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We consider the problem of designing auctions in social networks for goods that exhibit single-parameter
submodular network externalities in which a bidder’s value for an outcome is a fixed private type times a
known submodular function of the allocation of his friends. Externalities pose many issues that are hard
to address with traditional techniques; our work shows how to resolve these issues in a specific setting of
particular interest. We operate in a Bayesian environment and so assume private values are drawn accord-
ing to known distributions. We prove that the optimal auction is NP-hard to approximate pointwise, and
APX-hard on average. Thus we instead design auctions whose revenue approximates that of the optimal
auction. Our main result considers step-function externalities in which a bidder’s value for an outcome is
either zero, or equal to his private type if at least one friend has the good. For these settings, we provide
a e

e+1 -approximation. We also give a 0.25-approximation auction for general single-parameter submodular
network externalities, and discuss optimizing over a class of simple pricing strategies.
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1. INTRODUCTION

Many goods have higher value when used in conjunction with others. A classic
example of this phenomenon is the telephone, which clearly has positive value for a
consumer only if he or she has people to call. Telephones, and other goods with similar
stories, are called networked goods and said to exhibit network effects or network exter-
nalities. Modern technology has given birth to a new generation of networked goods.
Internet services like email, instant messaging, and online social networks are used
primarily to connect with friends and, as such, have strong network externalities. But
even more significantly, these services, particularly online social networks, provide
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13:2 N. Haghpanah et al.

platforms upon which developers can generate new applications, applications with
very strong networking components. It is now possible to read articles recommended
by various social readers, or play games such as FarmVille with friends in online
social networks like Facebook. Such applications are more useful or fun when used
with friends, and many such applications even explicitly reward players with many
friends. The unique feature of such modern networked goods is that the underlying
social network is explicit. This enables application distributors to use the network
structures to market and sell these goods.

In this article, we leverage explicit network structure to design mechanisms for sell-
ing networked goods. We primarily focus on goods that are available in unlimited sup-
ply or, more precisely, can be produced at zero marginal cost. The network externalities
of the good are implied by the private valuations of the social network users. In the
most general case, users have a private value for each possible allocation of the good
to a subset of users. This allows for arbitrary externalities, enabling say John Doe to
value the good only if Kim Kardashian owns it despite having no direct relationship
to her. While this makes sense for some goods, like fashion, many network goods like
telephones or social network applications have value to a user only if users in his or
her immediate neighborhood also own the good. The main focus of the article is on a
special case of this sort of direct externalities, which we call step-function externalities:
that is, we suppose a user’s value for the good is zero unless at least one of his or her
neighbors or friends in the social network is also allocated the good.

We study auction mechanisms, or mechanisms that solicit bids from agents indicat-
ing their private value for various allocations, and then determine an allocation and
prices in a way that maximizes expected revenue. As is common in economics, we work
in a Bayesian setting where, while the realization of the private value is known only to
the agent, it is drawn according to a commonly known distribution. Most literature on
mechanism design assumes that agents value allocations solely based on the bundle of
goods they receive, that is, they are indifferent about the allocations of the other play-
ers. This is clearly violated in settings with externalities. Unfortunately, externalities
significantly complicate mechanism design for the following reasons.

(1) The efficient representation of values is no longer a trivial task, since in the most
general case each bidder might need to report a value for each subset of allocated
bidders.

(2) More dimensions make satisfying incentive constraints harder (multi-parameter
mechanism design is not well understood).

(3) The space of feasible allocations might be more complex, which can make finding
the optimal allocation a computationally hard problem.

(4) Furthermore, the complexity of the feasible allocation space can easily cause the
setting to violate downward-closure, that is, not every subset of a feasible alloca-
tion is necessarily feasible. Thus the few known results for multi-parameter mech-
anism design can not be adopted generically.

We circumvent the first two issues by assuming a special structure on the players’
values, namely that valuations satisfy step-function externalities as defined before.
Thus our problem is a single-parameter one, and so the representation and incentive
constraints are straight-forward. Revenue maximization is also well understood for
single-parameter settings. The seminal paper by Myerson [1981] fully characterizes
mechanisms that maximize revenue in expectation over the value distributions. By
this characterization, the expected revenue of any mechanism is equal to the expected
virtual value of the allocated agents, where the virtual value of an agent is a function
of the valuation and its distribution and may be negative. In our setting, this charac-
terization converts the optimal allocation problem to a combinatorial optimization
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Optimal Auctions with Positive Network Externalities 13:3

problem, which is to maximize the sum of the virtual values over all feasible subsets.
For step-function externalities, the feasibility constraint requires that all allocated
agents have a neighbor who is also allocated. Graph-theoretically, this equates to find-
ing, in a vertex-weighted graph with possibly negative vertex weights, a maximum-
weight subset of vertices whose induced subgraph has no singleton components.

Although the optimal mechanism is easy to define, the third and fourth issues of
mechanism design with externalities remain in our setting. We observe via reduction
to set-buying that approximating the optimization problem within even a linear factor
on every sampling of the values is NP-hard. On the other hand, we only need to find
algorithms that perform well in expectation rather than in worst case: the Myerson
mechanism we wish to approximate anyway provides an optimal average-case guar-
antee, and there is no mechanism with high revenue for every instantiation of values.
Even on average, we prove that our problem remains APX-hard. However, we are able
to design constant approximations for several versions of the problem.

