A Theory of Stable Market Segmentations

Nima Haghpanah (Penn State) joint with Ron Siegel (Penn State)

February 9, 2023

Market Segmentation

Market Segmentation

Where do segmentations come from?

Where do segmentations come from?

If consumers choose?

Where do segmentations come from?

If consumers choose?

Segment = a coalition of consumers

<ロト < 回 > < 臣 > < 臣 > < 臣 > 三 の < © 3/33

Platform 3

イロト イロト イヨト イヨト

Platform 3

"Stable" segmentations

"Stable" segmentations have "good welfare properties"

<ロト < 回 ト < 巨 ト < 巨 ト 三 の Q () 5 / 33

<ロト < 回 ト < 巨 ト < 巨 ト ミ の Q () 5/33

- $(C_1, 1)$: a segment $(C_1, 2)$: a segment
- $(C_2, 1)$: not a segment $(C_2, 2)$: a segment

Coalitions, segments, and segmentations $(C_1, 1)$: a segment $(C_1, 2)$: a segment $(C_2, 1)$: not a segment $(C_2, 2)$: a segment

Segmentation $S = \{(C_1, 1), (C_2, 2)\}$ s.t. coalitions partition [0, 1]

Coalitions, segments, and segmentations $(C_1, 1)$: a segment $(C_1, 2)$: a segment $(C_2, 1)$: not a segment $(C_2, 2)$: a segment

Segmentation $S = \{(C_1, 1), (C_2, 2)\}$ s.t. coalitions partition [0, 1]

$$\forall c \in C_1, CS(c, S) = \max\{v(c) - 1, 0\}$$

$$\forall c \in C_2, CS(c, S) = \max\{v(c) - 2, 0\}$$

Outline

- Core
- Stability

Definition (Objection)

A segment (C, p) objects to segmentation S if

Definition (Objection) A segment (C, p) objects to segmentation S if $\max\{v(c) - p, 0\} \ge CS(c, S)$ for all $c \in C$

 $\max\{v(c) - p, 0\} > CS(c, S)$ for some (measure > 0) $c \in C$

Definition (Objection)

A segment (C, p) objects to segmentation S if

 $\begin{array}{ll} \max\{v(c)-p,0\} \geq CS(c,S) \text{ for all } & c \in C \\ \max\{v(c)-p,0\} > CS(c,S) \text{ for some (measure > 0) } c \in C \end{array}$

Note: Objecting segment $(C, p) \notin S$

Definition (Objection)

A segment (C, p) objects to segmentation S if

 $\begin{array}{ll} \max\{v(c)-p,0\}\geq CS(c,S) \text{ for all } & c\in C\\ \max\{v(c)-p,0\}>CS(c,S) \text{ for some (measure }>0) \ c\in C \end{array}$

Note: Objecting segment $(C, p) \notin S$

Definition (Core) S is in the core if \nexists segment (C, p) that objects to S

<ロト < 団ト < 臣ト < 臣ト ミ の < で 8/33

Let v_1 be the lowest possible value

Proposition

1 If price v_1 is revenue-maximizing to sell to [0, 1],

2 If price v_1 is not revenue-maximizing to sell to [0, 1],

Let v_1 be the lowest possible value

Proposition

If price v₁ is revenue-maximizing to sell to [0, 1], {([0, 1], v₁)} ∈ core and "essentially unique"
If price v₁ is not revenue-maximizing to sell to [0, 1], Core is empty

Let v_1 be the lowest possible value

Proposition

 If price v₁ is revenue-maximizing to sell to [0, 1], {([0, 1], v₁)} ∈ core and "essentially unique"
If price v₁ is not revenue-maximizing to sell to [0, 1], Core is empty

Essentially unique: If S' in core, then $S' \approx \{([0,1], v_1)\}$ $\blacktriangleright S' \approx S: CS(c,S') = CS(c,S)$ for (almost) all $c \in [0,1]$

> <ロ > < 回 > < 目 > < 目 > < 目 > < 目 > 目 の Q () 8/33

Two type illustration

Two type illustration If $\delta < 0.8$: $S = \{(C_1, 1), (C_2, 2)\}$ not in core

