Theorists for different values

of v and q.

5For simplicity only we assume that the dishes are costless to prepare.
6Thus, for v < 20, Applied theorists are willing to pay more than Theorists for fish and also to

“upgrade” from fish to steak, so Applied theorists can be thought of as “high types” and Theorists
can be thought of as “low types.” But for v > 20, Theorists are willing to pay more than Applied
theorists for fish, whereas Applied theorists are willing to pay more than Theorists customers to
“upgrade” from fish to steak, so neither type is “high” or “low.”
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Figure 1: The dish optimally targeted at Theorists when (a) mixed dishes cannot
be offered, and (b) mixed dishes can be offered. ∅ indicates exclusion, “S” indicates
steak, “F” indicates Fish, and “S&T” indicates a “surf-and-turf” mixed dish.

Now suppose that in addition to steak and fish, the restaurant can offer “surf-

and-turf” dishes, which combine steak and fish in proportions that sum up to 1.7

Our results also identify the optimal menus in this case, and characterize precisely

when the restaurant strictly benefits from offering mixed dishes. With mixed dishes,

it remains optimal for the restaurant to offer steak and price it so that Applied

theorists order it, and to charge Theorists their entire willingness to pay for the dish

they order (if any). But for intermediate values of v, there is a range of values of q

(which increases in v), for which it is optimal to offer a “surf-and-turf” mixed dish

targeted at Theorists. The optimal proportions of steak and fish in this dish depend

only on v and do not change with q. Figure 1, (b) describes which dish (if any) is

optimally targeted at Theorists for different values of v and q when mixed dishes are

allowed.

1.2 Related literature

The classical models of monopolistic price discrimination (Mussa and Rosen, 1978

and Maskin and Riley, 1984) allow only for vertically differentiated products and

assume increasing differences. In these models, the only possible distortion in a

7We assume that customers’ utility from a fractional steak or fish dish is linear in the fraction,
so mixed dishes can be thought of as “random dishes.”
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type’s allocation is a downward distortion. Our model makes it possible to study the

direction of the distortion. Our application to vertical and horizontal differentiation

shows that the horizontal value of the contested type’s allocation may be distorted

away from the ideal horizontal value of the uncontested type, and our application

to bundling shows that products with a negative valuation might be added to the

contested type’s bundle.

The literature that studies horizontal differentiation of products mostly focuses on

imperfect competition, where each firm sells one of the products. The classical models

(Hotelling, 1929 and Salop, 1979) allow only for horizontal differentiation (and not

vertical differentiation). Villas-Boas (1999) and Armstrong and Vickers (2001) add

horizontal differentiation to the vertical differentiation model of Mussa and Rosen

(1978) in discrete-choice models in which a random additive shock is added to the

value of each product for each consumer. We are not aware of papers that combine

horizontal and vertical differentiation in a monopoly setting, as in our application.

Our bundling application is related to the literature on multi-product bundling

that started with Stigler (1963) and Adams and Yellen (1976). The theoretical lit-

erature highlights that optimal menus might be complex. Optimal menus may be

random (Thanassoulis, 2004), include an infinite number of alternatives, (Vincent

and Manelli, 2007), and be hard to compute (Daskalakis et al., 2014). As a result,

large parts of the literature impose additional structure on the problem, and solu-

tions are known only in very special cases. Even in what is considered the simplest

case, two products with additive and independently drawn values, optimal menus can

still be complex and are identified only for specific examples (Daskalakis et al., 2014,

Thirumulanathan et al., 2019). We simplify the problem in another direction: instead

of assuming that there are two products (with independent values), we assume that

there are two types, allow for any number of products and any quasi-linear valuations,

and fully solve the problem.8

Papers that study screening often focus (entirely or partially) on two-type versions

of the problems they study. Bergemann et al. (2018) and Boleslavsky and Kolb

8Our main result imposes no structure on types’ valuations and can be used to identify optimal
menus without assuming additivity across products. We impose additivity in the bundling applica-
tion for two reasons. First, additivity is a canonical assumption made by most of the literature (with
exceptions that include (Haghpanah and Hartline, 2021, Ghili, 2023, and Yang, 2024). Second, with
additivity we can describe the solution geometrically.
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(2025) study selling information structures, Rochet and Stole (2002) study random

participation constraints, Pycia (2006) studies bundling products with additive values,

and Galperti (2015) studies screening an agent with self-control problems. Using our

result, Bergemann et al. (2025) study a two-type version of the problem of designing

large language models. These applications impose additional structure on types’

utilities beyond quasi-linearity, and our paper clarifies which properties of optimal

menus hold generally and (consequently) which ones rely on the additional structure.

2 Model and preliminaries

A profit-maximizing principal faces an agent whose privately-known type t ∈ T =

{1, 2} is 1 with probability 1 − q and 2 with probability q ∈ (0, 1). There is a set

A of alternatives, where alternative 0 ∈ A represents the agent’s outside option. An

alternative can correspond to a quality/quantity of a product, to a bundle of products,

or to a list of characteristics of a product. The agent’s type t specifies his valuation

vt(a) ∈ R for every alternative a. Type t’s utility from alternative a and payment p to

the principal is vt(a)− p. The principal’s cost of producing alternative a is c(a) ∈ R.
Denote by V = {(v1(a), v2(a)) : a ∈ A} the set of valuation pairs across the

alternatives and assume that V is closed. Let

aEt = argmax
a∈A

(
vt(a)− c(a)

)
(E1-E2)

be the efficient alternative of type t, and assume that it exists and is unique.9 Closed-

ness of V and existence of aEt are satisfied for example when A is finite or, more

generally, when A is compact and vt and c are continuous.

The principal designs a menu of (a, p) pairs, where a ∈ A is an alternative and

p is a price. The agent chooses either a pair from the menu or his outside option to

maximize his utility. Notice that we require the principal to offer only deterministic

alternatives. This is more general than allowing the principal to offer random alter-

natives, because we can consider random alternatives by convexifying V . We discuss

random alternatives in Section 4.2.

9Existence is important for the existence of optimal menus. Uniqueness is for expositional sim-
plicity only.
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By the revelation principle (Myerson, 1979), and because the principal can include

the outside option with a price of zero in the menu, it suffices to consider menus

{(a1, p1), (a2, p2)} from which each type t optimally chooses the pair (at, pt).
10 Thus,

the principal solves the following problem:

max
a1,a2∈A p1,p2∈R

(1− q)(p1 − c(a1)) + q(p2 − c(a2))

subject to v1(a1)− p1 ≥ v1(0),

v2(a2)− p2 ≥ v2(0),

v1(a1)− p1 ≥ v1(a2)− p2,

v2(a2)− p2 ≥ v2(a1)− p1.

Appendix C shows that we can normalize the production costs of all the alter-

natives and the valuations for the outside option to zero by changing the valuations

for all the alternatives in a way that maintains the same solutions to the principal’s

problem.11 Consequently, we will solve the following problem:

max
a1,a2∈A p1,p2∈R

(1− q)p1 + qp2

subject to v1(a1)− p1 ≥ 0, (IR1)

v2(a2)− p2 ≥ 0, (IR2)

v1(a1)− p1 ≥ v1(a2)− p2, (IC1)

v2(a2)− p2 ≥ v2(a1)− p1. (IC2)

Figure 2 depicts an example of the normalized set V , which may contain valuation

pairs with positive or negative values, and highlights the valuation pairs corresponding

to the efficient alternatives aE1 and aE2 , which are the rightmost alternative and the

topmost alternative, respectively. Throughout the paper, we sometimes identify an

alternative a with its associated valuation pairs (v1(a), v2(a)) when this should not

cause confusion. For example, we can say that in Figure 2 alternatives aE1 and aE2 lie

in the positive orthant.

10It may be that a1 = a2.
11We change type t’s valuation for every alternative a to vt(a)− c(a)− (vt(0)− c(0)), which might

be positive or negative. This does not change the efficient alternatives aE1 and aE2 .
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Figure 2: The normalized set V may contain valuation pairs with positive or negative
values.

If the principal could observe the agent’s type, that is, if we ignored the constraints

IC1 and IC2, then the solution would be the “first-best,” which assigns to each type

his efficient alternative at a price equal to his valuation for that alternative. If the

first-best also satisfies IC1 and IC2, then this is the solution to the principal’s problem

with all the constraints. We then say that the optimal menu implements the first-best,

or that the first-best is implementable.

Definition 1 A menu {(a1, p1), (a2, p2)} implements the first-best if at = aEt and

pt = vt(a
E
t ) for both types.

Our main result solves the principal’s problem with all the constraints and also shows

when the solution implements the first-best.

2.1 Increasing Differences

The screening literature usually assumes that the alternatives are ordered, with the

outside option being the lowest alternative, and that one of the types, say type 2,

values any increase in his allocated alternative strictly more than the other type,

type 1. This “increasing differences” condition facilitates the characterization of the

optimal menus because it allows us to ignore IR2, which then makes it possible to

repeatedly simplify the problem and obtain a formulation that is separable across a1

and a2. This separable formulation implies that type 2 (the “high type”) is served

efficiently (“efficiency at the top”), that IR1 and IC2 hold as equalities, and that the

allocation of type 1 (the “low type”) may be distorted downward to reduce type 2’s
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information rent. As the proportion q of type 2 approaches 1, type 1 is optimally

excluded or “almost excluded” in that in the space V of valuation pairs type 1’s

allocation approaches the outside option. In addition, the first-best is implementable

if and only if it is efficient to exclude type 1. We formally review these results, as

well as a weaker notion of increasing differences, in Appendix D, and highlight that

these results crucially rely on the outside option being the lowest alternative.

Without increasing differences, there are no natural “high” and “low” types, dis-

tortions can take various forms, and no constraint can be ignored in order to simplify

the problem and ultimately obtain a separable formulation, so it is not clear which

constraints hold as equalities at the optimum. Thus, characterizing the optimal menus

requires a different approach, which we now present.

3 Characterizing Optimal Menus

Our main result (Theorem 1 below) characterizes the optimal menus. As we will

see, the characterization hinges on the location of the efficient alternatives aE1 and aE2

relative to the 45 degree line through the outside option (0, 0). This line will feature

prominently in our analysis, and we will henceforth refer to it as “the diagonal.”

Alternatives that lie above the diagonal are those for which the valuation of type

2 exceeds that of type 1, and the reverse holds for alternatives that lie below the

diagonal.

Whether a type’s efficient alternative lies above or below the diagonal corresponds

to whether the type is uncontested, as given by the following definition.

Definition 2 Type t is uncontested if vt(a
E
t ) ≥ vt′(a

E
t ), where t′ ̸= t. Otherwise, type

t is contested.

An uncontested type is willing to pay weakly more for his efficient alternative than

the other type does.12 Type 1 is uncontested if and only if aE1 lies weakly below the

diagonal; type 2 is uncontested if and only if aE2 lies weakly above the diagonal.

We observe that at least one type is uncontested. This is because alternative aE2

lies on a weakly higher 45 degree line than alternative aE1 , that is, v2(a
E
2 )− v1(a

E
2 ) ≥

12The term “uncontested” is motivated by the observation that such a type would outbid the
other type in a standard auction for the uncontested type’s efficient alternative.
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Figure 3: The three possibilities for the positions of the two efficient alternatives. (a)
Both types are uncontested. (b) Type 1 is contested and type 2 is uncontested. (c)
Type 1 is uncontested and type 2 is contested.

v2(a
E
1 )− v1(a

E
1 ).

13 Thus, there are three possibilities, depicted in Figure 3: (a) Both

types are uncontested (aE2 lies weakly above the diagonal and aE1 lies weakly below

the diagonal), (b) type 1 is contested and type 2 is uncontested (both alternatives

lie strictly above the diagonal), or (c) type 1 is uncontested and type 2 is contested

(both alternatives lie strictly below the diagonal). In cases (a) and (c), type 1 is

uncontested; in cases (a) and (b), type 2 is uncontested. Without loss of generality,

we assume throughout our analysis that type 2 is uncontested. That is, if we are in

case (c), switch the labels of the types to obtain case (b). This is formalized by the

following assumption, which we maintain for the remainder of the paper.

Assumption 1 Without loss of generality, type 2 is uncontested (v2(a
E
2 ) ≥ v1(a

E
2 )).

That is, either Figure 3, (a) or Figure 3, (b) applies.

3.1 No Tradeoff Lemma

Uncontested types play a crucial role in our characterization of the optimal menus.

This is because if a type is uncontested, then the principal does not face a tradeoff

between maximizing the surplus that can be extracted from this type and minimizing

13This follows because, by definition of aE1 and aE2 , v2(a
E
2 ) ≥ v2(a

E
1 ) and v1(a

E
1 ) ≥ v1(a

E
2 ).
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the information rent of the other type. This is the content of the following lemma,

which shows that in any optimal menu an uncontested type’s allocation is efficient

and the other type obtains no information rent, regardless of the probabilities of the

two types.

Lemma 1 (No Tradeoff Lemma) If a type is uncontested, then in any optimal

menu this type’s allocation is efficient and the other type’s IR constraint holds as an

equality.

Proof. Consider an uncontested type, without loss of generality type 2 (by Assump-

tion 1), and an optimal menu {(a1, p1), (a2, p2)}. Suppose that the allocation of type

2 is not efficient (a2 ̸= aE2 ). We will show that the menu is not optimal by changing

type 2’s allocation to his efficient alternative aE2 and increasing his payment by the

increase v2(a
E
2 ) − v2(a2) > 0 in his valuation (to leave his utility unchanged). This

change increases the principal’s revenue (from type 2), provided that none of the

constraints are violated.

Clearly, the only constraint that may be violated because of the change is IC1.

We will consider three cases based the locations of a1 and a2 relative to the diagonal,

show that IC1 is maintained in the first two cases, and show that if IC1 fails in the

third case, then a modification of type 1’s allocation a1 that overcomes this failure

further increases the principal’s revenue (from type 1).14

Case 1: a2 lies strictly below the diagonal: v2(a2) < v1(a2).