We first note that there is a simple (1/2)-approximation for our problem. The algo-
rithm divides the graph into two subsets of vertices, such that each vertex in each set
has a neighbor in the other. This can be done, for example, by constructing a spanning
tree of the graph and then taking a bipartite partitioning of it. The allocation strategy
is to then pick the set with better expected revenue, extract revenue from that set, and
allocate to users in the other set in order to maintain feasibility. This very simple algo-
rithm does not use the structure of the social network in any deep way, and is therefore
unable to give better approximations in even very simple social networks consisting of
a single edge. In order to leverage knowledge of the network structure, we consider a
greedy algorithm that iteratively allocates to influential vertices and their neighbors.
Our main result shows that this can be used to obtain an e

e+1 ≈ 0.73-approximation to
the optimal revenue for any distribution of values.

We additionally formulate our problem as a Linear Program (LP) whose variables
represent the allocation and whose constraints use the network structure to charac-
terize feasibility. We show how to round this LP to give a e

e+1 -approximation, thereby
matching the performance of our main greedy algorithm. The LP has several advan-
tages, however. First, it is hypothetically easy to incorporate additional feasibility con-
straints by simply including additional inequalities in the polytope and so might be of
use in specific externalities settings. Second, the LP exhibits some interesting math-
ematical properties. Namely, the gap of this LP is linear in the number of agents for
a particular instantiation of values, and nonetheless we manage to prove a constant
approximation on average. We do this through a novel average-case analysis of the
rounding technique which may be useful in other applications. We also show that the
expected integrality gap of our LP is 0.828, and thereby bound the approximation ratio
of any LP-based mechanism.

We extend our setting to the more general single-parameter submodular externalities
in which a bidder’s value for an outcome is his private value times a known function
of the set of players who receive the good. For such settings we study a class of mecha-
nisms called influence and exploit in which some bidders (the influencers) are given the
good for free and the remainder (the exploited) are offered an optimal price conditioned
on the set of influencers. We show that the revenue is a submodular function of the
set of influencers and hence we can use recent submodular function maximization re-
sults [Feige et al. 2007; Gharan and Vondrak 2011] to design an influence-and-exploit
mechanism whose revenue is within a 0.41-factor of the optimal influence and exploit
mechanism. We also show that a randomization over influence and exploit mecha-
nisms gives a 0.25-approximation to the optimal expected revenue of any mechanism
by further submodularity arguments.
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13:4 N. Haghpanah et al.

Related Work. Various settings with positive, negative, or mixed externalities have
been studied in economics as well as computer science literature. Rohlfs [1974]
discusses positive externalities in the telephone industry in which a person’s value
for a telephone increases as more friends use it. A well-studied scenario with negative
externalities is the allocation of ad slots in which a company’s valuation for being
listed as one of the sponsored search results decreases if their competitor is also listed
[Aggarwal et al. 2008; Athey and Ellison 2010; Giotis and Karlin 2008; Gomes et al.
2009; Jeziorski and Segal 2009; Kempe and Mahdian 2008]. Finally, the valuation
might have mixed externalities, as in the sale of nuclear weapons [Jehiel et al.
1996], in which countries prefer their allies rather than their foes to win the auction.
Our work can be viewed as another in this line of literature, which addresses the
difficulties of externalities in a specific setting of practical importance by making
application-specific assumptions.

Our work considers auction mechanisms with externalities. In contrast, some prior
work considers instead the problem of posted price mechanisms [Akhlaghpour et al.
2010; Anari et al. 2010; Candogan et al. 2010; Hartline et al. 2008]. Particularly
relevant to our work is that of Hartline et al. [2008]. They consider the problem of
finding a revenue-maximizing sequence of prices that are offered sequentially to buy-
ers. They observed that simple influence and exploit strategies have revenue within
a constant factor of the revenue of any equilibrium of any pricing sequence. They are
reminiscent of our auction mechanisms which subsidize certain subsets of agents, and
also our influence and exploit mechanisms for general single-parameter submodular
externalities. However, unlike Hartline et al. [2008], we provide approximation
results with regards to the optimal auction revenue, which has a higher value than
the optimal pricing strategy.

In addition to the line of work discussed before on marketing strategies in the pres-
ence of network externalities, a vast body of work provides theoretical models of ex-
ternalities as well as empirical evidence on the existence of network externalities in
different markets. Theoretical models for externalities dates back to the competition
of VHS versus Beta formats in the VCR market [Arthur 1990]. Farrell and Saloner
[1985] argue that products that exhibit externalities have higher tendency towards
monopoly. Katz and Shapiro [1986] show that the benefit from such goods depends on
the number of users who adopt partially compatible products in the future. Empiri-
cal work shows the existence of externalities in software [Mark and Shurmer 1993],
DVD players and cellular services [Goldenberg and Libai 2010], and shared electronic
banking networks [Kauffman and Wang 2002].

There has recently been growing attention to the average-case modeling of the op-
timization problems as opposed to the classical worst-case/adversarial agenda. It has
been shown in different settings that such stochastic analyses help us achieve stronger
guarantees than the worst-case analysis. An example is the online bipartite matching
problem. In the adversarial setting, the celebrated result due to Karp et al. [1990]
proves the tight approximation guarantee of 1 − 1/e for this problem. On the other
hand, a sequence of papers initiated by the work of Feldman et al. [2009] show im-
proved guarantees for the stochastic version of the problem in which either the values
are drawn from a known distribution or the sequence of arrivals is a random permuta-
tion [Karande et al. 2011; Mahdian and Yan 2011; Manshadi et al. 2011]. Other papers
study stochastic optimization problems in other settings such as Steiner tree and set
cover [Garg et al. 2008; Grandoni et al. 2008].