If $\delta < 0.8$: $S = \{(C_1, 1), (C_2, 2)\}$ not in core If $\delta = 0.8$: $S = \{(C_1, 1), (C_2, 2)\}$ not in core

If $\delta < 0.8$: $S = \{(C_1, 1), (C_2, 2)\}$ not in core If $\delta = 0.8$: $S = \{(C_1, 1), (C_2, 2)\}$ not in core

Segment $(C'_1, 1)$ objects

<ロト < 回 > < 直 > < 直 > < 直 > < 三 > 三 の へ () 9/33

If $\delta < 0.8$: $S = \{(C_1, 1), (C_2, 2)\}$ not in core If $\delta = 0.8$: $S = \{(C_1, 1), (C_2, 2)\}$ not in core

Segment $(C'_1, 1)$ objects

- If $\delta < 0.8$: $S = \{(C_1, 1), (C_2, 2)\}$ not in core If $\delta = 0.8$: $S = \{(C_1, 1), (C_2, 2)\}$ not in core
 - $10 = 0.0.5 = \{(c_1, 1), (c_2, 2)\}$ not
 - Segment $(C'_1, 1)$ objects
 - ▶ But $(C_1, 1) \in S$ also objects to resulting $S' = \{(C'_1, 1), (C'_2, 2)\}$

Stability

Definition (Stability)

S is stable if $\forall S' \not\approx S$, $\exists (C, p) \in S$ that objects to S'

Stability

Definition (Stability)

S is stable if $\forall S' \not\approx S$, $\exists (C, p) \in S$ that objects to S'

Existing coalitions have sovereignty.

Two type illustration and stability $S = \{(C_1, 1), (C_2, 2)\}$ is stable $\blacktriangleright (C_1, 1)$ objects to any $S' \not\approx S$

Two type illustration and stability $S = \{(C_1, 1), (C_2, 2)\}$ is stable $\blacktriangleright (C_1, 1)$ objects to any $S' \not\approx S$ $S' = \{(C'_1, 1), (C'_2, 2)\}$ is not stable $\blacktriangleright S$ objects to S' but S' doesn't object to S

< ロ > < 同 > < 回 > < 回 >

Definition (Stability)

S is stable if there is no deviation from it

Definition (Core)

S is in the core if there is no deviation from it

Definition (Stability)

S is stable if there is no deviation from it

Definition (Core) S is in the core if there is no deviation from it

• $S \rightarrow S'$ if S' contains an objection to S

Definition (Stability)

S is stable if there is no deviation from it

• $S \rightarrow S'$ if S does not contain an objection to S'

Definition (Core) S is in the core if there is no deviation from it $ightarrow S \rightarrow S'$ if S' contains an objection to S

Definition (Stability)

S is stable if there is no deviation from it

• $S \rightarrow S'$ if S does not contain an objection to S'

Definition (Core)

S is in the core if there is no deviation from it

• $S \rightarrow S'$ if S' contains an objection to S

Objection in S' has the power to force a move

Definition (Stability)

S is stable if there is no deviation from it

• $S \rightarrow S'$ if S does not contain an objection to S'

Objection in S has the power to prevent a move

Definition (Core) S is in the core if there is no deviation from it $S \rightarrow S'$ if S' contains an objection to S

Objection in S' has the power to force a move

Characterization of stable segmentations

Proposition

Segmentation is stable iff its induced canonical segmentation is stable
Canonical segmentation S is stable iff it is efficient and saturated

Characterization of stable segmentations

Proposition

Segmentation is stable iff its induced canonical segmentation is stable
Canonical segmentation S is stable iff it is efficient and saturated