Because type 2 is uncontested, v2(a
E
2 ) ≥ v1(a

E
2 ). Therefore, v2(a2) < v1(a2) implies

that the increase v2(a
E
2 ) − v2(a2) in type 2’s payment exceeds the increase v1(a

E
2 ) −

v1(a2) in type 1’s valuation for type 2’s allocated alternative. This relaxes IC1, so

IC1 is maintained.

Case 2: a2 lies weakly above and a1 lies weakly below the diagonal: v2(a2) ≥ v1(a2)

and v2(a1) ≤ v1(a1).

We first observe that IR2 holds as an equality in the menu {(a1, p1), (a2, p2)}. In-

tuitively, because v1(a1) ≥ v2(a1), there is no reason to give type 2 any information

14Equivalently, we can think of the principal as offering the modified menu {(a1, p1), (aE2 , p2 +
v2(a

E
2 )−v2(a2))}, from which type 2 chooses (aE2 , p2+v2(a

E
2 )−v2(a2)), which increases the principal’s

revenue. Type 1 either continues to choose (a1, p1) or chooses (a
E
2 , p2 + v2(a

E
2 )− v2(a2)), which we

show further increases the principal’s revenue.
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rent. To see this, suppose that IR2 holds as a strict inequality. Then, by optimality

of the menu, IC2 and IR1 hold as equalities, so

v2(a2)− p2 = v2(a1)− p1 = v2(a1)− v1(a1) ≤ 0,

where the first equality follows from IC2 and the second equality follows from IR1

holding as equalities. That v2(a2) − p2 ≤ 0 contradicts that IR2 holds as a strict

inequality, so IR2 holds as an equality.

Now, because IR2 holds as an equality and the change in the menu leaves type

2’s utility unchanged, his new payment is v2(a
E
2 ). Thus, by mimicking type 2, type 1

obtains utility

v1(a
E
2 )− p2 = v2(a

E
2 )− v2(a

E
2 ) ≤ 0,

where the inequality follows because type 2 is uncontested, so IC1 is maintained.

Case 3: a2 lies weakly above and a1 lies strictly above the diagonal: v2(a2) ≥ v1(a2)

and v2(a1) > v1(a1).

That v2(a1) > v1(a1) implies that IR2 holds as a strict inequality in the menu

{(a1, p1), (a2, p2)}. This is because

v2(a2)− p2 ≥ v2(a1)− p1 ≥ v2(a1)− v1(a1) > 0,

where the first inequality is IC2 and the second inequality follows from IR1. That IR2

holds as a strict inequality implies (by the assumed optimality of the menu) that IC2

and IR1 hold as equalities, so the first two of the above inequalities are equalities and

type 2’s utility v2(a2)−p2 is equal to v2(a1)−v1(a1). Thus, to maintain type 2’s utility

after changing his allocation to aE2 , his payment is increased to v2(a
E
2 ) − (v2(a1) −

v1(a1)). This payment exceeds p1 = v1(a1), because v2(a
E
2 ) ≥ v2(a1) by definition

of aE2 . So if IC1 is violated we can replace type 1’s allocation and payment with

type 2’s modified allocation and payment, that is, replace (a1, p1) with (aE2 , v2(a
E
2 )−

(v2(a1)− v1(a1)) . This change maintains all the constraints and weakly increases the

principal’s profit.

Having established that a2 = aE2 , we now show that IR1 holds as an equality.

Because type 2 is uncontested, v2(a
E
2 ) ≥ v1(a

E
2 ), so there is no reason to give type

1 any information rent. Indeed, suppose that IR1 holds as a strict inequality in
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the menu {(a1, p1), (a2, p2)}. Then, by optimality of the menu, IC1 and IR2 hold as

equalities, so

v1(a1)− p1 = v1(a
E
2 )− p2 = v1(a

E
2 )− v2(a

E
2 ) ≤ 0,

where the first equality follows from IC1 and the second equality follows from IR2

holding as equalities. That v1(a1) − p1 ≤ 0 contradicts that IR1 holds as a strict

inequality, so IR1 holds as an equality. This completes the proof of the lemma.

3.2 Informal Description of the Characterization

Lemma 1 implies that if both types are uncontested, then the optimal menu im-

plements the first-best, because both types’ allocations are efficient and both types

obtain no information rent. If only one type is uncontested, then the first-best vio-

lates the IC constraint of the uncontested type (because the other type is contested).

It thus remains to characterize the optimal menus assuming that only type 2 is un-

contested (by Assumption 1). Lemma 1 reduces this task to identifying the allocation

a1 of type 1. Type 1’s allocation optimally resolves the tradeoff between extracting

revenue from type 1 and minimizing the information of type 2. The resolution hinges

on the relative probabilities of the two types. If the probability of type 1 is high, then

revenue extraction is more important, so a1 maximizes (or nearly maximizes) type

1’s valuation. In other words, a1 is efficient (or close to efficient) for type 1. This

generates information rent for type 2 (because type 1 is contested).15 As the prob-

ability of type 2 increases, reducing his information rent becomes more important,

even at the expense of reducing the revenue extracted from type 1. This leads to

distorting a1 away from efficiency in order to reduce type 2’s information rent. If the

probability of type 2 is such that it is optimal to reduce his information rent to zero,

so IR2 holds as an equality, it may be possible to do so without excluding type 1,

unlike with increasing differences. Indeed, any alternative that type 1 values weakly

more than type 2 can be allocated to type 1 at a price equal to type 1’s valuation

without generating information rent for type 2. These are the alternatives that lie

weakly below the diagonal in the space V of valuation pairs. Therefore, among these

alternatives it is optimal to allocate to type 1 the alternative he values the most.

Thus, type 1 is excluded for a high enough probability of type 2 if and only if the

15This means that IR2 is slack so IC2 holds as an equality.
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alternative type 1 values the most among those weakly below the diagonal coincides

with the outside option. If IR2 holds as an equality, then both types’ utilities are

zero and IC2 is slack if and only if this alternative lies strictly below the diagonal.

This is not the first-best, however, if type 1 is not served efficiently.

For a geometric interpretation, notice that because type 1 obtains no information

rent (Lemma 1), his payment is equal to his valuation for his allocated alternative

a1. This implies that if v2(a1) > v1(a1), then by mimicking type 1, type 2 can obtain

utility v2(a1)− v1(a1), so this is type 2’s information rent. In the space of valuation

pairs, the difference between the types’ valuations for an alternative corresponds

to the 45 degree line on which the alterative lies. A lower line corresponds to a

smaller difference, or less information rent for type 2. This difference is positive if the

alternative lies above the diagonal, which is the case for aE1 if type 1 is contested (by

definition). In this case, as the probability of type 2 increases, it becomes optimal to

choose an alternative with a lower valuation for type 1 that lies on a lower 45 degree

line.16 This corresponds to finding an alternative that is maximal in the direction of

the vector (1,−q). For sufficiently high probability of type 2, this alternative may

lie on or below the diagonal, at which point type 2 obtains no information rent by

mimicking type 1 (IC2 no longer holds as an equality). It is then optimal to allocate to

type 1 the alternative a1 he values the most among those weakly below the diagonal,

and to charge type 2 his entire valuation v2(a
E
2 ), which eliminates type 2’s information

rent. This case can also be captured by maximizing in the direction of the vector

(1,−q) when a “virtual alternative” that corresponds to the projection of a1 on the

diagonal is added to the space of valuation pairs.

3.3 Formalizing the Characterization

To formalize this discussion and state the characterization precisely, we introduce

some additional notation. Let A− = {a : v2(a) ≤ v1(a)} be the set of alternatives

that lie weakly below the diagonal, and let

aBD1 = argmax
a∈A−

v1(a) (BD1)

16If an alternative with a higher valuation for type 1 lies on a lower 45 degree line, that alternative
would have already been chosen because it leads to both higher revenue extraction from type 1 and
lower information rent for type 2.
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Figure 4: (a) Alternatives aBD1 and aVA. (b) Alternative a maximizes v1(·) − qv2(·)
among the alternatives in A+ ∪ {aVA}, and A′

1(q) = {a}. (c) qBD1 is the lowest q
for which aVA ∈ A1(q), because for q < qBD1 alternative a is farther than aVA in the
direction of the vector (1,−q).

be the alternative that type 1 values the most among those alternatives (BD1 stands

for “best alternative below the diagonal for type 1”), and suppose for expositional

simplicity only that this alternative is unique.17 Now, define the “virtual alternative”

aVA to satisfy

v1(a
VA) = v2(a

VA) = v1(a
BD1). (V)

In particular, if aBD1 lies on the diagonal, so v1(a
BD1) = v2(a

BD1), then aVA coincides

with aBD1. Otherwise, that is, if v1(a
BD1) > v2(a

BD1), then aVA is the projection of

aBD1 on the diagonal. Alternatives aBD1 and aVA are shown in Figure 4, (a).

Let A+ = {a : v1(a) ≤ v2(a)} be the set of alternatives that lie weakly above the

diagonal. For any q ∈ [0, 1], let A′
1(q) be the set of alternatives in A+ ∪ {aVA} that

are maximal in the direction of the vector (1,−q), as illustrated in Figure 4, (b),

A′
1(q) = argmax

a∈A+∪{aVA}
v1(a)− qv2(a).

Let A1(q) ⊆ A+ ∪ {aBD1} be the same as A′
1(q) but with aVA replaced by aBD1 if aVA

17Alternative aBD1 always exists because v1(0) = v2(0) = 0, so A− is not empty, V is closed by
assumption, and type 1’s valuation is at most v1(a

E
1 ).
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is in A′
1(q). That is,

A1(q) =

A′
1(q) if A′

1(q) ⊂ A+

A′
1(q) \ {aVA} ∪ {aBD1} otherwise.

Finally, let

qBD1 = min{q | aBD1 ∈ A1(q)} (q-BD1)

be the lowest probability q such that aBD1 ∈ A1(q), with qBD1 = 1 if aBD1 ̸∈ A1(q) for

every q < 1.18 Threshold qBD1 is illustrated in Figure 4, (c). We now state our main

result, whose proof is in Appendix A.

Theorem 1 Suppose without loss of generality that type 2 is uncontested (Assump-

tion 1). Then, the optimal menu implements the first-best if and only if type 1 is

also uncontested. For any probability q ∈ (0, 1) of type 2, a menu {(a1, p1), (a2, p2)}
is optimal if and only if it satisfies the following properties:

1. Type 2’s allocation is efficient (a2 = aE2 ).

2. Type 1’s individual rationality constraint IR1 holds as an equality:

p1 = v1(a1).

3. Type 1’s alternative a1 is any alternative in A1(q). Moreover,

(a) If q < qBD1, then A1(q) ⊂ A+ \ {aBD1}.

(b) If q > qBD1, then A1(q) = {aBD1}.

4. If a1 ∈ A+, then type 2’s incentive constraint IC2 holds as an equality:

v2(a2)− p2 = v2(a1)− p1.

5. If a1 = aBD1, then type 2’s individual rationality constraint IR2 holds as an

equality:

p2 = v2(a
E
2 ),

18Threshold qBD1 is well defined by continuity of v1 − qv2 in q.
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so

a1 = aBD1, p1 = v1(a
BD1), a2 = aE2 , p2 = v2(a

E
2 ).

In particular, type 1’s allocation a1 pins down the menu and:

6. The resulting profit is v1(a1)−qv2(a1)+qv2(a
E
2 ) if a1 ∈ A+ and (1−q)v1(a

BD1)+

qv2(a
E
2 ) if a1 = aBD1.

7. Both v1(a1) and v2(a1) weakly decrease in q.

8. The utility of type 2 weakly decreases in q.

9. As q approaches 1, type 1 is excluded or “almost excluded,” that is, (v1(a1), v2(a2))

approaches (0, 0), if and only if aBD1 coincides with the outside option.

Theorem 1 shows that the first-best is implementable if and only if both types

are uncontested, in which case aBD1 = aE1 . Moreover, in any optimal menu type 2

obtains his efficient alternative, IR1 holds as an equality, and type 1’s alternative a1

is maximal in the direction (1,−q) among those in A+ ∪{aVA}, with aVA replaced by

aBD1 if aVA is a maximizer. If q < qBD1, so a1 ∈ A+, then IC2 holds as an equality.

But if If q > qBD1, so a1 = aBD1, then IR2 holds as an equality (and IC2 may be

slack). If a1 = aBD1 and aBD1 ∈ A+ (so aBD1 is on the diagonal), then both IC2 and

IR2 hold as equalities. And if IR2 holds as an equality for some probability q of type

2, then the same is true for all higher probabilities of type 2, and the same menu

{(aBD1, v1(a
BD1)), (aE2 , v2(a

E
2 ))} remains optimal.

4 Convexity and Randomization

In this section we discuss several corollaries of Theorem 1. The first corollary considers

the case in which the set V of valuation pairs is convex. The second corollary considers

the case in which the principal can offer random alternatives (lotteries over alterna-

tives). We use these corollaries in our applications in Section 5. The third corollary

characterizes when random alternatives strictly increase the principal’s profit.
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4.1 A Convex Set of Valuation Pairs

The set V of valuations is convex in some applications, such as the vertical and

horizontal product differentiation in Section 5.1, and when random alternatives are

allowed (we consider this in the next subsection). Convexity leads to sharper predic-

tions and a simplified formulation of Theorem 1. The reason is that with convexity,

if type 1 is contested (so the first-best is not implementable) to identify type 1’s al-

ternative a1 in an optimal menu we can maximize v1(a) − qv2(a) over the set of all

alternatives A (and compare this maximum value to v1(a
BD1) − qv2(a

BD1)), instead

of maximizing over the constrained set A+∪{aVA}. This is because (i) the alternative
aBD1 lies on (and not below) the diagonal, so aBD1 = aVA, and (ii) as q increases, the

first alternative a ∈ A− that maximizes v1(a)− qv2(a) over the set of all alternatives

A is a = aBD1.19 This also implies that for any q, in any optimal menu IC2 holds as

an equality.