2. PRELIMINARIES

We consider a society of n bidders located on the vertices in a social network G(V, E),
where the undirected edges model friendship. We assume for ease of exposition that
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Optimal Auctions with Positive Network Externalities 13:5

the social network is connected. There is a supply k of a homogeneous good. Unless
otherwise specified, we assume k ≥ n so that the supply is essentially unlimited (equiv-
alently, the good can be reproduced at zero marginal cost).

An outcome o ∈ � = {0, 1}n is a distribution of goods among bidders, where oi =
1 if bidder i receives a copy of the good and 0 otherwise. Bidder i’s type vi : � →
R

+ ∪{0} maps outcomes to nonnegative real numbers, where vi(o) represents his value
for outcome o and is positive only if he receives a copy of the good (i.e., oi = 1). We
study Bayesian mechanism design, in which one assumes that each type vi(·) is drawn
independently from a commonly known distribution Fi. Let F = F1 × . . . × Fn be the
product distribution of Fi for all i, v be the vector of types, called the type profile, v−i be
the vector of types of agents other than i, and F−i the distribution of v−i. Throughout
the article, our algorithms assume access to expectations defined with respect to the
distribution F. We assume these can be computed to within sufficient accuracy via
sampling.

A (direct) mechanism is specified by two functions χ : Rn2n → � and ρ : Rn2n → R
n

in which χ(v) is the outcome given the reported type profile v, and ρi(v) is the payment
of agent i given the reported type profile v.1 The utility of an agent for outcome o and
price p is his value for the outcome minus the price he pays, vi(o) − p. We say that
a mechanism (χ , ρ) is Bayesian Incentive Compatible (BIC) if reporting the true type
maximizes any player i’s expected utility assuming that other players also report their
true types, that is for every agent i and types vi and v′

i,

Ev−i∼F−i [ vi(χ(v)) − ρi(χ(v))] ≥ Ev−i∼F−i [ vi(χ(v′
i, v−i)) − ρi(χ(v′

i, v−i))] .

Note that this is an interim notion, that is, the agents choose the strategy that gives
them the highest expected utility after observing their own private value. Similarly,
we assume an interim notion of individual rationality, that is, each agent’s expected
utility conditioned on their private value should be nonnegative.

We consider single-parameter settings. In these settings, agents’ values are a func-
tion of just one private parameter, called their type. As types are represented by a
single parameter, vi, the Bayesian assumption reduces to assuming that vi is drawn
independently from a distribution Fi over the nonnegative reals, henceforth referred to
as the type distribution of bidder i. We assume type distributions are regular and hence
the corresponding virtual values are nondecreasing (see Section 2.1 for definitions).2

In the following subsection, we discuss optimal auction design for single-parameter
settings. We encourage the reader familiar with these subjects to skip to Section 2.2
where we define the problem studied in this article.

2.1. Optimal Auction Characterization

In his seminal paper, Myerson characterized the revenue of the optimal (i.e., revenue-
maximizing) auction in terms of the virtual values of the agents [Myerson 1981]. We
first define virtual values and then discuss the characterization result.

Definition 2.1. Suppose type v is drawn independently from a continuous distribu-
tion and let F(v) = Prz[ z ≤ v] be the cumulative function and f (v) = F′(v) be the
density function of the distribution. Then the virtual value function φ(v) is v − 1−F(v)

f (v)
.

Virtual values may also be defined for discrete distributions.

1Note the domain is exponential in general as types may assign different values to each of the 2n possible
outcomes.
2If the distributions are not regular, we can still apply our techniques using standard ironing arguments of
Myerson [1981].
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13:6 N. Haghpanah et al.

Definition 2.2. Suppose type v is drawn independently from a discrete distribution
with support {v1, . . . , vk}. Let F(v j) = Pr[ v ≤ v j] and f (v j) = Pr[ v = v j]. Then the
virtual value function φ(v j) is v j − 1−F(v j)

f (v j)
(vj+1 − v j) for j < k and φ(vk) = vk.

Note that virtual values may be negative. However, they are nonnegative in expec-
tation, a fact which enables many of our results.

Fact 2.3. For any distribution F and value v, the expected virtual value φ(v) is
nonnegative. That is,

Ev∼F[ φ(v)] ≥ 0.

We will further assume that the distributions we study are regular, meaning that the
corresponding virtual value function is nondecreasing in the support of F.

For a mechanism (χ , ρ) in a single-parameter setting, let xi(v) = vi(χ(v))/vi if vi > 0,
and zero otherwise. In Myerson’s characterization, it is the function x that is relevant
for determining the revenue of the mechanism, and hence in a slight abuse of termi-
nology we will refer to x as the allocation function even though there may be bidders
i with xi(v) = 0 that receive copies of the good (however, they do not value the copy of
the good because of the externalities). Accordingly define xi(vi) = Ev−i∼F−i [ xi(vi, v−i)]
to be agent i’s expected allocation for type vi, where the expectation is over the types
of other players.

In the single-parameter setting with regular distributions, Myerson showed that
for any monotone increasing rule x, there is a unique corresponding payment rule ρ
such that the resulting mechanism (χ , ρ) is BIC (where χ is any function that induces
allocation function x and is not necessarily unique). The expected revenue of the mech-
anism is equal to its expected virtual value,

∑
Evi∼Fi [ xi(vi)φi(vi)]. Furthermore, if x is

not monotone increasing, then there is no payment rule that makes the corresponding
mechanism BIC. Restricting attention to BIC mechanisms is without loss of generality
due to the revelation principle, and so to maximize revenue, one simply needs to find a
rule χ satisfying all exogenous constraints (e.g., limited supply) whose corresponding
feasible allocation function x is monotone and maximizes expected virtual value. We
can therefore analyze the revenue of any monotone mechanism without explicitly
defining the prices.