Segmentations

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q () 15 / 33

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q @ 15/33

 $S = \{(C_1, 1), (C_2, 2), (C_3, 3)\}$

<ロト < 団ト < 巨ト < 巨ト < 巨ト < 巨 > 巨 の Q (C 15 / 33

 $S = \{(C_1, 1), (C_2, 2), (C_3, 3)\}$

 $S = \{(C_1, 1), (C_2, 2), (C_3, 3)\}$

 $S = \{(C_1, 1), (C_2, 2), (C_3, 3)\}$

<ロ><同><同><良><見><見><見><見><見)<<し><し、<のへの 16/33

- Is defined recursively. Let $\bar{C} = [0,1]$, $S = \emptyset$
 - C := largest coalition where all prices (among remaining values in C
 are revenue-maximizing
 - 2 Add $(C, \underline{v}(C))$ to S
 - 3 Remove C from \overline{C}
 - Repeat until $\bar{C} = \emptyset$

- Is defined recursively. Let $\bar{C} = [0,1]$, $S = \emptyset$
 - C := largest coalition where all prices (among remaining values in C
 are revenue-maximizing
 - 2 Add $(C, \underline{v}(C))$ to S
 - 3 Remove C from \overline{C}
 - Repeat until $\bar{C} = \emptyset$

In each step $|\{v| \exists c \in ar{\mathcal{C}}, v(c) = v\}|$ reduces by at least 1

Is defined recursively. Let $\bar{C} = [0,1]$, $S = \emptyset$

- C := largest coalition where all prices (among remaining values in C
 are revenue-maximizing
- 2 Add $(C, \underline{v}(C))$ to S
- 3 Remove C from \bar{C}
- Repeat until $\bar{C} = \emptyset$

In each step $|\{v| \exists c \in ar{\mathcal{C}}, v(c) = v\}|$ reduces by at least 1

Proposition

The MER segmentation is stable

Is defined recursively. Let $\bar{C} = [0,1]$, $S = \emptyset$

- C := largest coalition where all prices (among remaining values in C
 are revenue-maximizing
- 2 Add $(C, \underline{v}(C))$ to S
- 3 Remove C from \overline{C}
- Repeat until $\bar{C} = \emptyset$

In each step $|\{v| \exists c \in ar{\mathcal{C}}, v(c) = v\}|$ reduces by at least 1

Proposition

The MER segmentation is stable

Bergemann, Brooks, Morris (2015):

- The MER segmentation maximizes consumer surplus
- But is not the only one

Segmentations

Stability \Rightarrow maximizing consumer surplus

<ロト <回 > < 注 > < 注 > < 注 > 注 の Q (* 18/33 Stability \Rightarrow maximizing consumer surplus

Stability \Rightarrow maximizing consumer surplus

 $S = \{(C_1, 1), (C_2, 3)\}$ is efficient and saturated \Rightarrow stable

<ロト < 回ト < 巨ト < 巨ト < 巨ト 三 のへの 18/33 Stability \notin maximizing consumer surplus

<ロト < 回 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > 33

Stability $\not\leftarrow$ maximizing consumer surplus

 $S = \{(C_1, 1), (C_2, 2)\}$ maximizes consumer surplus

Stability \notin maximizing consumer surplus

- $S = \{(C_1, 1), (C_2, 2)\}$ maximizes consumer surplus
 - Efficient allocation
 - ▶ price 3 is revenue-maximizing for $C_1, C_2, [0, 1]$

Stability \notin maximizing consumer surplus

- $S = \{(C_1, 1), (C_2, 2)\}$ maximizes consumer surplus
 - Efficient allocation
 - price 3 is revenue-maximizing for $C_1, C_2, [0, 1]$

S is not saturated and so not stable:

Segmentations

Segmentations

Pareto undominance

<ロト < 回 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 図 へ () 22/33

Pareto undominance

Definition (Pareto undominance)

S Pareto undominated if $\nexists S'$ s.t.

 $CS(c,S') \ge CS(c,S)$ for all $c \in [0,1]$ CS(c,S') > CS(c,S) for some (measure > 0) $c \in [0,1]$

Pareto undominance

Definition (Pareto undominance)

S Pareto undominated if $\nexists S'$ s.t.