To formalize this, suppose that V is convex, type 1 is contested, so the first-

best is not implementable, and, without loss of generality, type 2 is uncontested

(Assumption 1). We will relate type 1’s alternative in an optimal menu to the set

B1(q) = argmax
a∈A

v1(a)− qv2(a)

of all the alternatives that are maximal in the direction of the vector (1,−q), as shown

in Figure 5, (a). For this, we consider the threshold qOD ∈ [0, 1], which is the lowest

value q such that some alternative in B1(q) lies on the diagonal (OD stands for “on

the diagonal”).20

Formally, let A= = {a : v2(a) = v1(a)} be the set of alternatives on the diagonal,

and let

qOD = min{q | B1(q) ∩ A= ̸= ∅}. (OD)

19As we show in Section 4.3, this is precisely when allowing for random alternatives does not
increase the principal’s profit.

20This threshold exists because B1(0) = argmax
a∈A

v1(a) = {aE1 } lies weakly above the diagonal, the

outside option is farther in the direction of the vector (1,−1) than any alternative above the diagonal,
so the alternatives in B1(1) lie weakly below the diagonal, and as q increases the alternatives in B1(q)
move clockwise along the boundary of V .
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Figure 5: (a) Alternative a is maximal in the direction of the vector (1,−q). (b)
Alternative a′ is an alternative in B1(q

OD) that lies on the diagonal.

Threshold qOD is shown in Figure 5, (b).

The following corollary, whose proof is in Appendix E, shows that qOD is well

defined and uses it to characterize the optimal menus when the set V is convex.

Corollary 1 Suppose that type 2 is uncontested (Assumption 1), type 1 is contested,

and V is convex. Then, the threshold qOD defined in (OD) exists and qOD = qBD1,

where qBD1 is defined in (q-BD1). For any probability q ∈ (0, 1) of type 2, a menu

{(a1, p1), (a2, p2)} is optimal if and only if it satisfies the following properties:

1. Type 2’s allocation is efficient (a2 = aE2 ).

2. Type 1’s individual rationality constraint IR1 holds as an equality:

p1 = v1(a1).

3. Type 1’s alternative a1 and type 2’s binding constraints are specified given q as

follows:

(a) If q < qOD, then a1 ∈ B1(q) and IC2 holds as an equality.
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(b) If q = qOD, then a1 ∈ B1(q
OD) ∩ A+ and IC2 holds as an equality. If

a1 = aBD1 (the unique alternative in B1(q
OD) ∩ A+ ∩ A−), then IR2 also

holds as an equality.

One particular a1 ∈ B1(q
OD)∩A+ is the alternative in B1(q

OD) that max-

imizes v2 − v1.

(c) If q > qOD, then a1 = aBD1 and both IC2 and IR2 hold as equalities.

Properties 7-9 from Theorem 1 hold as stated, and property 6 can be strengthened to

the following:

6. The resulting profit is v1(a1)− qv2(a1) + qv2(a
E
2 ),

and, in addition, we have the following property:

10. As q increases from 0 to 1, (v1(a1), v2(a2)) traces the boundary of V clockwise

from (v1(a
E
1 ), v2(a

E
1 )) to (v1(a

BD1), v2(a
BD1)).

4.2 Allowing for Randomization

So far we did not allow the principal to offer distributions over alternatives, or “ran-

dom alternatives.” Accommodating random alternatives is straightforward, because

adding random alternatives convexifies V . Thus, we can apply our analysis to the

set of random alternatives and the corresponding convex hull of V . Doing so also

allows us in Section 4.3 to characterize when random alternatives strictly increase the

principal’s profit.

We use Corollary 1 to characterize, for a given set of alternatives A, optimal menus

that can include random alternatives. A random alternative is an element of ∆(A),

and type t’s valuation for random alternative x is vt(x) = Ea∼x[vt(a)].
21 We assume

that type 2 is uncontested (Assumption 1), as we did in Theorem 1, and that type

1 is contested (otherwise the first-best is implementable and randomization has no

effect on the optimal menus).

21The principal’s cost of producing x is c(x) = Ea∼x[c(a)], which is equal to 0 because we nor-
malized the production costs of all alternatives to 0.
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Figure 6: There is no q such that B1(q) contains an alternative on the diagonal, but
B1(q

CD) contains an alternative above and an alternative below the diagonal.

We begin with a generalization of the definition of the threshold qOD from (OD)

that does not require V to be convex. Recall from Section 4.1 that

B1(q) = argmax
a∈A

v1(a)− qv2(a)

is the set of alternatives that are maximal in the direction of the vector (1,−q), and

for a convex V , qOD is the lowest threshold at which an alternative in B1(q
OD) lies on

the diagonal. With a non-convex V , there may not be a maximizer on the diagonal

for any q, because the alternatives in B1(q) might “jump” at some point from above

the diagonal to below it, as Figure 6 shows. Nevertheless, there exists a threshold

at which B1(q) “crosses” the diagonal, that is, some alternative in B1(q) lies weakly

above the diagonal and some alternative in B1(q) lies weakly below the diagonal.

Formally, let

qCD = min{q | B1(q) ∩ A+ ̸= ∅ and B1(q) ∩ A− ̸= ∅}. (CD)

This threshold qCD is shown in Figure 6 (CD stands for “crosses the diagonal”) and

coincides with the threshold qBD1 from Theorem 1 when qBD1 is computed with re-

spect to the set of random alternatives. The following corollary, whose proof is in

Appendix F, characterizes the optimal menus when randomization is allowed.

Corollary 2 Suppose that type 2 is uncontested (Assumption 1), type 1 is contested,

and randomization is allowed. Then, the threshold qCD defined in (CD) exists and
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qCD = qBD1, where qBD1, defined in (q-BD1), is computed with respect to the set of ran-

dom alternatives. For any probability q ∈ (0, 1) of type 2, a menu {(x1, p1), (x2, p2)}
of random alternatives is optimal if and only if it satisfies the following properties:

1. Type 2’s allocation is efficient (x2 = aE2 ).

2. Type 1’s individual rationality constraint IR1 holds as an equality:

p1 = v1(x1).

3. Type 1’s random alternative x1 and type 2’s binding constraints are specified

given q as follows:

(a) If q < qCD, then x1 is any distribution over the alternatives in B1(q), and

IC2 holds as an equality.

(b) If q = qCD, then x1 is any distribution over the alternatives in B1(q
CD)

such that

v2(x1) ≥ v1(x1),

and IC2 holds as an equality. If the above inequality holds as an equality,

then IR2 also holds as an equality.

One particular x1 that satisfies the above inequality assigns probability 1 to

the alternative a in B1(q
CD) that maximizes v2 − v1.

(c) If q > qCD, then x1 is any distribution over the alternatives in B1(q
CD)

such that

v2(x1) = v1(x1),

and both IC2 and IR2 hold as equalities.

One particular x1 that satisfies the above equality randomizes only over the

two alternatives in B1(q
CD) that maximize and minimize v2−v1 (if the two

alternatives coincide, then x1 assigns probability 1 to this alternative).

Notice that if q > qCD, then (by property 3(c) of Corollary 2) there may be multiple

optimal random alternatives x1, whereas property 3(c) of Corollary 1 states that aBD1
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is the unique optimal alternative when V is convex (without randomization). This

multiplicity with randomization arises because the principal and the agent do not

distinguish between two random alternatives x ̸= x′ with v1(x) = v1(x
′) and v2(x) =

v2(x
′). Except for knife edge cases, however, there will be only two alternatives in

B1(q
CD), so for q > qCD the optimal random alternative x1 is uniquely achieved by

appropriately randomizing over these two alternatives.22

4.3 When does Randomization Help?

We now turn to the question of when offering random alternatives strictly increases

the principal’s profit.23 If the set V of valuations pairs is convex, then allowing for

random alternatives clearly has no effect. Otherwise, allowing for random alternatives

expands the set of menus the principal can offer. This expansion clearly does not affect

the principal’s profit if the first-best is implementable.

The following corollary characterizes when allowing for random alternatives strictly

increases the principal’s profit, assuming the first-best is not implementable.

Corollary 3 Suppose that type 2 is uncontested (Assumption 1) and type 1 is con-

tested. The following statements are equivalent.

1. aVA = aBD1 and they are both on the boundary of the convex hull of V .

2. The highest point on the diagonal that is also in the convex hull of V corresponds

to an (non-random) alternative in V .

3. Randomization does not help (does not increase the principal’s profit) for any

q.

In addition, if either (both) of statements (1)-(2) are violated, then qCD < 1 and

randomization helps if and only if q > qCD.

Statement (1) of Corollary 3 implies that a sufficient condition for randomization

to help (for q > qCD) is that aVA ̸= aBD1, which means that aBD1 lies strictly below

22For example, this is the case with probability 1 if the number of alternatives is finite and the
agent’s valuations for the alternatives are drawn independently across alternatives from a continuous
distribution over a compact set.

23Thanassoulis (2004), Vincent and Manelli (2007), and Daskalakis et al. (2017) show that this
may happen with a multi-product monopolist.
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Figure 7: (a) If aBD1 lies strictly below the diagonal, then randomization helps.
(b) Randomization helps even though aBD1 lies on the diagonal, as long as aBD1 /∈
B1(q

CD). (c) Randomization does not help if no alternative lies strictly below the
diagonal.

the diagonal. This is illustrated in Figure 7, (a). But even if aVA = aBD1, so aBD1

lies on the diagonal, randomization might still help because aVA = aBD1 might not

be on the boundary of the convex hull of V . This is illustrated in Figure 7, (b). In

both of these cases, for q > qCD, by Corollary 2 the allocation of type 1 in an optimal

randomized menu must result in a pair of expected valuations (v̂, v̂) for the two types

that is the highest point on the diagonal that is also in the convex hull of V . But there

is no (deterministic) alternative with that pair of valuations because otherwise type

1 would have a higher valuation for such an alternative than for aBD1, contradicting

the definition of aBD1. A sufficient condition for randomization not to help is that no

alternative lies strictly below the diagonal. This is illustrated in Figure 7, (c). This

sufficient condition holds under increasing differences because then the outside option

lies on the diagonal and every other alternative lies strictly above it (see Appendix D).

Thus, Corollary 3 confirms that with increasing differences, randomization does not

help.

To gain some intuition for why randomization helps, consider the sufficient con-

dition that aBD1 lies strictly below the diagonal. As Theorem 1 shows, when the

probability of type 2 is high enough, IR2 holds as an equality and the principal op-
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timally offers a1 = aBD1 and charges both types their valuation for their assigned

alternative. If aBD1 lies strictly below the diagonal, then IC2 is slack. Since type 1

is not assigned his efficient alternative, the principal would like to assign type 1 a

“slightly more efficient” alternative and charge him more, which would not violate

IC2 because it is slack. Randomization makes this possible: instead of assigning type

1 alternative aBD1, the principal can increase his revenue by assigning type 1 a ran-

dom alternative that makes type 2’s valuation for this random alternative equal to

that of type 1 (so the random alternative lies on the diagonal).

5 Applications

5.1 Horizontal and Vertical Differentiation

In this application, each alternative corresponds to a product, and each product is

characterized by a horizontal value and a vertical value. Both types like higher vertical

values but may differ in their ideal horizontal value.

We formalize this as follows. Each alternative a ∈ A has a “size” s(a) ∈ [0, 1] and

a “location” ℓ(a) ∈ [0, 1], with s(0) = ℓ(0) = 0 for the outside option. We assume

that all size-location pairs in [0, 1] × [0, 1] are possible, so {(s(a), ℓ(a)) | a ∈ A} =

[0, 1] × [0, 1]. Each type t is also represented by a size s(t) ∈ [0, 1] and a location

ℓ(t) ∈ [0, 1]. A type’s size represents the intensity of his preferences, and his location

represents his ideal horizontal value, so his valuation for an alternative decreases in

the distance between his location and that of the alternative. Specifically, type t’s

valuation for alternative a is s(t)s(a)cos(2π(ℓ(t) − ℓ(a))). If we let u⃗(t) be a vector

of size s(t) and angle 2πℓ(t) and u⃗(a) be a vector of size s(a) and angle 2πℓ(a), as

shown in Figure 8, (a), then type t’s valuation for alternative a is the inner product

of the two vectors, u⃗(t) · u⃗(a). We assume that the cost of producing an alternative

is linear in its size, that is, c(a) = cs(a) for some constant c ≥ 0.

The special case in which both types have the same location corresponds to stan-

dard second-degree price discrimination with quality/quantity values s(a) ∈ [0, 1] and

linear costs. This is because in this case, when considering optimal menus we can

restrict attention to alternatives whose location coincides with that of the types.24

24To see this, suppose without loss of generality that both types’ location is zero, that is, ℓ(t) =
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Figure 8: (a) Vector u⃗(t) has size s(t) and angle 2πℓ(t), and vector u⃗(a) has size s(a)
and angle 2πℓ(a). (b) The four possible cases for type 1’s location in the unit circle.

We now describe the optimal menus for the different possible configurations of the

types. A type’s efficient alternative is the outside option if the type’s size is less than

c, and has size 1 and the same location as the type’s if the type’s size exceeds c. Thus,

if the size of both types is less than c, then the first-best is to exclude both types, and

this is implementable. Suppose that this is not the case, and assume without loss of

generality that type 2’s size is weakly higher than type 1’s, so type 2 is uncontested.

Moreover, normalize type 2’s size to 1 and his location to 0.

Figure 8 (b) depicts the various possibilities for type 1’s location in the unit circle.