2.2. Externalities Model

In this setting, we assume that each player i is assigned local influence function gi :
2V → � which is common knowledge. Following the previous literature on network
influence, we assume that this local influence function is submodular3 for each player,
that is, gi(S ∪ { j}) − gi(S) ≥ gi(S′ ∪ { j}) − gi(S′), for all S ⊇ S′, and j /∈ S. Without loss
of generality assume gi is normalized such that gi(V) = 1. Given this function and i’s
type vi, define S(o) = { j : oj = 1} to be the set of players that are given the good in an
outcome o. Then the value of i for o is defined to be vi(o) = vi · gi(S(o)).

For a mechanism (χ , ρ), the allocation function xi(v) is, by definition, xi(v) =
vi(χ(v))/vi = gi(S(χ(v))) and, invoking Myerson’s characterization, we can write the
expected revenue of the mechanism as

∑
i E[ xi(v)φi(vi)].

We consider two special cases of submodular externalities: concave externalities and
step-function externalities.

2.2.1. Concave Externalities. Let N(i) be the neighborhood of i in G, that is, N(i) = {j :
(i, j) ∈ E}. In concave externalities, for each player i and subset S, gi(S) = G(|S ∩ N(i)|)
3Submodularity is used to model settings in which influence exerts diminishing returns.

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 13, Publication date: May 2013.
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Optimal Auctions with Positive Network Externalities 13:7

for some concave function G(.) if i ∈ S. That is, the valuation of each bidder i depends
on the number of his neighbors who have the good but not their identity, and also the
local influence function is the same among all players.

2.2.2. Step-Function Externalities. Step-function externalities are a special case of sub-
modular externalities in which the value of the influence function is 0 if the set of
neighbors who receive the good is empty, and 1 otherwise. Let N(i) be the neighbor-
hood of i in G, that is, N(i) = {j : (i, j) ∈ E}. Formally, bidder i’s local influence function
for an outcome o in which players S(o) receive the good is

gi(S(o)) =
{

1 : i ∈ S(o), |S(o) ∩ N(i)| ≥ 1.
0 : otherwise

We say that a bidder i is satisfied by an allocation if gi(S(o)) = 1, in which case
vi(o) = vi. Otherwise we have gi(S(o)) = vi(o) = 0, and we say i is not satisfied by o.
This models applications that require just one friend to be of value.

In this setting, for any mechanism (χ , ρ), we have xi(v) = gi(S(χ(v))) = 1 if outcome
χ(v) satisfies bidder i and zero otherwise. As a result, allocation functions x must sat-
isfy the condition that xi(v) = 1 only if for at least one (more generally, s) neighbor
j ∈ N(i) of i, we also have xj(v) = 1. This means that in the subgraph induced by
the allocated agents, every vertex must have degree at least 1 (more generally, s). Call
such a subset of agents feasible. By the Myerson characterization discussed earlier, the
optimal auction is thus specified by an allocation function that, given a type profile, al-
locates to a feasible subset of agents with maximum sum of virtual values (note this
rule is necessarily monotone). We define our problem formally as follows.

Definition 2.4. The Step-Function Revenue Maximization problem (SFRM) is to
find a feasible and monotone allocation function that maximizes

∑
i E[ xi(v)φi(vi)].

Graph-theoretically, the problem of finding an optimal allocation function equates
to finding a subset of vertices of maximum weight whose induced subgraph has no
isolated vertices. Unfortunately, we show in Section 3 that this problem is more general
than the set buying problem, and therefore approximating it within a linear factor on
every sampling of values is hard. We also show that the problem of maximizing the
expected revenue (over randomness of values), SFRM, is APX-hard.

As SFRM is NP-hard to solve optimally, we instead design a polynomial-time mono-
tone allocation function whose expected revenue (as defined by the sum of virtual val-
ues) is close to the optimal expected revenue OPT, where the expectations are over the
type distributions. We say an auction is an α-approximation if its expected revenue is
at least α × OPT.

3. HARDNESS

By Myerson’s characterization of optimal allocations, the problem of finding an optimal
allocation function equates to finding a subset of vertices of maximum weight whose
induced subgraph has no isolated vertices. Unfortunately, since virtual values and
hence vertex weights might be negative, this problem is more general than the set
buying problem (see, e.g., Feige et al. [2009]). We prove this formally in Lemma 3.3.
We next show that SFRM is APX-hard. Therefore SFRM does not admit a PTAS unless
P=NP, which justifies the search for constant factor approximations to the problem in
later sections. The reduction is from a special case of set buying, which we call the
Prize-Collecting Set Cover Problem (PCSC).

Definition 3.1. A set buying instance is specified by a set of elements U and a collec-
tion F of subsets of U. There is a nonnegative cost c(S) associated with each set S ∈ F ,

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 13, Publication date: May 2013.
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13:8 N. Haghpanah et al.

and a nonnegative value v(u) associated with each element u ∈ U. The set buying prob-
lem is to pick some subsets S ⊆ F to maximize the value of the elements covered by
those sets minus the total cost of those sets, that is

∑
u∈Span(S) v(u)−∑

S∈S c(S), where
Span(S) = ∪S∈SS.

THEOREM 3.2. (FEIGE ET AL. [2009]). It is NP-hard to approximate the set-buying
problem to within a linear factor.

LEMMA 3.3. The optimal auction with step-function externalities is NP-hard to ap-
proximate to within a linear factor on every instantiation of values.