 $CS(c,S') \ge CS(c,S)$ for all $c \in [0,1]$ CS(c,S') > CS(c,S) for some (measure > 0) $c \in [0,1]$

Proposition

Stable \subset Pareto undominated \subset efficient

Segmentations

Related work

Markets as coalitional games

- Shapley (1959); Shubik (1959); ...; Peivandi and Vohra (2021)
- Core vs. CE: Edgeworth (1881); Debreu and Scarf (1963)

Third degree price discrimination

 Pigou (1920); Robinson (1969); Schmalensee (1981); Varian (1985); Aguirre, Cowan, Vickers (2010); Cowan (2016); ...

Decentralized Exchanges

Malamud and Rostek (2017); Chen and Duffie (2021)

Information design

- All segmentations: Bergemann, Brooks, Morris (2015)
- Maximize CS: Hidir and Vellodi (2018); Ichihashi (2020)

Other solutions concepts

- Stable sets (vNM, Harsanyi, Ray and Vohra) details
- Bargaining set details

イロト 不得 トイヨト イヨト ヨー うらつ

<ロト < 回 ト < 巨 ト < 巨 ト ミ の Q (C) 25 / 33

- Antitrust
- 2 Regulated natural monopolist

- Antitrust
- 2 Regulated natural monopolist
- This paper: market segmentation

- Antitrust
- 2 Regulated natural monopolist
- This paper: market segmentation
 - Stable segmentations: efficient

- Antitrust
- 2 Regulated natural monopolist
- This paper: market segmentation
 - Stable segmentations: efficient
 - "Perfect" segmentation: efficient, eliminates consumer surplus

- Antitrust
- 2 Regulated natural monopolist
- This paper: market segmentation
 - Stable segmentations: efficient, Pareto un-dominated (for consumers)
 - "Perfect" segmentation: efficient, eliminates consumer surplus

- Antitrust
- 2 Regulated natural monopolist
- This paper: market segmentation
 - Stable segmentations: efficient, Pareto un-dominated (for consumers)
 - One of them maximizes average consumer surplus
 - "Perfect" segmentation: efficient, eliminates consumer surplus

Tools:

- Antitrust
- 2 Regulated natural monopolist
- This paper: market segmentation
 - Stable segmentations: efficient, Pareto un-dominated (for consumers)
 - One of them maximizes average consumer surplus
 - "Perfect" segmentation: efficient, eliminates consumer surplus

How to implement stable segmentations?

Tools:

- Antitrust
- 2 Regulated natural monopolist
- This paper: market segmentation
 - Stable segmentations: efficient, Pareto un-dominated (for consumers)
 - One of them maximizes average consumer surplus
 - "Perfect" segmentation: efficient, eliminates consumer surplus

How to implement stable segmentations?

Ensure coalitional sovereignty

Consumer's control over their data

The Commission recognizes the need for flexibility to permit [...] uses of data that benefit consumers.

("Consumer Privacy in an Era of Rapid Change", FTC, 2012)

Consumer's control over their data

The Commission recognizes the need for flexibility to permit [...] uses of data that benefit consumers.

("Consumer Privacy in an Era of Rapid Change", FTC, 2012)

Consumer's control over their data

Data cooperatives

The Commission recognizes the need for flexibility to permit [...] uses of data that benefit consumers.

("Consumer Privacy in an Era of Rapid Change", FTC, 2012)

Consumer's control over their data

Data cooperatives

Conclusions

Market segmentation as a tool for achieving efficiency

Market segmentation subject to "coalitional sovereignty"

- Stable segmentations are efficient and saturated
 - They are all Pareto un-dominated
 - One of them maximizes consumer surplus

Segmentations

Segmentations

Thanks!

Recall: Stability

Definition

S is stable if it objects to any $S' \not\approx S$

Definition

A set of segmentations ${\mathcal S}$ is a stable set if

<ロト < 回 > < 目 > < 目 > < 目 > < 目 > < 目 > 30 / 33

Definition

A set of segmentations \mathcal{S} is a stable set if

- **1** Internal Stability: $\forall S \in S, \ \nexists S' \in S$ that objects to S
- **2** External Stability: $\forall S \notin S$, $\exists S' \in S$ that objects to *S*

Definition

A set of segmentations \mathcal{S} is a stable set if

- **1** Internal Stability: $\forall S \in S, \ \nexists S' \in S$ that objects to S
- **2** External Stability: $\forall S \notin S$, $\exists S' \in S$ that objects to *S*