The first-best is implementable when type 1 is in the shaded regions 1 and 2, which

is when type 1 is uncontested. In region 1, which is the circle with radius c centered

at the origin, the size of type 1 is less than c, so type 1 is efficiently excluded. When

type 1 lies outside of region 1, the efficient alternative of type 1 is the unit vector in

his direction. In region 2, which is the area outside of region 1 that is also outside of

the unshaded circle with radius 1
2
centered at point (1

2
, 0), type 1 is uncontested so his

optimal alternative is the efficient one (the unit vector in his direction). Intuitively, in

this case type 1’s ideal horizontal value (given his preference intensity) is sufficiently

0. Any alternative a with ℓ(a) ̸= 0 can be replaced with an alternative a′ that satisfies s(a′) =
s(a)cos(2π(ℓ(a))) and ℓ(a′) = 0. Both types have the same valuation for alternative a′ and alternative
a, but the cost of alternative a′ is lower.
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u⃗(q)

Figure 9: (a) Type 1 has a higher valuation than type 2 for the unit vector in the
direction of type 1. (b) Vector u⃗(q) is obtained by moving away from u⃗(2) and u⃗(1).

different from that of type 2, or, equivalently, type 1’s preference intensity (given his

ideal horizontal value) is sufficiently high that type 1 values his efficient alternative

more than type 2. More precisely, type 1’s valuation for his efficient alternative is the

size of type 1, which is higher than type 2’s valuation for type 1’s efficient alternative,

which is the projection of type 2’s vector onto the unit vector in the direction of type

1, as shown in Figure 9, (a).

In regions 3.a and 3.b the first-best is not implementable, so type 1’s alternative

in any optimal menu is distorted away from efficiency. The type of distortion differs

in the two regions and depends on the probabilities of the two types. To describe the

distortion, for any probability q of type 2, let

u⃗(q) =
1

1− q
u⃗(1)− q

1− q
u⃗(2)

be the affine combination of u⃗(1) and u⃗(2) with weights 1
1−q

and −q
1−q

. This u⃗(q) is

obtained by moving away from u⃗(1) on the line that connects u⃗(2) and u⃗(1), as shown

in Figure 9, (b). As q increases, u⃗(q) moves further away from u⃗(1) and u⃗(2).

In region 3.a, for q < qOD, type 1’s alternative in an optimal menu is the unit

vector in the direction of u⃗(q), and type 2 obtains information rent, and for q > qOD

type 1’s alternative is the unit vector in the direction of u⃗(qOD), and type 2 obtains
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Figure 10: Threshold probability qOD in regions 3.a and 3.b.

no information rent. Thus, in region 3a, the distortion is in the horizontal dimension

only. The threshold probability qOD is such that vector u⃗(qOD) lies on the boundary

of the circle with radius 1
2
centered at point (1

2
, 0), as shown in Figure 10, (a). In

region 3.b, for q < qOD type 1’s alternative is the unit vector in the direction of u⃗(q),

and type 2 obtains information rent, similarly to region 3.a, but for q > qOD type

1’s alternative is the outside option and type 2 obtains no information rent. Thus,

the distortion is only in the horizontal dimension for low q, but leads to inefficient

exclusion of type 1 for high q. The threshold probability qOD is such that vector

u⃗(qOD) lies on the boundary of the circle with radius c centered at the origin, as

shown in Figure 10, (b). We formalize this discussion in Appendix G, .

Notice that with no production costs, c = 0, type 1 can only be in region 3.b if

u⃗(1) is on the horizontal axis. Otherwise, type 1 lies above or below the line that

connects u⃗(2) to the circle with radius zero, which is the origin. So the fact that in the

standard price-discrimination setting the low type might be inefficiently excluded (for

sufficiently high probability of the high type) when the cost is zero is a non-generic

property that only holds when both types’ ideal horizontal values coincide.
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5.2 Bundling with additive valuations

We consider a bundling application with a set {1, . . . , n} of products. Each subset of

products corresponds to an alternative a ⊆ {1, . . . , n}, and the empty set corresponds

to the outside option a = 0. We allow for random alternatives, which correspond to

the set of all random subsets of products ∆(A), A = {a | a ⊆ {1, . . . , n}}.25 Type

t’s valuation (surplus net of production cost) for product i is vt(i), which may be

negative. We assume that valuations and production costs are additive, so type t’s

valuation for alternative a ∈ A is vt(a) =
∑

i∈a vt(i), with vt(0) = 0. We first discuss a

two-product example, and then give the characterization for any number of products.

5.2.1 An Example

Suppose that there are two products, 1 and 2, which means that there are four

(deterministic) alternatives, ∅, {1}, {2}, and {1, 2}. Type 1’s valuation for each

product is positive, so his efficient alternative is the grand bundle aE1 = {1, 2}. Type
2’s valuation is negative for product 1 and positive for product 2, so his efficient

alternative is aE2 = {2}. Even though type 2’s valuation for product 1 is negative, his

valuation for the grand bundle exceeds that of type 1, that is,

v2({2}) > v2({1, 2}) = v2(1) + v2(2) > v1(1) + v1(2) = v1({1, 2}) > v1({2}),

so type 2 is uncontested and type 1 is contested.26 Figure 11, (a) qualitatively depicts

both types’ valuations for each of the two products, where type 1’s valuations are on

the horizontal axis and type 2’s valuations are on the vertical axis.

Figure 11, (b) shows both types’ valuations for all four alternatives. Alternatives

{1} and {2} in panel (b) are in the same location as products 1 and 2 in panel (a).

Panel (b) also depicts alternative {1, 2} and the outside option, which corresponds

to the empty set and is located at the origin. To distinguish the two figures, we say

that panel (a) is in the “product space” and panel (b) is in the “alternative space.”

Because randomization is allowed, we use Corollary 2 to identify the optimal

menus. In any optimal menu, type 2 obtains his efficient alternative aE2 = {2}, and
25We illustrate the complexities that arise when random alternatives are prohibited in Appendix J.
26Specific values that satisfy all the assumptions in this section are v1(1) = 1, v1(2) = 3, v2(1) =

−1, and v2(2) = 6.
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∅

qCD = q∗
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Figure 11: (a) In the product space, each point represents a product. (b) In the
alternative space, each point represents an alternative.

IC2 and IR1 hold as equalities. An optimal menu is pinned down by type 1’s (possibly

random) alternative. To characterize this alternative for each probability q of type 2,

we solve for B1(q), which is the set of alternatives (bundles) that maximize

v1(a)− qv2(a) =
∑
i∈a

(
v1(i)− qv2(i)

)
.

Because the expression is additively separable across products, a bundle that max-

imizes the above expression contains a product i if v1(i) − qv2(i) > 0, does not

contain the product if v1(i)− qv2(i) < 0, and may or may not contain the product if

v1(i)− qv2(i) = 0 (in which case B1(q) contains multiple bundles). To visualize this,

we can draw a hyperplane in the product space that goes through the set of points

(b, c) such that b− qc = 0, as shown in Figure 12, (a). A product is in a maximizing

bundle if it is to the right of the hyperplane, is not in the bundle if it is to the left of

the hyperplane, and may or may not be in the bundle if it is on the hyperplane. In

Figure 12, (a), the unique alternative in B1(q) is bundle {1}.
As q increases, this hyperplane rotates clockwise. We can therefore describe B1(q)

using a threshold q∗ at which the hyperplane goes through the point that represents

product 2, shown Figure 12, (b). If q < q∗, then {1, 2} is the unique alternative in
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Figure 12: (a) Representation of the example in product space. (b) The hyperplane
orthogonal to vector (1,−q∗) goes through product 2.

B1(q). If q = q∗, then both {1} and {1, 2} are in B1(q). If q > q∗, then {1} is the

unique alternative in B1(q).

This threshold q∗ is in fact threshold qCD from Corollary 2. This is because in the

alternative space shown in Figure 11, (b), {1, 2} lies strictly above the diagonal and

{1} lies strictly below the diagonal, so q∗ is the lowest q such that B1(q) contains an

alternative that lies weakly above the diagonal and an alternative that lies weakly

below the diagonal. The locations of {1, 2} and {1} relative to the diagonal correspond
to the following inequalities:

∑
i∈{1,2}

(
v2(i)− v1(i)

)
> 0 and

∑
i∈{1}

(
v2(i)− v1(i)

)
< 0.

Thus, there exists some p̃ ∈ (0, 1) such that

p̃
∑

i∈{1,2}

(
v2(i)− v1(i)

)
+ (1− p̃)

∑
i∈{1}

(
v2(i)− v1(i)

)
= 0.

We can now use Corollary 2 to describe type 1’s (possibly random) bundle in any

optimal menu. If q < q∗ = qCD, then type 1 obtains the grand bundle {1, 2}. If

q = q∗ = qCD, type 1 obtains (any) random bundle with support over {1, 2} and {1}
in which the probability of {1, 2} is at least p̃. If q > q∗, then type 1 obtains the

random bundle that assigns probability p̃ to {1, 2} and probability 1− p̃ to {1}.
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Figure 13: (a) Representation of the example in product space. (b) The hyperplane
orthogonal to vector (1,−q∗) goes through product 2.

One feature of the example is that for each product the valuation of at least

one type is positive. But, perhaps surprisingly, even products for which both types’

valuations are negative may be offered as part of an optimal menu. To see this,

consider adding product 3, for which both types’ valuations, v1({3}) and v2({3}), are
negative. Suppose that v1({3}) = q3v2({3}) for some positive q3 < q∗, as shown in

Figure 13, (a). Suppose also that in the alternative space, alternative {1, 2, 3} lies

above the diagonal, as shown in Figure 13, (b).27 Then, for any q ∈ (q3, q∗), in any

optimal menu type 2 obtains his efficient alternative aE2 = {2} and type 1 obtains

the grand bundle {1, 2, 3}. Intuitively, even though allocating product 3 to type 1

reduces the surplus that can be extracted from type 1, the resulting reduction in type

2’s information rent is large enough that, overall, the seller’s revenue increases.28

27Specific values that satisfy all the assumptions are v1(1) = 1, v1(2) = 3, v1(3) = −1/6, v2(1) =
−1, v2(2) = 6, and v2(3) = −1.

28Recall that valuations in our setting are normalized and represent willingness-to-pay net of
costs. Appendix H interprets what “giving a product with a negative valuation” means in the
pre-normalized setting.
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5.2.2 The Characterization with Any Number of Products

Our characterization for any number of products, which we describe informally here

and formally in Appendix I, generalizes the above example. Type t’s efficient alterna-

tive aEt = {i | vt(i) > 0} is the set of products for which type t’s valuation is positive.

Suppose without loss of generality that type 2 is uncontested, so v2(a
E
2 ) ≥ v1(a

E
2 ), and

focus on the case in which type 1 is contested, so the first-best is not implementable,

v2(a
E
1 ) > v1(a

E
1 ). In any optimal menu, type 2’s allocation is aE2 and IC2 and IR1

hold as equalities.

The optimal allocation of type 1 is described by the threshold qCD (which we

will shortly identify). As shown in Figure 14, if q < qCD, then type 1’s allocation

contains every product that is to the right of the hyperplane that goes through the

set of points (v1, v2) such that v1 − qv2 = 0, does not contain any product to the

left of the hyperplane, and may or may not contain any product that is on the

hyperplane. If q ≥ qCD, then what matters is the position of a product in comparison

to the hyperplane corresponding to qCD, and not q: type 1’s allocation contains every

product that is to the right of the hyperplane that goes through the set of points

(v1, v2) such that v1 − qCDv2 = 0, does not contain any product to the left of the

hyperplane, and randomizes among the products on the hyperplane in a way that

both types have the same valuation for the bundle. Indeed, the threshold qCD is

exactly where such randomization is possible: qCD is such that if we include the

products on the hyperplane and in the first quadrant, then v2 − v1 is positive, and if

we include the products on the hyperplane and in the third quadrant, then v2 − v1 is

negative. So by randomizing over these products appropriately, we can construct a

random bundle for which v2 = v1.

This characterization clarifies which products may optimally be assigned to type

1. The products in the fourth quadrant and those in the first quadrant and below the

hyperplane corresponding to qCD are always assigned to type 1. Those in the second

quadrant and those in the third quadrant and above the hyperplane corresponding

to qCD are never assigned to type 1. Other products might be assigned to type 1 for

some values of q and not other values of q. In particular, for each product i in the

first quadrant that lies above the qCD-hyperplane, define ri = v1(i)/v2(i). Product i

is assigned to type 1 whenever q < ri, and is not assigned whenever q > ri. Similarly,
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Figure 14: The optimal bundle of type 1 contains all products filled black and may
or may not contain products filled gray.

for each product i in the third quadrant that lies below the qCD-hyperplane, define

ri = v1(i)/v2(i). Product i is not assigned to type 1 whenever q < ri, and is assigned

whenever q > ri.

As q increases, as long as it stays below qCD, some products are added to type

1’s bundle and some products are removed from it. The ones that are removed lie

in the first quadrant and are above the 45 degree line through the origin. These are

products for which both types have a positive valuation, but type 2 values them more,

so while removing them reduces the surplus extracted from type 1, it also reduces

the information rent of type 2. The products that are added are those in the third

quadrant and are below the 45 degree line through the origin. These are products

for which both types have a negative valuation, but type 2 values them less, so while

adding them reduces the surplus extracted from type 1, it also reduces the information

rent of type 2.

6 Conclusions

We characterize optimal menus in screening settings with an agent who has quasi-

linear preferences and one of two possible types. We introduce the notion of an

uncontested type, show that at least one type is uncontested, and prove that the

principal faces no tradeoff between maximizing the allocation value for a contested
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type and minimizing the information rent of the other type. This implies that that

the first-best is implementable if and only if both types are uncontested. When only

one type is uncontested, an optimal menu is characterized by the allocation of the

contested type, which we identify. The characterization enhances our understanding

of screening with two types and the role that assumptions like increasing differences

play. Some properties of optimal menus under increasing differences, such as the

existence of a type that is served efficiently and a type that obtains no information

rent, independently of the types’ probabilities, generalize and do not require increasing

differences (because at least one type is uncontested). Other properties, such as one

type being indifferent between his alternative and the other type’s alternative (at their

respective prices) and exclusion, or “near exclusion,” of one type when the probability

of the other type is sufficiently high, do not always hold. Appendix D further clarifies

the role of increasing differences by ordering the alternatives according to the 45

degree lines on which they lie in the space of valuation pairs. Increasing differences

implies that the outside option is the unique lowest alternative in this order and no

two alternatives lie on the same 45 degree line. These two properties do not hold

in general, which drives the differences between our general characterization of the

optimal menus and the one in the standard setting with increasing differences.