PROOF. For any instance I = (U,S) of the set buying problem we construct a bipar-
tite graph GI = ((L, R), E) with a vertex lu ∈ L for each u ∈ U and a vertex rS ∈ R for
each S ∈ F . We introduce an edge (lu, rS) ∈ E for any element u and set S such that
u ∈ S.

Consider an instance I and social network defined by the corresponding bipartite
graph GI . Let the type distribution of bidder lu be v(u) with probability 1; and let
the type distribution4 of bidder rS be 0 with probability 1/2 and c(S) with probaiblity
1/2. Consider an instantiation of types in which each bidder lu has type v(u) and each
bidder rS has type 0. The induced virtual values are v(u) for each bidder lu and −c(S)
for each bidder rS. For any feasible subset of bidders, include, without loss of generality,
all bidders lu ∈ L with an allocated neighbor rS ∈ R. Note that any feasible solution
thus corresponds to a solution of the set buying instance with the same value. The
lemma then follows from the inapproximability of set buying.

The Prize-Collecting Set Cover Problem (PCSC) is a type of set cover problem in
which all sets and all elements have equal costs and values, respectively. The problem
seeks to maximize the value of covered elements plus the cost of unused sets.

Definition 3.4. In the prize-collecting set cover problem (PCSC), we are given a
collection of n sets {S1, S2, . . . , Sn} over a universe U. For a collection C of sets, let
QC = ∪i∈CSi. The goal is to find a collection C∗ that maximizes α|QC∗ | + n − |C∗| for
some α > 0.

While this is equivalent, in optimality, to the set buying problem of maximizing the
value of covered elements minus the cost of the used sets, the two problems differ
in approximability. The PCSC is easier to approximate: although, as we show, it is
APX-hard, there is a e/(e + 1)-approximation for it. On the other hand, set buying is
not approximable to within a linear factor. We will show an approximation-preserving
reduction from PCSC to SFRM, implying its APX-hardness. We will then give an e/(e+
1)-approximation for SFRM.

LEMMA 3.5. There is an approximation-preserving reduction from the prize-
collecting set cover problem to SFRM.

PROOF. Given an instance of the prize-collecting set cover problem, where the sets
are denoted {S1, S2, . . . , Sn} and the elements are denoted e1, e2, . . . , em, we construct a
graph where there is a vertex for each set and each element, and an edge between Si
and ej if ej ∈ Si. For each element ej, the value is α with probability 1. Let L � mnα.

4Note this type distribution is not regular (and indeed our positive results hold for arbitrary distributions).
For a reduction using regular distributions, consider drawing types uniform [ 0, c(S)] and then consider the
same instantion of values as before. The dissatisfying aspect of this proof, and the reason we do not include
it, is that the required instantiation of types is a zero probability event.

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 13, Publication date: May 2013.
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Optimal Auctions with Positive Network Externalities 13:9

For each set Si, the valuation follows distribution Bernoulli(L − 1, 1/L), so that the
virtual valuation is −1 with probability 1 − 1/L and (L − 1) with probability 1/L. To
compute the revenue, we let L → ∞. There are two events.

(1) If at least one set has positive virtual valuation, the solution chooses all such sets
and the corresponding covered elements. The revenue from each set is (L − 1)
with probability 1/L for a total contribution to the expected revenue approach-
ing n as L → ∞. To compute the revenue from the elements, note that there is
a set with positive virtual value with probability n/L, in which case the revenue
of the elements is at most αm. Therefore, the contribution to the expected rev-
enue from the elements is αmn/L → 0 as L → ∞. Therefore, the optimal solu-
tion has contribution n from this event as L → ∞, and this solution is trivial to
compute.

(2) If no set has positive virtual valuation (which happens with probability 1 − n/L →
1), the solution chooses the sets (and the elements they cover) of the optimal PCSC
solution to get the value precisely α|QC∗ | − |C∗|, and this is the contribution from
this event.

Therefore, the value of the optimal revenue solution is α|QC∗ |+n−|C∗| as L → ∞, and
this completes the reduction.

THEOREM 3.6. The prize-collecting set cover problem (PCSC) is APX-complete.

PROOF. We start with a 4-regular graph. On such a graph with n = 152k nodes,
for any ε > 0, it is NP-HARD to decide if there is an independent set of size at least
(74 − ε)k or at most (73 + ε)k (see Berman and Karpinski [1999]). Given such a graph
G, construct the following prize-collecting set cover instance: there is a set Sv for every
vertex v, and an element ue for every edge e. Each set Sv contains the four elements ue
such that vertex v is adjacent to edge e in G. We further set α = 1/3.

We first note that we can assume, without loss of generality, that any optimal solu-
tion C∗ to the induced PCSC instance uses only disjoint sets: that is, ∀i, j ∈ C∗, Si∩ Sj =
∅. Assume not and let i, j ∈ C∗ be two sets such that Si ∩ Sj �= ∅. Consider the al-
ternative solution C = C∗ \ { j}. Since each set contains exactly four elements, QC
contains at least |QC∗ | − 3 elements, and so the value of C is (1/3)|QC| + n − |C| ≥
(1/3)(|QC∗ | − 3) + n − (|C∗| − 1) = (1/3)|QC∗ | + n − |C∗|. Therefore, C is optimal
as well.