If S is stable then $\{S' : S' \approx S\}$ is a stable set:

- $S' \approx S$ doesn't object to S
- S objects to any $S' \not\approx S$

Definition

A set of segmentations $\mathcal S$ is a stable set if

- **1** Internal Stability: $\forall S \in S, \ \nexists S' \in S$ that objects to S
- **2** External Stability: $\forall S \notin S, \exists S' \in S$ that objects to *S*

If S is stable then $\{S' : S' \approx S\}$ is a stable set:

- $S' \approx S$ doesn't object to S
- S objects to any $S' \not\approx S$

Proposition

S is stable set iff $S = \{S' : S' \approx S\}$, s.t. S weakly objects to any $S'' \not\approx S$.

Other stable sets

Definition

- ▶ S Harsanyi-objects to S' if exists $S' = S^0, S^1 \ni C^1, \ldots, S^k = S \ni C^k$ s.t. $CS(c, S^{i-1}) \leq CS(c, S)$ for all $c \in C^i$ (< for some).
- ▶ S Ray-Vohra-objects to S' if exists $S' = S^0, S^1 \ni C^1, \ldots, S^k = S \ni C^k$ s.t. $CS(c, S^{i-1}) \leq CS(c, S)$ for all $c \in C^i$ (< for some), and $C \in S^i$ if $C \in S^{i-1}$ and $C^i \cap C = \emptyset$.

Other stable sets

Definition

- ▶ S Harsanyi-objects to S' if exists $S' = S^0, S^1 \ni C^1, \ldots, S^k = S \ni C^k$ s.t. $CS(c, S^{i-1}) \leq CS(c, S)$ for all $c \in C^i$ (< for some).
- ▶ S Ray-Vohra-objects to S' if exists $S' = S^0, S^1 \ni C^1, \ldots, S^k = S \ni C^k$ s.t. $CS(c, S^{i-1}) \leq CS(c, S)$ for all $c \in C^i$ (< for some), and $C \in S^i$ if $C \in S^{i-1}$ and $C^i \cap C = \emptyset$.

Proposition

The following are equivalent for any set of segmentations S:

- S is a Harsanyi stable set
- S is a RV stable set
- ▶ $S = {S' : S' ≈ S}$ where S is Pareto undominated.

For each objection, \exists stronger objection to same segmentation

$$S'' \xleftarrow{(C', p')} S \xrightarrow{(C,p)} S'$$

For each objection, \exists stronger objection to same segmentation

$$S'' \xleftarrow{(C',p')} S \xrightarrow{(C,p)} S'$$

Stability: for each objection, \exists objection to resulting segmentation

$$S \xrightarrow{(C',p') \in S'} S' \xrightarrow{(C,p) \in S} S'$$

イロト 不得 トイヨト イヨト ヨー ろくで

32 / 33

For each objection, \exists stronger objection to same segmentation

$$S'' \xleftarrow{(C',p')} S \xrightarrow{(C,p)} S'$$

Stability: for each objection, \exists objection to resulting segmentation

$$S \xrightarrow{(C',p') \in S'} S' \xrightarrow{(C,p) \in S} S'$$

Any segmentation is in the bargaining set

For each objection, \exists stronger objection to same segmentation

$$S'' \xleftarrow{(C',p')} S \xrightarrow{(C,p)} S'$$

Formally: \forall objection $(C, p), \exists$ counter-objection (C', p'):

- ► $CS(c, (C', p')) \ge CS(c, S)$ for all $c \in C' \setminus C$
- ► $CS(c, (C', p')) \ge CS(c, (C, p))$ for all $c \in C' \cap C$

Stability: for each objection, \exists objection to resulting segmentation

$$S \xrightarrow{(C',p') \in S'} S' \xrightarrow{(C,p) \in S} S'$$

Any segmentation is in the bargaining set

Other solution concepts

kernel, nucleolus

- Similar to bargaining set
- Not applicable to NTU games
 - need to measure "dissatisfaction" of coalitions