Our characterization also helps clarify the role that convexity of the set of valua-

tions plays in the characterization of the optimal menus. This allows us to identify

precisely when the ability to offer random menus strictly increases the principal’s

profit, and explains why randomization does not help the principal in the standard

setting with increasing differences.

The characterization makes it possible to study canonical problems for which our

current understanding is limited, such as multi-product bundling, as well as new ap-

plications, such as combining vertical and horizontal product differentiation. Finally,

our analysis relies heavily on the assumption of two types, and an intriguing direction

for future research is identifying special cases or certain properties for which some of

the analysis applies when there are more than two types.
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Appendix

A Completing the proof of Theorem 1

That the optimal menu implements the first best if and only if both types are un-

contested was shown in Section 3.2. In addition, Lemma 1 proves properties 1 and

2 from Theorem 1. It remains to formalize the proof of properties 3-9 from Theo-

rem 1, which complete the characterization of the optimal menus. As mentioned in

Section 3.2, identifying type 1’s allocation and payment necessitates a different ap-

proach from the one in Section 2.1 because we do not assume increasing differences.

Our approach includes four steps, based on the observation that in any optimal menu

either IR2 or IC2 (or bod) holds an an equality.29 In the first step we suppose that

IR2 holds as an equality, show that this implies that IC1 holds, and solve the result-

ing relaxed problem.30 In the second step, we suppose that IC2 holds as an equality,

ignore IC1, and solve the resulting relaxed problem. In the third step, we show that

the solution satisfies IC1. In the fourth step, we combine the two cases (IR2 holds as

an equality and IC2 holds as an equality) to obtain the characterization and prove

the remaining properties from Theorem 1.

Step one: Suppose that IR2 holds as an equality. That a2 = aE2 and IR1 and IR2

hold as equalities implies that p1 = v1(a1) and p2 = v2(a
E
2 ). Substituting these into

the principal’s problem and constraints, which allows us to remove IR1 and IR2, the

problem becomes:

max
a1∈A

(1− q)v1(a1) + qv2(a
E
2 )

subject to v1(a1)− v1(a1) ≥ v1(a
E
2 )− v2(a

E
2 ).

v2(a
E
2 )− v2(a

E
2 ) ≥ v2(a1)− v1(a1).

Rearranging, and ignoring qv2(a
E
2 ) in the target function, because it does not

29Otherwise type 2’s payment can be increased without violating any of the constraints.
30Recall that under increasing differences IR2 can be ignored. This is not the case in general.
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depend on a1, we obtain:

max
a1∈A

(1− q)v1(a1)

subject to v1(a
E
2 )− v2(a

E
2 ) ≤ 0

v2(a1)− v1(a1) ≤ 0.

Because type 2 is uncontested, the first constraint (IC1) holds and can be ignored.

We rewrite the second constraint (IC2) as a1 ∈ A− (the set of alternatives that lie

weakly below the diagonal) and obtain:

max
a1∈A−

(1− q)v1(a1). (1)

In the solution to this problem, the principal optimally assigns to type 1 the

alternative aBD1, which maximizes type 1’s utility among the alternatives in A−. The

resulting menu is {(aBD1, v1(a
BD1)), (aE2 , v2(a

E
2 ))}, which generates a profit of

(1− q)v1(a
BD1) + qv2(a

E
2 ). (2)

Step two: Suppose that IC2 holds as an equality. That a2 = aE2 and IR1 and

IC2 hold as equalities implies that p1 = v1(a1) and p2 = v2(a
E
2 ) − v2(a1) + v1(a1).

Substituting these into the principal’s problem and constraints, which allows us to

remove IC2 and IR1, the problem becomes:

max
a1∈A

(1− q)v1(a1) + q(v2(a
E
2 )− v2(a1) + v1(a1))

subject to v2(a
E
2 )− (v2(a

E
2 )− v2(a1) + v1(a1)) ≥ 0,

v1(a
E
2 )− (v2(a

E
2 )− v2(a1) + v1(a1)) ≤ 0.

Rearranging and ignoring qv2(a
E
2 ) in the target function, because it does not depend
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on a1, we obtain:

max
a1∈A

v1(a1)− qv2(a1)

subject to v2(a1)− v1(a1) ≥ 0,

v2(a1)− v1(a1) ≤ v2(a
E
2 )− v1(a

E
2 ).

We rewrite the first constraint (IR2) as a1 ∈ A+ (the set of alternatives that lie

weakly above the diagonal), ignore the second constraint (IC1), and obtain:

max
a1∈A+

v1(a1)− qv2(a1). (3)

This problem has the following geometric interpretation. Consider the set of valu-

ation pairs V + = {(v1(a), v1(a)) : a ∈ A+} that corresponds to the set of alternatives

A+. For any probability q of type 2, the principal finds a pair (vq1, v
q
2) in V + that is

maximal in the direction of the vector (1,−q). Any corresponding alternative a1 ∈ A+

generates a profit of

v1(a1)− qv2(a1) + qv2(a
E
2 ). (4)

Step three: We now show that IC1 holds for any solution (vq1, v
q
2) to the principal’s

problem in step 2. We showed in step 2 that IC1 is

v2(a1)− v1(a1) ≤ v2(a
E
2 )− v1(a

E
2 ),

so to show that IC1 holds we have to show that

vq2 − vq1 ≤ v2(a
E
2 )− v1(a

E
2 ).

For this we first prove the following lemma.

Lemma 2 For any q′ ≥ q ≥ 0 and S ⊆ R2, if (aq
′
, bq

′
) ∈ max

(a,b)∈S
(a−q′b) and (aq, bq) ∈

max
(a,b)∈S

(a− qb), then bq
′ − aq

′ ≤ bq − aq.

Proof. Suppose that q′ > q but bq − aq < bq
′ − aq

′
, that is, bq − bq

′
< aq − aq

′
. By

definition of (aq
′
, bq

′
), we have that aq

′−q′bq
′ ≥ aq−q′bq, that is, q′(bq−bq

′
) ≥ aq−aq

′
.
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Thus,

q′(bq − bq
′
) ≥ aq − aq

′
> bq − bq

′
,

so bq − bq
′
< 0. Consequently, because q′ > q, we have that

q(bq − bq
′
) > aq − aq

′
.

But by definition of (aq, bq), we have that aq − qbq ≥ aq
′ − qbq

′
, that is,

q(bq − bq
′
) ≤ aq − aq

′
,

a contradiction.

By Lemma 2 applied so S = V +, it is enough to show that

v02 − v01 ≤ v2(a
E
2 )− v1(a

E
2 ),

or equivalently

v1(a
E
2 )− v01 ≤ v2(a

E
2 )− v02.

The right-hand side of the inequality is non-negative by definition of aE2 . The left-

hand side is non-positive because v01 is, by definition, player 1’s maximal valuation

across the alternatives in A+, and aE2 ∈ A+ because type 2 is uncontested. Thus, the

inequality holds.

Step four: We now combine the cases in which IR2 holds as an equality (step one)

and IC2 holds as an equality (step two). Because alternative aBD1 maximizes type

1’s valuation across the alternatives in A−, and v1(a
VA) = v2(a

VA) = v1(a
BD1) by

definition of aVA, the value (1 − q)v1(a
BD1) of the solution to (1) can be written as

v1(a
VA)− qv2(a

VA). Thus, the following maximization problem combines the cases:

max
a1∈A+∪{aVA}

v1(a1)− qv2(a1). (5)

Denoting by A′
1(q) the set of maximizers that solve (5), we have that for any maxi-

mizing alternative a1 ∈ A′
1(q) the corresponding profit of the principal is

v1(a1)− qv2(a1) + qv2(a
E
2 ).
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This is because if a1 ∈ A+, then in the optimum IC2 holds as an equality and the

profit is given by (4), and if a1 = aVA, then in the optimum IR2 holds as an equality

and the profit is

(1− q)v1(a
BD1) + qv2(a

E
2 ) = v1(a

VA)− qv2(a
VA) + qv2(a

E
2 ).

This proves property 6 and the first part of property 3 from Theorem 1. Property

3(a) then holds by definition of aBD.

If a1 ∈ A+, then a1 solves the principal’s problem, and if a1 = aVA, then aBD1

solves the principal’s problem. This proves properties 4 and 5 from the statement of

Theorem 1. We now prove the remaining parts of Theorem 1.

Let V̂ + = {(a, b) : a ≤ b} ∪ {(v1(aVA), v2(aVA))} be the set of valuation pairs that

corresponds to the set of alternatives A+ ∪ {aVA}. For any q ∈ (0, 1), with a slight

abuse of notation denote by (vq1, v
q
2) a pair in V̂ + that corresponds to an alternative

a1 ∈ A+ ∪ {aVA} that solves the combined problem (5). Thus, (vq1, v
q
2) maximizes

a − qb across all valuation pairs (a, b) in V̂ +. By Lemma 2 with S = V̂ +, we have

that vq2 − vq1 weakly decreases in q. Now, if a1 ∈ A+ ∪ {aVA} solves (5), then in

the corresponding menu type 2’s utility is v2(a1) − v1(a1), so type 2’s utility weakly

decreases in q (property 8 from Theorem 1).31

That vq2 − vq1 weakly decreases in q also shows that if IR2 holds as an equality,

so a1 = aBD1 is optimal for some q, then aBD1 is uniquely optimal for any q′ > q

(which implies property 3(b) from Theorem 1). To see this, we first observe that

since the outside option corresponds to the valuation pair (0, 0) ∈ V̂ +, we must have

that vq1 − qvq2 ≥ 0. Together with (vq1, v
q
2) ∈ V̂ +, we have that vq2 ≥ vq1 ≥ qvq2. This

implies that vq2 ≥ 0, and therefore vq1 ≥ 0 as well. Now suppose that q′ > q and

a1 = aBD1 is optimal for q. By definition of aBD1 and aVA, (v1(a
VA), v2(a

VA)) is the

highest pair in V̂ + on the diagonal. And since (i) aBD1 is optimal for q if and only

if (vq1, v
q
2) = (v1(a

VA), v2(a
VA)), (ii) (vq

′

1 , v
q′

2 ) lies on a weakly lower 45 degree line

than (vq1, v
q
2) does (by Lemma 2 with S = V̂ +), and (iii) the diagonal, on which the

valuation pair (v1(a
VA), v2(a

VA) lies, is the lowest 45 degree line in the set V̂ +, we have

that (vq
′

1 , v
q′

2 ) also lies on this line. And because q′ < 1 implies that a−q′a < b−q′b for

31If a1 ∈ A+ then IC2 holds as an equality, so p2 = v2(a
E
2 ) − v2(a1) + v1(a1) and type 2’s

utility is v2(a1) − v1(a1), and if a1 = aVA, then IR2 holds as an equality and type 2’s utility is
v2(a

VA)− v1(a
VA) = 0.
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any b > a ≥ 0, we must have (vq
′

1 , v
q′

2 ) = (v1(a
VA), v2(a

VA)). Thus, aBD1 is uniquely

optimal for q′.

We now show that both v1(a1) and v2(a1) weakly decrease in q, where a1 is type

1’s alternative in an optimal menu for q (property 7 from Theorem 1). For this we

first show that both vq1 and vq2 weakly decrease in q. Indeed, suppose that q′ > q but

vq
′

2 > vq2. By definition, we have that vq1 − qvq2 ≥ vq
′

1 − qvq
′

2 , and since vq
′

2 > vq2 ≥ 0 and

q′ > q, we may conclude that

vq1 − q′vq2 > vq
′

1 − q′vq
′

2 ,

a contradiction. Thus, vq2 weakly decreases in q. Now suppose that q′ > q but vq
′

1 > vq1.

Since vq2 ≥ vq
′

2 , we have that

vq
′

1 − qvq
′

2 > vq1 − qvq2,

a contradiction to the definition of (vq1, v
q
2). That both vq1 and vq2 weakly decrease in q

implies that both v1(a1) and v2(a1) weakly decrease in q because (i) if a1 ∈ A+ then

(vq1, v
q
2) = (v1(a1), v2(a1)), (ii) if a1 = aBD1 then vq1 = v1(a

BD1) and vq2 ≥ v2(a
BD1), and

(iii) if a1 = aBD1 is optimal for some q, then a1 = aBD1 is optimal for any q′ > q.

It remains to show property 9 from the statement of Theorem 1. Since (0, 0) ∈
V̂ +, by definition of aBD1 we have that v1(a

BD1) ≥ 0. If v1(a
BD1) > 0, then, since

v1(a
VA) = v1(a

BD1) and vq1 decreases in q, we have that for any q, any optimal a1

satisfies v1(a1) ≥ v1(a
BD1) > 0, so type 1 is not excluded or “almost excluded.” If

v1(a
BD1) = 0, then (0, 0) is the pair with the highest value in V̂ + on the diagonal.

For q = 1, (0, 0) maximizes (5), so for q close to 1, by continuity, the maximizer of

(5) must coincide or be close to (0, 0). This completes the proof of Theorem 1.
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Supplemental Appendix

B The Example in Section 1.1

The efficient alternative is steak for Applied theorists. It is steak for Theorists if

v ≤ 30 and is fish if v ≥ 30, as shown in Figure 15. Applied theorists are uncontested,

so in any optimal menu their allocation is steak, and Theorists obtain no information

rent. Theorists are uncontested if and only if v ≥ 30. In this case the optimal menu

implements the first-best, so steak priced at 60 and fish priced at v are offered. For

the rest of the analysis suppose that v < 30.

vT

vA

Steak
60

30

20 Fish

10 20

q = 1
2

q = v
20

q = 30−v
40

Figure 15: T stands for Theorist and A for Applied theorist. The circle shaded dark
shows valuations for steak, and the circles shaded gray show some possible valuations
for fish.