Now consider a solution in which the chosen sets C are disjoint. Any such solution
covers 4|C| vertices and so has value n+(1/3)|C|, and it corresponds to an independent
set of vertices in G of size |C|. Thus it is NP-hard to distinguish between instances with
an optimal solution of value at least 152k + (1/3)(74 − ε)k or at most 152k + (1/3)(73 +
ε)k, so it is NP-hard to approximation PCSC to within a factor of 152+(1/3)(74)

152+(1/3)73 ≈ 1.002.

COROLLARY 3.7. The problem of maximizing the expected revenue is APX-hard.

4. STEP-FUNCTION EXTERNALITIES

Although the optimal auction is NP-hard to compute and NP-hard to approximate
on every instantiation of values, it is in fact easy to approximate on average. The
following very simple allocation function has expected revenue within a factor 1/2 of
the optimal expected revenue. In Appendix B, we show that this can be generalized to
a (1/4)-approximation for the limited-supply setting.

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 13, Publication date: May 2013.
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13:10 N. Haghpanah et al.

Divide vertices into two sets S0 and S1 such that each vertex i ∈
S0 (respectively, S1) has a neighbor in the opposing set S1 (respec-
tively, S0). Note that this can be done efficiently, for example, by com-
puting a spanning tree of G and considering an arbitrary 2-coloring
of it. Suppose S0 has higher expected positive virtual value, that is,∑

i∈S0
E[max(φi(vi), 0)] ≥ ∑

i∈S1
E[max(φi(vi), 0)]. For each vertex i ∈ S0,

choose an arbitrary neighbor ji ∈ S1. These vertices will be used to make
our desired allocation feasible. Let S+

0 = {i ∈ S : φ(vi) ≥ 0} be the bid-
ders with positive virtual value in set S0 for a particular instantiation of
values, and S′

1 = { j : j = ji, i ∈ S+
0 } be their designated neighbors. Then

allocate to every bidder in S+
0 ∪ S′

1.

To see that this is a (1/2)-approximation, note that the expected optimum revenue
is at most

∑
i E[max(φi(vi), 0)] since at best a mechanism can extract φi(vi) from all

bidders i with positive virtual value. The preceding mechanism gets expected revenue∑
i∈S+

0
E[max(φi(vi), 0)] from the bidders in S+

0 , which is at least half the optimum

expected revenue by linearity of expectation and our choice of S+
0 . For bidders j ∈ S′

1,
note that j’s expected allocation is independent of its value, that is, we have xi(vi) =
xi for some constant xi. As a result, the revenue from i is E[ xiφi(vi)] = xiE[ φi(vi)].
Thus, since the expected virtual value of any bidder is nonnegative (see Fact 2.3), the
expected revenue of bidders in S′

1 is nonnegative.
Further note that this analysis is tight, as shown by the simple example of a single

edge whose endpoints have value 1 with probability p and 0 with probability 1 − p for
some 0 < p < 1. Then the virtual value is 1 with probability p and −p

1−p with probability
1−p. Consider the mechanism which allocates to both nodes when at least one of them
has positive value. The expected revenue of this mechanism is 2p2+2p(1−p)(1+ −p

1−p ) =
2p − 2p2 whereas the (1/2)-approximation described before has expected revenue p.
The ratio of the two approaches 1/2 as p → 0.

The main reason our analysis cannot guarantee better than a 0.5-approximation is
that the upper bound is quite loose. In fact, we show in Example A.1 in Appendix A
that there exists a gap of 0.75 between the value of the upper bound and the optimum
solution. Furthermore, our mechanism is “close to” a threshold strategy in which each
player receives the good whenever his value surpasses a predefined threshold.5 Using
thresholds of 0 for players in S0 and φ−1(0) for players in S1 yields a mechanism with
the same revenue as that outlined earlier. We show in Appendix C that no threshold
strategy can have better than 0.5-approximation.

In order to improve this approximation ratio, we need to leverage our detailed knowl-
edge of the graph structure. In the remainder of this section, we present both a greedy
and a linear-programming-based approach that get a 0.73-approximation for general
distributions. Both approaches follow the same general auction scheme.

4.1. General Auction Scheme

The key observation is that any auction gets positive contributions from two types
of nodes: those with positive virtual value who also have a neighbor with positive

5Whether he is then allocated depends on whether any of his friends also pass their thresholds and receive
the good.

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 13, Publication date: May 2013.
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Optimal Auctions with Positive Network Externalities 13:11

virtual value, and those with positive virtual value whose neighbors all have negative
virtual value. Our general auction scheme first estimates the relative contributions
of these two types and then tailors its strategy accordingly. In the extremes, where
one type contributes most of the revenue, a simple deterministic scheme has a good
approximation. When the contributions are more-or-less equal, we use either a greedy
or LP-based algorithm to get a constant approximation.

To define the auction, we first introduce some notation to capture the contribution
from the types discussed previously. For an instantiation of values v, let x∗

i (v) be the
optimum allocation to agent i. Then optimal expected revenue is Ev[

∑
i x∗

i (v)φi(vi)].
Fix a player i and define the following events:

— P+
i is the event that φi(vi) ≥ 0 and there exists j ∈ N(i) such that φj(vj) ≥ 0.

— P−
i is the event that φi(vi) ≥ 0 and all neighbors of i have negative virtual value.

— Ni is the event that φi(vi) < 0.

Observe that the expected revenue of the optimum allocation from agent i can be writ-
ten as

Ev[ xi(v)φi(vi)] = Ev[ x∗
i (v)φi(vi)|P+

i ] Pr(P+
i )

+Ev[ x∗
i (v)φi(vi)|Ni] Pr(Ni)

+Ev[ x∗
i (v)φi(vi)|P−

i ] Pr(P−
i ).

Define

A∗
i = Ev[ x∗

i (v)φi(vi)|P−
i ] Pr(P−

i ),

B∗
i = Ev[ x∗

i (v)φi(vi)|P+
i ] Pr(P+

i ),

and

C∗
i = Ev[ x∗

i (v)φi(vi)|Ni] Pr(Ni)

(note C∗
i is negative). Let A∗ = ∑

i A∗
i , B∗ = ∑

i B∗
i , and C∗ = ∑

i C∗
i (note we do not

need to compute these values in our auction scheme). The auction scheme runs three
algorithms and then takes the best solution, breaking ties randomly. The first algo-
rithm tries to extract a revenue of A∗; the second aims for a revenue of B∗; the third
aims for a revenue of (1 − 1/e)A∗ + B∗ + C∗.

General Auction Scheme. Run the following three algorithms and out-
put the one with highest virtual value. In case of a tie, break the tie
randomly.
(1) Allocate to all nodes i for which φi(vi) ≥ 0 as well as all nodes i for

which Ni happens and for some neighbor j of i, φj(vj) ≥ 0.
(2) Allocate to all nodes for which P+

i happens.
(3) Use one of the following subroutines.

The subroutines are discussed in the following sections. The combinatorial subrou-
tine is greedy and uses intuition from the greedy algorithm for set cover. The LP-based
subroutine uses a dependent randomized rounding scheme. The key property of each
subroutine, proved in lemmas in the corresponding sections, is that each generates rev-
enue R = (1 − 1/e)A∗ + B∗ + C∗. We show that this implies an e/(e + 1)-approximation
for our general auction scheme (the monotonicity of the auction scheme is discussed at
the end of this subsection).

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 13, Publication date: May 2013.
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13:12 N. Haghpanah et al.

THEOREM 4.1. For any subroutine with expected revenue at least equal to
R = (1 − 1/e)A∗ + B∗ + C∗, the approximation guarantee of the general auction scheme
is e/(e + 1) ≈ 0.73.

PROOF. For an instantiation of values v, let xi(v) be the expected allocation of i
(over the randomization in the auction scheme). Correspondingly, define A, B, C for the
auction’s allocation function, and note that the auction scheme’s expected revenue is
A+B+C. There are three cases depending on which algorithm the auction scheme se-
lects. If the auction scheme selects the first algorithm, then xi(v) = 1 for all i for which
φi(vi) ≥ 0 so A ≥ A∗ (conditioned on the selection of the first algorithm). Lemma 4.2
further shows that B + C ≥ 0 and so the total revenue of the auction in this case is at
least A ≥ A∗. If the auction scheme selects the second algorithm, then xi(v) = 1 for all
i such that P+

i happens, and so the revenue of the scheme is at least B. In the optimal
allocation, x∗

i (v) also equals 1 for all such i and hence the revenue of the auction is
at least B = B∗. Finally, if the subroutine is invoked, by assumption it guarantees a
revenue of R = (1 − 1/e)A∗ + B∗ + C∗.

The optimal expected revenue is at most A∗ + B∗ + C∗, and so the approximation
ratio of the auction is at least

min
max(A∗, B∗, (1 − 1/e)A∗ + B∗ + C∗)

A∗ + B∗ + C∗ .

For computing the preceding minimum, normalize A∗ = 1 and suppose B∗ = x and
B∗ + C∗ = rx for 0 ≤ r ≤ 1 (such r exists since B∗ + C∗ ≥ 0 by Lemma 4.2 and
C∗ ≤ 0). Thus we want to compute the minimum of max(1, x, 1 − 1/e + xr)/(1 + xr)
where 0 ≤ r ≤ 1. We can do a case analysis on the maximum.

(1) xr ≤ 1/e. Then, we are minimizing max(1, x)/(1 + xr). We can set xr = 1/e, so that
the lowest possible value is e/(e + 1).

(2) xr ≥ 1/e and x(1−r) ≤ 1−1/e. Then we have (1−1/e+xr)/(1+xr). Setting xr = 1/e
implies e/(e + 1).

(3) x ≥ 1 and x(1 − r) ≥ 1 − 1/e. Then we have x/(1 + xr). But xr ≤ x + 1/e − 1, so that
we are minimizing x/(x + 1/e) for x ≥ 1, so that we again have e/(e + 1).

Thus the approximation ratio is e/(e + 1) ≈ 0.73.

The proof of the approximation guarantee requires the following technical lemma
which shows that the contribution of a node i when P+

i happens outweighs his contri-
bution when Ni happens (for reasonable allocation rules).

LEMMA 4.2. For any monotone nondecreasing allocation function x that allocates
to nodes i with φi(vi) < 0 only if there is a neighbor j with φj(vj) ≥ 0, and corresponding
B, C, we have B + C ≥ 0.

PROOF. We prove the inequality for each node i separately. Let N(i) be the neigh-
borhood of i and note that

Bi + Ci = Evi [ xi(vi)φi(vi)|P+] Pr(P+)

+Evi [ xi(vi)φi(vi)|N] Pr(N)

= Evi [ xi(vi)φi(vi)|P+] Pr(P+)

+(Evi [ xi(vi)φi(vi)|N, ∃j ∈ N(i), φj(vj) ≥ 0]
·Pr(∃j ∈ N(i), φj(vj) ≥ 0)Pr(N)

+Evi [ xi(vi)φi(vi)|N, ∀j ∈ N(i), φj(vj) < 0]
·Pr(∀j ∈ N(i), φj(vj) < 0))Pr(N).