We describe the optimal menus when the restaurant cannot offer mixed dishes

(randomization is not allowed) and when the restaurant can offer mixed dishes. Corol-

lary 3 shows that randomization makes a difference if and only if 20 < v < 30 and q

is sufficiently high. This is because in this case, alternative aBD1, the best alternative

for Theorists among those they like weakly more than Applied theorists, is fish, which

lies strictly below the diagonal. When v ≤ 20, on the other hand, aBD1 is the outside

option, which lies on the diagonal and on the convex hull of V . Thus, in our analysis

1



of the optimal menus below, we need to consider whether randomization is allowed

only for 20 < v < 30.

First suppose that v ≤ 10. Then qBD1 = 1
2
is the threshold q at which both steak

and the outside option are maximal in the direction of vector (1,−q). By Theorem 1,

the optimal allocation for Theorists is steak if q ≤ qBD1 = 1
2
, so only steak priced

at 30 is offered, and is the outside option (exclusion) if q ≥ qBD1 = 1
2
, so only steak

priced at 60 is offered.

Now suppose that 10 ≤ v ≤ 20. Then qBD1 = v
20

is the threshold q at which

both fish and the outside option are maximal in the direction of vector (1,−q). By

Theorem 1, the optimal allocation for Theorists is steak if q ≤ 30−v
40

(which is the

threshold at which both steak and fish are maximal in the direction of vector (1,−q)),

so only steak priced at 30 is offered, is fish if 30−v
40

≤ q ≤ v
20
, so fish priced at v and

steak priced at v+40 are offered, and is exclusion if q ≥ v
20
, so only steak priced at

60 is offered.

Now suppose that 20 < v < 30 and randomization is allowed. Then qCD = qBD1 =
30−v
40

is the threshold q at which both fish and steak, one below and one above the

diagonal, are maximal in the direction of vector (1,−q). By Corollary 2, the optimal

allocation for Theorists is steak if q ≤ 30−v
40

, so only steak priced at 30 is offered, and

is “surf-and-turf” if q ≥ 30−v
40

. The surf-and-turf lies on the diagonal, so it consists

of a fraction 30
v+10

of the fish dish and the remaining fraction v−20
v+10

of the steak dish.

This mixed dish is priced at 60(v−10)
v+10

and steak is priced 60, which extracts all surplus

from both consumer types without excluding either type.

Now suppose that 20 < v < 30 and randomization is not allowed. By Theorem 1,

we consider the virtual alternative aVA, which in our example is an alternative for

which both types have valuation v, as shown in Figure 16. Then qBD1 = 30−v
60−v

is

the threshold q at which both steak and the virtual alternative are maximal in the

direction of vector (1,−q). The optimal allocation for Theorists is steak if q ≤ 30−v
60−v

,

so only steak priced at 30 is offered, and is fish if q ≥ 30−v
60−v

, so fish priced at v and

steak priced at 60 are offered, which extracts all surplus from both consumer types

without excluding either type. Notice that Applied theorists strictly prefer steak

priced at 60 to fish priced at v. This “slack” is what makes offering “surf-and-turf”

more profitable when randomization is allowed.
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vT

vA

Steak
60

3020

v

v

q = 30−v
60−v

aVA

Figure 16: The case without randomization when 20 ≤ v ≤ 30.

C Normalizing Costs and Valuations for the Out-

side Option to Zero

We now show that we can normalize production costs and the valuations for the

outside option to zero by changing the valuations in a way that maintains the same

solutions to the principal’s problem. For this, let v̂t(a) = vt(a)− c(a) for t = 1, 2 and

every alternative a ∈ A, and consider the following problem.

max
a1,a2∈A r1,r2∈R

(1− q)r1 + qr2

subject to v̂1(a1)− r1 ≥ v̂1(0),

v̂2(a2)− r2 ≥ v̂2(0),

v̂1(a1)− r1 ≥ v̂1(a2)− r2,

v̂2(a2)− r2 ≥ v̂2(a1)− r1.

For any a1, a2, r1, r2, let p1 = r1 + c(a1) and p2 = r2 + c(a2). Then

(1− q)r1 + qr2 = (1− q)(p1 − c(a1)) + q(p2 − c(a2))

3



and each of IR1, IR2, IC1, and IC2 in the first problem holds if and only if the

corresponding inequality in the other problem holds. Thus, the solutions to the

second problem are the same as the ones to the first problem.

It remains to show that we can normalize the valuations for the outside option to

zero. For this, let v̄t(a) = v̂t(a)− v̂t(0) for t = 1, 2 and every alternative a ∈ A. Then

the second problem is equivalent to the following one.

max
a1,a2∈A r1,r2∈R

(1− q)r1 + qr2

subject to v̄1(a1)− r1 ≥ 0,

v̄2(a2)− r2 ≥ 0,

v̄1(a1)− r1 ≥ v̄1(a2)− r2,

v̄2(a2)− r2 ≥ v̄2(a1)− r1.

In conclusion, we can normalize production costs and the valuations for the outside

option to zero by changing type t’s valuation from vt(a) to vt(a)−c(a)− (vt(0)−c(0))

for every alternative a ∈ A. The cost c(0) of the outside option represents the

principal’s disutility from not contracting with the agent, and is typically set to 0.

D Increasing Differences

In this appendix we formally define the increasing differences assumption that is used

in the screening literature to identify optimal menus and review the standard analysis

under this assumption. We then discuss an alternative, weaker notion of increasing

differences that our setting satisfies. This weaker notion is used in the literature to

study what is implementable (instead of optimal).

D.1 The Standard Analysis

We consider the standard setting often studied in the screening literature and review

the corresponding standard arguments used to characterize optimal menus. This

setting involves alternatives that are linearly ordered, with the outside option being

the lowest alternative, and assumes that one of the types, say type 2, is willing to

pay more than the other type, type 1, for any increase in the alternative. Type 2

4



is referred to as the “high type” and type 1 is referred to as the “low type.” We

formalize this standard setting as follows.

Definition 3 Increasing differences (ID) holds if:

1. A ⊂ R+, and

2. for any two alternatives a, a′ ∈ A with a > a′,

v2(a)− v2(a
′) > v1(a)− v1(a

′).

Increasing differences implies that v2(a) ≥ v1(a) for every alternative a. This

property implies that IR2 can be ignored when solving for the optimal menus, which

is the first step in the analysis below. Without increasing differences, a different proof

is required.

Increasing differences is satisfied, for example, if vt(a) = t · a− c(a) for some cost

function c (recall that we normalized the valuations to be net of production costs).

Increasing differences facilitates the analysis because it implies that the problem of

finding an optimal menu {(a1, p1), (a2, p2)} can be simplified as follows:32

1. IR2 can be ignored because the first inequality in

v2(a2)− p2 ≥ v2(a1)− p1 ≥ v1(a1)− p1 ≥ 0,

follows from IC2, the second inequality follows from ID, the outside option 0

being the lowest alternative, and v1(0) = v2(0) = 0, and the last inequality

follows from IR1.

2. IR1 holds as an equality (otherwise, because IR2 can be ignored, p1 and p2 can

be increased by the same small amount).

3. IC2 holds as an equality (otherwise, because IR2 can be ignored, p2 can be

increased by a small amount).

32This standard analysis mostly follows Tadelis and Segal (2005), but also highlights some features
of the optimal menus. Section 2.1.3 of Bolton and Dewatripont (2004) provides a similar analysis
that leads to the same conclusions under some additional assumptions.
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4. IC1 can be ignored. Indeed, if it cannot be ignored, then the solution to the

problem subject only to IR1 and IC2 violates IC1. And then the principal could

do better by offering both types the same (alternative, price) pair: (a2, p2 + ϵ)

for a small ϵ > 0 if p2 ≥ p1, and (a1, p1) otherwise. This trivially maintains IC2,

and maintains IR1 because IC1 was violated.

Because IR1 and IC2 hold as equalities, p1 and p2 are pinned down by a1 and a2.

Thus, because IR2 and IC1 can be ignored, the principal’s problem becomes:

max
a1,a2∈A

(1− q)v1(a1) + q(v2(a2)− v2(a1) + v1(a1)).

Grouping the elements that contain a1 separately from the one that contains a2

we obtain:

max
a1,a2∈A

v1(a1)− qv2(a1) + qv2(a2).

Thus, we can solve for a1 and a2 separately. The optimal a2 is clearly a2 = aE2 ,

and the optimal a1 maximizes v1(·) − qv2(·). That is, the high type is optimally

served efficiently, and the low type’s allocation may be distorted in order to reduce

the utility v2(a1)− v1(a1) (information rent) of the high type. As the probability q of

the high type approaches 1, the low type’s allocation a1 becomes similar or identical

to the outside option in that (v1(a1), v2(a2)) approaches (0, 0).
33 These observations

are summarized by the following characterization of the optimal menus.

Theorem 2 [Tadelis and Segal (2005)] If increasing differences holds, then for any

probability q ∈ (0, 1) of the high type, a menu {(a1, p1), (a2, p2)} is optimal if and only

if it satisfies the following properties:

1. The high type’s alternative is efficient (a2 = aE2 ).

2. The high type’s incentive constraint IC2 holds as an equality:

v2(a2)− p2 = v2(a1)− p1.

33For q = 1 this is immediate because maximizing v1(a1)− qv2(a1) is identical to minimizing the
information rent v2(a1)− v1(a1) of the high type, which is uniquely achieved in A ⊂ R+ by a1 = 0.
For q close to 1 this follows from a continuity argument.

6



3. The low type’s individual rationality constraint IR1 holds as an equality:

p1 = v1(a1).

4. The low type’s alternative a1 maximizes v1(·)− qv2(·).

In particular, the low type’s alternative pins down the menu and:

5. The low type’s alternative may be inefficient (a1 ̸= aE1 ) and he may be excluded

(a1 = 0).

6. As q approaches 1, the low type is excluded or “almost excluded,” that is,

(v1(a1), v2(a2)) approaches (0, 0).

In addition, under increasing differences the optimal menu coincides with the

first-best if and only if the low type’s efficient allocation is the outside option. This

is because if aE1 = 0, then the menu {(0, 0), (aE2 , v2(aE2 ))} satisfies all the constraints;

and if aE1 ̸= 0, then p2 < v2(a
E
2 ) in any menu {(aE1 , p1), (aE2 , p2)} that satisfies IR1 and

IC2, because v2(a
E
1 ) − v1(a

E
1 ) > 0 by increasing differences and v1(0) = v2(0) = 0.

This is summarized by the following observation.

Observation 0 If increasing differences holds, then the optimal menu implements

the first-best if and only if aE1 = 0.

D.2 A Weaker Notion

Our general setting satisfies a weaker notion of increasing differences. This weaker

notion is used in the literature to study which allocations are implementable, but not

which ones are optimal. We first formalize this notion and then discuss how it differs

from the standard notion of increasing differences in Definition 3 that facilitates the

standard characterization in Theorem 2.

Definition 4 Weak Increasing differences (WID) holds if there exists complete and

transitive orders ⪰T and ⪰A on types and alternatives such that:

t ⪰T t′, a ⪰A a′ ⇒ vt(a)− vt′(a) ≥ vt(a
′)− vt′(a

′).

Write a ≻A a′ if a ⪰A a′ but not a′ ⪰A a and a ∽A a′ if a ⪰A a′ and a′ ⪰A a.
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If a setting satisfies WID, then an allocation of alternatives to types can be imple-

mented by some IC and IR menu if and only if the allocation assigns a higher ranked

alternative to a higher ranked type (see, for example, Proposition 5.5 in Börgers,

2015).

Our setting satisfies this weaker notion without imposing any additional structure

on values. For this, consider ranking type 2 above type 1, 2 ⪰T 1, and the following

order ⪰2 on the set A of alternatives:

a ⪰2 a
′ ⇐⇒ v2(a)− v1(a) ≥ v2(a

′)− v1(a
′).

That is, we assign to each alternative a the value v2(a)− v1(a), and order the alter-

natives by their value. Notice, however, that WID is also satisfied with the reverse

orders: 1 ⪰T 2 and the following order ⪰1 on the set A of alternatives:

a ⪰1 a
′ ⇐⇒ v1(a)− v2(a) ≥ v1(a

′)− v2(a
′).

Thus, according to WID either type can be considered the “high” or the “low” type,

so WID alone cannot meaningfully single out one of the types and characterize the op-

timal menus. There must be some substantial difference between WID and increasing

differences, which affects the optimal menus.

There are, in fact, two differences. The first is that under increasing differences,

there are no ties in the rankings of alternatives, but WID allows for ties. In fact, in

many applications, including the ones we consider in Section 5, it is natural for many

alternatives to have the same value v2(·)− v1(·). And different alternatives with the

same value can play different roles in the optimal menus. For example, aVA ∽2 0 (and

aBD1 ∽2 0 if V is convex) but, as Theorem 1 shows, aVA and aBD1 play a different

and significant role from the outside option 0 in the optimal menus. The second

difference is that increasing differences implicitly assumes that the outside option is

the unique lowest alternative. This is because the outside option is 0 and property 1

in Definition 3 states that A ⊂ R+. With ≻2, in contrast, the outside option may be

weakly higher than any number of alternatives.

This distinction is a key difference between the case of increasing differences and

the general case. Indeed, if aE2 ⪰2 0 ⪰2 a
E
1 , then both types are uncontested and the
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first-best is implementable. Otherwise, either aE2 ⪰2 aE1 ≻2 0 or 0 ≻2 aE2 ⪰2 aE1 . In

the former case, type 1 is contested (and type 2 is uncontested)..34 In the latter case,

type 2 is contested (and type 1 is uncontested). But in both cases 0 may not be the

unique ≻2-lowest alternative in A.

If aE2 ⪰2 a
E
1 ≻2 0, which is the case we have considered, but 0 is not the unique ≻2-

lowest alternative in A, it might be tempting to restrict attention to the alternatives

that ⪰2-exceed 0 and remove the other alternatives. This would be a mistake for

two reasons. First, if 0 ≻2 aBD1, then, as Theorem 1 shows, removing aBD1 affects

the optimal menus when IR2 holds as an equality. This is also true if aBD1 ∽2 0 but

v1(a
BD1) > 0. Only if aBD1 coincides with the outside option is it without loss to

remove the alternatives that are ≻2-lower than 0. In this case we are essentially in an

increasing differences setting, IC2 always holds as an equality in an optimal menu, and

type 1 is excluded or “almost excluded” as q approaches 1. Finally, if randomization

is allowed and 0 is the unique ≻2-lowest alternative in A, which increasing differences

satisfies, then randomization does not help.

In conclusion, what makes increasing differences special is that it identifies ≻2 as

the “correct” order on the alternatives and it implies that 0 is the unique ≻2-lowest

alternative and that no two alternatives are ≻2-equivalent. Figure 17 illustrates the

order ≻2, a case in which 0 is the unique ≻2-lowest element in A in panel (a), and

two cases in which 0 is not the unique ≻2-lowest element in A in panels (b) and (c).

E Proof of Corollary 1

The following lemma, which will be used below to prove Corollary 1, shows that qOD

is well defined. Moreover, when qOD < 1, we have that B1(q
OD)∩A= is the singleton

aBD1 = aVA, the best alternative for type 1 that lies weakly below the diagonal. In

addition, qOD coincides with the threshold qBD1 from Theorem 1.

Lemma 3 Suppose that type 2 is uncontested (Assumption 1), type 1 is contested,

and V is convex. Then

1. The threshold qOD ≤ 1 defined in (OD) exists.

34This is because aE1 ≻2 0 means that v2(a
E
1 ) − v1(a

E
1 ) > v2(0) − v1(0) = 0, where the equality

follows from our normalization v1(0) = v2(0) = 0.
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v1

v2 a′

0

a
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v1

v2 a′

0
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(c)

Figure 17: (a) a′ ≻2 a ≻2 0. (b) a
′ ≻2 0 ≻2 a. (c) a

′ ≻2 0 ∽2 a.

2. If q < qOD, then B1(q) ⊆ A+.

3. Alternative aBD1 lies on the diagonal, that is, aVA = aBD1.

4. If qOD < 1, then B1(q
OD) ∩ A= = {aBD1} = {aVA}.

5. Threshold qOD coincides with threshold qBD1 defined in (q-BD1).

Proof. We first show that a qOD that satisfies (OD) exists. For this, let

∆v(q) := min
a∈B1(q)

v2(a)− v1(a),

be the lowest difference between v2 − v1 among all the alternatives in B1(q), which

exists because the set of valuation pairs in B1(q) is closed and convex.

We first observe that, by Lemma 2, ∆v(q) is non-increasing in q. We also observe

that ∆v(0) > 0 and ∆v(1) ≤ 0. Indeed, B1(0) = {aE1 } and v2(a
E
1 ) > v1(a

E
1 ) because

type 1 is contested, so ∆v(0) > 0. And if a ∈ B1(1), then, by definition, for alternative

a′ = 0 we have

v1(a)− v2(a) ≥ v1(a
′)− v2(a

′) = 0,

so ∆v(1) ≤ 0.
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Now consider

q∗ = sup{q | ∆v(q) > 0}.

Because ∆v(q) is non-increasing, we have ∆v(q) > 0 for all q < q∗ and ∆v(q) ≤ 0 for

all q > q∗.

We argue that B1(q
∗) contains an alternative on the diagonal by showing that

there exist alternatives a, a′ ∈ B1(q
∗) such that

v2(a)− v1(a) ≥ 0 and v2(a
′)− v1(a

′) ≤ 0.

This suffices because B1(q
∗) is convex. To see that such alternatives a and a′ exist,

consider a sequence a(q) of alternatives as q approaches q∗ from below, where a(q) is

an alternative in B1(q) that minimizes v2−v1. Because V is closed, there exists some

v∗ ∈ V such that

(v∗1, v
∗
2) = lim

q↑q∗
(v1(a(q)), v2(a(q)).

Let a∗ be an alternative with v∗ = (v1(a
∗), v2(a

∗)). Because v1(a)− qv2(a) is contin-

uous in q, we have that a∗ ∈ B1(q
∗). And because v2(a(q))− v1(a(q)) > 0 for all q in

the sequence,

v2(a
∗)− v1(a

∗) ≥ 0.

A similar argument, but approaching q∗ from above, shows that there exists an alter-

native a′ ∈ B1(q
∗) such that

v2(a
′)− v1(a

′) ≤ 0.

We now claim that qOD = q∗. We have already shown that B1(q
∗) contains an

alternative on the diagonal. That there is no q < q∗ with this property follows because

∆v(q) > 0 for all q < q∗ means that v2(a)− v1(a) > 0 for all a ∈ B1(q) and q < q∗.

We now show the second statement. As argued above, for any q < qOD, a ∈
B1(q), and a′ ∈ B1(q

OD), we have that v2(a) − v1(a) ≥ v2(a
′) − v1(a

′). So, because

11



v2(a
′) − v1(a

′) = 0 for some a′ ∈ B1(q
OD), we have that v2(a) − v1(a) ≥ 0 for all

a ∈ B1(q), so B1(q) ⊆ A+.

To see that aBD1 lies on the diagonal, so aVA = aBD1, suppose that aBD1 lies strictly

below the diagonal, so v1(a
BD1) > v2(a

BD1). Since type 1 is contested, aE1 lies strictly

above the diagonal. Thus, the line connecting aBD1 and aE1 intersects the diagonal

at a single point, which corresponds to some alternative a by convexity of V . And

v1(a) > v1(a
BD1) because v1(a

E
1 ) > v1(a

BD1) by definition of v1(a
E
1 ). This contradicts

the definition of aBD1, so we conclude that aBD1 lies on the diagonal.

Now suppose that qOD < 1. The set B1(q
OD) is the set of alternatives in V that

lie on some line L whose slope strictly exceeds 1 because L is orthogonal to vector

(1,−qOD). Because V is convex and closed, B1(q
OD) is a convex and closed segment of

L, which by definition of qOD has non-empty intersection with the diagonal. Because

the slope of this segment strictly exceeds 1, the point of intersection is unique. Let

ã1 be the unique element in B1(q
OD) ∩ A=.

To see that ã1 = aBD1, consider any alternative a ∈ A−, so v1(a) ≥ v2(a), and

write

(1− qOD)v1(a) ≤ v1(a)− qODv2(a) ≤ v1(ã1)− qODv2(ã1) = (1− qOD)v1(ã1),

where the second inequality follows because ã1 ∈ B1(q
OD), and the equality follows

because ã1 is on the diagonal. That (1 − qOD)v1(a) ≤ (1 − qOD)v1(ã1) implies that

v1(a) ≤ v1(ã1), so ã1 coincides with aBD1 by definition of aBD1 (which is assumed to

be unique).

We conclude the proof by showing that qOD = qBD1, where qBD1 is defined in

(q-BD1). We showed in the first part of the proof that ∆v(q) > 0 for every q < qOD.

This implies, by definition of qBD1, that qOD ≤ qBD1. In particular, if qOD = 1, then

qOD = qBD1. And we saw that if qOD < 1, then aBD1 ∈ B1(q
OD). This implies, again

by definition of qBD1, that qBD1 ≤ qOD.

Given Lemma 3, we now complete the proof of Corollary 1.

Proof of Corollary 1. Property 6 follows from property 6 of Theorem 1 because

IC2 holds as an equality for all q ∈ (0, 1). Property 10 follows from properties 7 and

8 of Theorem 1 along with the fact that, by linearity, the alternatives in A1(q) lie on

the boundary of V .
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We now prove properties 3(a), (b), and (c). Because aVA = aBD1 ∈ A= (by

statement (3) of Lemma 3),

argmax
a∈A+∪{aVA}

v1(a)− qv2(a) = argmax
a∈A+

v1(a)− qv2(a),

so a1 is any alternative in

argmax
a∈A+

v1(a)− qv2(a).

Consider q < qOD. By statement (2) of Lemma 3, we have that B1(q) ⊆ A+, that

is,

argmax
a∈A

v1(a)− qv2(a) = argmax
a∈A+

v1(a)− qv2(a),

so a1 is any alternative in B1(q), and IC2 holds as an equality by property 4 of

Theorem 1.

Consider q = qOD. Because B1(q
OD) has an alternative in A+,

max
a∈A

v1(a)− qv2(a) = max
a∈A+

v1(a)− qv2(a),

so a1 is any alternative in B1(q
OD) ∩ A+. The binding constraints follow from prop-

erties 4 and 5 of Theorem 1.

Consider q > qOD. Since qOD = qBD1 and aBD1 ∈ A= ⊂ A+ (by statement (3) of

Lemma 3), property 3(b) of Theorem 1 implies that a1 = aBD1, and properties 4 and

5 of Theorem 1 imply that both IC2 and IR2 hold as equalities.

F Proof of Corollary 2

Proof. Denote by

V R = {(v1(x), v2(x)) : x is a random alternative}

the set of valuation pairs associated with random alternatives. Because V R is convex,

Corollary 1 characterizes the optimal menus. Thus, properties 1 and 2 hold, and it
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remains only to prove property 3.

For this consider the set

BR(q) = argmax
x∈∆(A)

v1(x)− qv2(x),

of maximizers of v1− qv2 over all random alternatives. By linearity of v1− qv2, B
R(q)

is the convex hull of the set B1(q) of all (non-random) alternatives that maximize

v1 − qv2, that is, ∆(B1(q)) = BR(q), so B1(q) ⊆ BR(q). Because V R is convex,

Lemma 3 shows that there is a lowest threshold, call it qOD−R, such that some (ran-

dom) alternative x ∈ BR(qOD−R) is on the diagonal, that is,

v1(x) = v2(x).

Notice that for any q, because ∆(B1(q)) = BR(q), there is a random alternative

x ∈ BR(q) with v1(x) − v2(x) = 0 if and only if there are two (deterministic) alter-

natives a, a′ ∈ B1(q) such that v1(a) − v2(a) ≥ 0 and v1(a
′) − v2(a

′) ≤ 0, that is,

B1(q) ∩ A+ and B1(q) ∩ A− are non-empty. Thus, qCD = qOD−R = qBD1, where the

second equality follows from part 5 of Lemma 3.

Now consider the three cases in property 3 and apply Corollary 1. If q < qCD =

qOD−R, then x1 is any alternative in BR(q) = ∆(B1(q)), that is, any distribution over

the alternatives in B1(q), and IC2 holds as an equality.

Next consider q = qCD = qOD−R. Then x1 is any random alternative in BR(qOD−R)

that is on or above the diagonal. These are distributions x over alternatives in B1(q
CD)

such that

v2(x) ≥ v1(x),

and IC2 holds as an equality. If the inequality holds as an equality, then IR2 also

holds as an equality.

Finally consider q > qCD = qOD−R. Then, x1 is the “unique alternative” in

B1(q
OD−R) ∩ A+ ∩ A−. Thus, x1 is any random alternative in BR(qOD−R) that is on

the diagonal, that is, any distribution x over the alternatives in B1(q
CD) such that

v1(x) = v2(x), and both IC2 and IR2 hold as equalities.
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G Characterizing the Optimal Menus in the Hor-

izontal and Vertical Differentiation Application

Consistent with our model, we normalize costs to zero by reflecting the cost in

the valuations and writing vt(a) = s(t)s(a)cos(2π(ℓ(t) − ℓ(a))) − cs(a). To sim-

plify notation we write cos(t, a) instead of cos(2π(ℓ(t) − ℓ(a))), so we have vt(a) =

s(t)s(a)cos(t, a)− cs(a). In inner product form, this is

vt(a) = u⃗(t) · u⃗(a)− cs(a).

Without loss of generality we assume that the size of type 2 weakly exceeds that of

type 1, and we normalize the size of type 2 to 1, so s(2) = 1. We also assume without

loss of generality that the location of type 2 is 0.

The following result formalizes the description of the optimal menus from Sec-

tion 5.1.

Proposition 1 Suppose without loss of generality that s(2) = 1 ≥ s(1), l(2) = 0, and

c < 1. For any probability q ∈ (0, 1) of type 2, a menu {(a1, p1), (a2, p2)} is optimal

if and only if it satisfies the following properties:

1. Type 2’s allocation is efficient (a2 = aE2 is the unit vector (0, 1)).

2. Type 1’s individual rationality constraint IR1 holds as an equality:

p1 = v1(a1).

3. If type 1 is in region 1 in Figure 8, (b), then the first-best is implementable and

a1 is the outside option.

4. If type 1 is in region 2 in Figure 8, (b), then the first-best is implementable and

a1 is the unit vector in the direction of u⃗(1).

5. If type 1 is in region 3.a or 3.b in Figure 8, (b), then a1 and type 2’s binding

constraints are specified given q as follows.

(a) If type 1 is in region 3.a, then qOD is such that u⃗(qOD) lies on the boundary

of the circle with radius 1
2
centered at (1

2
, 0) and:
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i. If q ≤ qOD, then a1 is the unit vector in the direction of u⃗(q) and IC2

holds as an equality.

ii. If q > qOD, then a1 is the unit vector in the direction of u⃗(qOD) and

both IC2 and IR2 hold as equalities.

(b) If type 1 is in region 3.b, then qOD is such that u⃗(qOD) lies on the boundary

of the circle with radius c centered at (0, 0) and:

i. If q < qOD, then a1 is the unit vector in the direction of u⃗(q) and IC2

holds as an equality.

ii. If q = qOD, then a1 is either the outside option or any vector in the

direction of u⃗(q), and both IC2 and IR2 hold as equalities.

iii. If q > qOD, then a1 is the outside option and both IC2 and IR2 hold

as equalities.

As outlined in Section 5.1, the efficient alternative of each type is the unit vector

in the direction of that type if the size of the type is more than c, and is the outside

option if the size is less than c. Moreover, the first-best is clearly implementable if

type 1 is either in region 1 or region 2 of Figure 8 (b). To complete the proof of

Proposition 1, it thus remains to prove property 5, which corresponds to type 1 being

in region 3.a or 3.b.

To characterize the optimal menus in this case, we observe that the set of valuation

pairs of the two types across all alternatives is convex. Thus, we can apply Corollary 1,

which shows that type 2’s allocation is efficient and IR1 and IC2 hold as equalities.

Any optimal menu is therefore pinned down by type 1’s alternative a1. To identify a1,

we need to identify the set B1(q) of alternatives that maximize v1(a)− qv2(a) across

all alternatives, where q is the probability of type 2.

Among all the alternatives that have some fixed size s̄, the alternative a that

maximizes the objective is in the direction of u⃗(q), in which case the value of the

objective is u⃗(q) · u⃗(a) − cs̄ =
(
s(u⃗(q)) − c

)
s̄. Thus, we can focus on maximizing(

s(u⃗(q)) − c
)
s(a). If s(u⃗(q)) > c, then the unique maximizer is the unit vector in

the direction of u⃗(q). If s(u⃗(q)) < c, then the unique maximizer is the outside option.

If s(u⃗(q)) = c, then the outside option and every vector in the direction of u⃗(q) are

maximizers. This characterizes the set B1(q).
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u1

u2

u⃗(t1)

u⃗(t2)

u⃗(qOD)

a(qOD)

Figure 18: Vector u⃗(t1) is above the tangent from u⃗(t1) to the circle with radius c
centered at the origin. Threshold qOD is such that u⃗(qOD) is on the boundary of the
circle with radius 0.5 centered at (0, 0.5).

Now consider two cases. The first case is when u⃗(1) lies in region 3.a. In this case,

the line that connects u⃗(2) and u⃗(1) never enters the circle with radius c, as shown

in Figure 18. So u⃗(q) is outside the circle with radius c, that is, s(u⃗(q)) > c, for all

q and therefore B1(q) consists of the unit vector in the direction of u⃗(q), which we

denote by a(q). The threshold qOD defined in (OD) is such that

v1(a(q
OD)) = v2(a(q

OD)).

For both types to have the same valuation for a(qOD), the projections of u⃗(1) and u⃗(2)

onto a(qOD) must have the same size, which means that u⃗(qOD) is on the boundary of

the circle with radius 0.5 centered at (0, 0.5), as shown in Figure 18. By Corollary 1,

type 1’s alternative a1 is a(q) for all q ≤ qOD, and a1 = a(qOD) for all q > qOD (since

aBD1 = a(qOD) is the unique element in B1(q
OD) ∩ A=).

The second case is when u⃗(1) lies in region 3.b. In this case, as shown in Figure 19,

the line that connects u⃗(2) to u⃗(1) touches the circle at some point. This point
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u1

u2

u⃗(t1)

u⃗(t2)

u⃗(qOD)

a(qOD)

Figure 19: Vector u⃗(t1) is below the tangent from u⃗(t1) to the circle with radius c.
The threshold qOD is such u⃗(qOD) has size c.

corresponds to qOD. Indeed, for q < qOD, we have that s(u⃗(q)) > c, so B1(q
OD) is the

single alternative a(q) corresponding to the unit vector in the direction of u⃗(q). Since

the projection of u⃗(2) onto the unit vector in the direction of this vector u⃗(q) is larger

than the projection of u⃗(1) onto this vector, we have that v2(a(q)) > v1(a(q)). For

q > qOD, we have that s(u⃗(q)) < c, so the single alternative in B1(q) is the outside

option, for which both types have valuation 0. Thus, qOD given by (OD) is such

that u⃗(q) touches the circle with radius c, so s(u⃗(qOD)) = c and B1(q
OD) consists of

the outside option and all the vectors in the direction of u⃗(qOD), for which type 2’s

valuation is weakly higher than type 1’s. By Corollary 1, type 1’s alternative a1 is

a(q) (the unit vector in the direction of u⃗(qOD)) for all q < qOD, a1 is the outside

option for all q > qOD, and can be the outside option or any vector in the direction

of u⃗(qOD) for q = qOD.
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H Interpretation of Giving a Product with Nega-

tive Valuation

Recall that valuations in our setting are normalized and represent willingness-to-pay

net of costs. To interpret what “giving a product with negative valuation” means

in the pre-normalized setting, consider two cases. First, suppose every type has a

positive willingness-to-pay (so products are “goods”) but costs might be higher than

willingness-to-pay so normalized valuations are negative. Then the seller might sell a

product for which both normalized valuations are negative, even though he is “losing

money” on that product because it costs more to produce them than either type is

willing to pay. Second, suppose some type might have a negative willingness-to-pay

for a product (so some products are “bads”), in which case we have to distinguish

the cases where free disposal is possible and when it is not (free disposal might

be natural with pre-mixed products such as nutritional supplements or assembled

devices, but not natural in some settings such as a cable TV subscription). Without

free disposal, the interpretation is the same: products might be assigned even if it

costs more to produce them than either type is willing to pay. With free disposal,

if a type’s willingness to pay for a product is negative, then we can replace it with

zero and assume no-free-disposal without loss. But then, if both types have negative

willingness-to-pay for a product, those valuations are replaced with zero. Then with

positive costs, our result says the seller would never find it optimal to assign such a

product.

I Bundling Characterization with Any Number of

Products

If both types are uncontested, then the first-best is implementable. So, for the rest

of the discussion, assume that type 2 is uncontested (Assumption 1), as we did in

Theorem 1, and that type 1 is contested, so v2(a
E
1 ) > v1(a

E
1 ). This assumption means
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that

∑
i:v1(i)>0

(
v2(i)− v1(i)

)
> 0.

We characterize the optimal random menus by using Corollary 2. An optimal

menu is pinned down by type 1’s random alternative x1. To characterize this random

alternative, we identify the set

B1(q) = argmax
a∈A

v1(a)− qv2(a) = argmax
a∈A

∑
i∈a

(
v1(i)− qv2(i)

)
.

By definition, a bundle a is in B1(q) if and only if it contains every product i for

which v1(i)− qv2(i) > 0 and contains no product i for which v1(i)− qv2(i) < 0, that

is,

{i | v1(i)− qv2(i) > 0} ⊆ a ⊆ {i | v1(i)− qv2(i) ≥ 0}.

Each set of products in B1(q) can be visualized as a bundle that contains every

product to the right of the hyperplane that goes through the set of points (v1, v2)

such that v1 − qv2 = 0, and may or may not contain the products on the hyperplane,

as shown in Figure 20, (a).

Corollary 2 says that there exists a threshold qCD such that B1(q
CD) ∩ A+ and

B1(q
CD)∩A− are non-empty. That is, there are two alternatives a, a′ ∈ B1(q

CD) such

that

∑
i∈a

v2(i)− v1(i) ≥ 0, and,
∑
i∈a′

v2(i)− v1(i) ≤ 0.

Corollary 2 singles out the alternatives in B1(q
CD) that maximize or minimize v2−v1.

These alternatives are easy to characterize in our application. The alternative that

maximizes v2 − v1 among those in B1(q) is the bundle that, among the products i

that are on the hyperplane v1− qv2 = 0, contains exactly those for which v2(i)−v1(i)

is positive. Because 0 < q < 1, those are the products that are in the first quadrant,
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v1

v2 q

(a)

v1

v2 q

(b)

v1

v2 q

(c)

Figure 20: (a) A bundle in B1(q) contains the products to the right of the hyperplane
q and may or may not contains the products on the hyperplane. (b) a1Q(q) contains
the products shaded dark. (c) a3Q(q) contains the products shaded dark.

as shown in Figure 20, (b). Formally, the maximizer is the bundle

a1Q(q) =

{
i
∣∣∣ (v1(i)− qv2(i) > 0

)
or

(
v1(i)− qv2(i) ≥ 0, v1(i), v2(i) ≥ 0

)}
. (6)

Similarly, the minimizer of v2 − v1 among those in B1(q) is the bundle that contains

the products on the hyperplane that are in the third quadrant, as shown in Figure 20,

(c), that is,

a3Q(q) =

{
i
∣∣∣ (v1(i)− qv2(i) > 0

)
or

(
v1(i)− qv2(i) ≥ 0, v1(i), v2(i) ≤ 0

)}
. (7)

Given the above definitions, we state our characterization result as follows.

Proposition 2 Suppose that randomization is allowed and
∑

i:v1(i)>0(v2(i)−v1(i)) >

0. For any probability q ∈ (0, 1) of type 2, a menu {(x1, p1), (x2, p2)} is optimal if and

only if it satisfies the following properties:

1. Type 2’s allocation is efficient (x2 = aE2 = {i | v2(i) > 0}).

2. Type 1’s individual rationality constraint IR1 holds as an equality:

p1 = v1(x1).
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3. Type 1’s allocation and type 2’s binding constraints are specified given q as

follows:

(a) If q < qCD, then x1 is any randomized bundle that contains every product

i with v1(i)− qv2(i) > 0 with probability 1 and every product i with v1(i)−
qv2(i) < 0 with probability 0, and IC2 holds as an equality.

(b) If q = qCD, then x1 is any randomized bundle that contains every product

i with v1(i)− qv2(i) > 0 with probability 1 and every product i with v1(i)−
qv2(i) < 0 with probability 0 and such that

Ea∼x1 [v2(a)− v1(a)] ≥ 0

and IC2 holds as an equality. If the above inequality holds as an equality,

then additionally IR2 holds as an equality.

One particular x1 that satisfies the above inequality assigns probability 1 to

bundle a1Q(qCD) defined in (6).

(c) If q > qCD, then x1 is any randomized bundle that contains every product

i with v1(i)− qv2(i) > 0 with probability 1 and every product i with v1(i)−
qv2(i) < 0 with probability 0 and such that

Ea∼x1 [v2(a)− v1(a)] = 0

and IR2 holds as an equality.

One particular x1 that satisfies the above equality randomizes only over the

two bundles a1Q(qCD) and a3Q(qCD), defined in (6) and (7).

One possibility for generating the alternative x1 in property 3(c) of Proposition 2

is to randomize only over the two alternatives a3Q(qCD) and a1Q(qCD). In the re-

sulting random alternative, products to the right of the hyperplane v1 − qv2 = 0 are

included with probability 1, each product on the hyperplane in the first quadrant is

included with some probability p, and each product on the hyperplane in the third

quadrant is included with the complementary probability 1−p. Except for knife edge

cases, however, there is a single product i on the hyperplane. The resulting random

alternative x1 then consists of all the products to the right of the hyperplane along
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v2(2)

v1(2)

v2(1)

v1(1)
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(a)

v1

v2
{2} = aE2

{1}

{1, 2} = aE1

∅

aVA

qCD
qBD1

(b)

Figure 21: (a) The product space. (b) The alternative space with thresholds qBD1

and qCD.

with product i with some probability.

J A Bundling Example when Randomization is

not Allowed

We here return to the example from Section 5.2 and describe the optimal menus when

randomization is not allowed. For convenience, Figure 21 recreates the figures in the

product space and the alternative space from Section 5.2.

We identify the optimal menus using Theorem 1. For this, we need to identify the

threshold qBD1, which is the lowest q at which the virtual alternative aVA is maximal

in the direction of the vector (1,−q) among the alternatives A+ ∪ {aVA}. In our

example, A+ consists of alternatives {2} and {1, 2}, and the threshold qBD1 is such

that alternative {1, 2} and the virtual alternative aVA lie on a hyperplane orthogonal

to the vector (1,−qBD1), so

v1({1, 2})− qBD1v2({1, 2}) = v1(a
VA)− qBD1v2(a

VA).
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This is shown in Figure 21, (b). For any q < qBD1, alternative {1, 2} is maximal

in the direction of the vector (1,−q) among the alternatives A+ ∪ {aVA}, and for

any q > qBD1, aVA is maximal in the direction of that vector. Recall that qCD is

the threshold at which {1, 2} and aBD1 are maximal (among all alternatives) in the

direction of the vector (1,−qCD), and notice that qBD1 > qCD, as shown in Figure 21,

(b).

We now describe type 1’s alternative in any optimal (non-random) menu. If

q < qBD1, then type 1’s alternative is the grand bundle {1, 2}. If q = qBD1, then

type 1’s alternative can be either {1, 2} or aBD1 = {1}. If q > qBD1, then type 1’s

alternative is aBD1 = {1}.
There is a connection between the optimal menus with and without randomization.

For q > qBD1 > qCD, with randomization type 1’s alternative is a distribution over

{1, 2} and {1}; without randomization type 1’s alternative is aBD1 = {1}. One might

wonder if this is a general property: is it always the case that aBD1, which is type

1’s alternative in the optimal deterministic menu for any q > qBD1, is also in the

support of type 1’s random alternative in an optimal random menu for q > qCD?

This property is not in fact general. In the example, aBD1 ∈ B1(q
CD) and, moreover,

it is the only alternative in B1(q
CD) that lies below the diagonal in the alternative

space, so it has to be used in type 1’s random alternative for any q > qCD. We now

give an example in which aBD1 /∈ B1(q
CD), so aBD1 is not in the support of type 1’s

random alternative in the optimal random menu for any q > qCD, but aBD1 is type

1’s alternative in the optimal deterministic menu for any q > qBD1.

For the example, we add a third product, product 3, without changing the other

two products. The result in the product space is shown in Figure 22, (a). To depict

the result in the alternative space, we take each of the four existing alternatives and

move it in the direction of the vector (v1(3), v2(3)) to obtain four new alternatives,

each containing product 3, for a total of eight alternatives. Both types have a neg-

ative valuation for product 3, so the efficient alternatives remain unchanged. For

certain parameters, the threshold qCD and the set B1(q
CD) = {{1}, {1, 2}} remain

unchanged.35 Importantly, B1(q
CD) does not contain the bundle aBD1 = {1, 2, 3}.

Thus, for q > qBD1 type 1’s alternative in the optimal deterministic menu is the bun-

35Specific valuations that work are v1(1) = 2, v1(2) = 1, v1(3) = −0.5, v2(1) = −2, v2(2) = 6, and
v2(3) = −2.
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Figure 22: (a) The product space with three products. (b) The corresponding al-
ternative space with eight alternatives. Alternative that are not important in the
example are lightly shaded to ease visualization.

dle {1, 2, 3}, but in the optimal random menu {1, 2, 3} is not in the support of type

1’s random alternative, which randomizes over bundles {1} and {1, 2}.
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