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 13, Publication date: May 2013.
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Optimal Auctions with Positive Network Externalities 13:13

But by assumption conditioned on N and the event [ ∀j ∈ N(i), φj(vj) < 0], xi(vi) = 0,
and therefore, letting E be the event [ ∃j ∈ N(i), φj(vj) ≥ 0], we have

B + C = Evi [ xi(vi)φi(vi)|P+] Pr(φi(vi) ≥ 0) Pr(E)

+Evi [ xi(vi)φi(vi)|N, E] Pr(N) Pr(E)

= (Evi [ xi(vi)φi(vi)|P+, E] Pr(φi(vi) ≥ 0)

+Evi [ xi(vi)φi(vi)|N, E] Pr(N)) Pr(E)

= Evi [ xi(vi)φi(vi)|E] Pr(E)

≥ 0,

where the second equality follows because the event P+
i implies event E and the last

inequality follows because x(vi) is a monotone nondecreasing function of vi as φ(·) is
regular and also that Evi[ φi(vi)] ≥ 0 (see Fact 2.3).

The last step is to show that our auction scheme is BIC by proving that it is mono-
tone. It is easy to check the monotonicity of the first two algorithms, and also both
subroutines used as the third algorithm. Some attention has to be payed to the cases
in which we switch between algorithms when an agent changes his value. One can
check that as a player increases his value, if the value of any of the algorithms in-
crease, that player has to be allocated in the new solution. Thus, when we consider
the set of algorithms that produce the maximum value, the algorithms that are added
to the set of maximizers (if any) allocate that player (possibly some algorithms are
dropped out of the set of maximizers). By our random tie-breaking among algorithms,
this does not decrease the probability of allocation.

4.2. Greedy Subroutine

The greedy subroutine follows intuition from the greedy algorithm for set cover. Let
P be the set of agents i with nonnegative virtual value φi(vi) ≥ 0 who have neighbors
with nonnegative virtual value, that is, {i : φi(vi) ≥ 0 and ∃i′ ∈ N(i), φi′(vi′) ≥ 0}. For
each node j with negative virtual value φj(vj) < 0, associate a set Qj = {i : i ∈ N(j), i /∈
P, φi(vi) ≥ 0}, that is, Qj is the set of neighbors of j with nonnegative virtual value who
are not in P. If we select j (which comes at a cost of φj(vj)), then we cover Qj (gaining
revenue equal to the sum of virtual values of agents i ∈ Qj). The greedy subroutine
initially selects P and then iteratively select sets Qj whose marginal “bang-per-buck”
is maximized.

Greedy Subroutine.
(1) Initialize the set of allocated nodes S ← P.
(2) Initialize the bang-per-buck of each Qj to bj = −∑

i∈Qj
φi(vi)/φj(vj).

(3) Repeat until for all Qj, bj < 1:
(a) Let j∗ be the node with bj∗ = maxj bj.
(b) Set S ← S ∪ { j∗} ∪ Qj∗ .
(c) For all Qj, update bj = −∑

i∈Qj∩(V−S) φi(vi)/φj(vj).

LEMMA 4.3. The expected value of greedy is at least (1 − 1/e)A∗ + B∗ + C∗.

PROOF. Note that both OPT and the greedy algorithm select all the vertices in P,
and therefore get revenue of B∗ from them.

Without loss of generality, assume that the rest of the positive elements all have
unit value by replicating them. Let nj be the number of elements (after replication)

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 13, Publication date: May 2013.
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13:14 N. Haghpanah et al.

in Qj and let Q∗ be the set of nodes with negative virtual value that OPT picks.
Therefore,

OPT =
∑
j∈Q∗

(nj − φj(vj)).

For each Qj, sort the elements by the decreasing order of the time step greedy covers
them (i.e., the elements that are covered later have lower ranks). Let the time stamp
be some very small value for any element not covered (i.e., the elements that are not
covered have lowest ranks). Notice that we sort the elements of each set independently,
and therefore an element which is in multiple sets is going to have a possibly different
index in each of them. So when greedy covers the i’th element of a set Qj, all the
elements 1, . . . , i − 1 of that set are uncovered. Note that if φj(vj) ≤ i then i is covered
by greedy since otherwise Qj has positive value. At the time i is covered by greedy, the
option of picking set Qj gives the per-element reward of 1 − φj(vj)/i. So we can write
the following lower bound for the value that greedy gets

∑
j∈Q∗

nj∑
cj≤i

(1 − φj(vj)/i) =
∑
j∈Q∗

(nj − φj(vj) − φj(vj) ln(nj/φj(vj)))

=
∑
j∈Q∗

(φj(vj)(
nj

φj(vj)
− ln(

nj

φj(vj)
)) − φj(vj))

≥
∑
j∈Q∗

(φj(vj)(
nj

φj(vj)
(1 − 1/e)) − φj(vj))

=
∑
j∈Q∗

(nj(1 − 1/e) − φj(vj)),

where the inequality followed because for any a ≥ 1, a − ln(a) ≥ a(1 − 1/e).

4.3. LP-Based Subroutine

As discussed before, the main hurdle in the analysis of the simple auction schemes
was the loose upper bound on the optimal expected revenue. In this section, we use a
linear program whose constraints characterize the feasible allocation rules as an upper
bound. We then use this LP to bound the expected revenue of an LP-based subroutine
for the auction scheme.

Recall that for each profile of types v with virtual valuation functions {φi(·)}, the
optimal revenue is equal to the maximum sum of virtual values among feasible al-
locations. In step-function externalities, an allocation x(·) is feasible if each vertex i
with xi(v) = 1 had a neighbor j with xj(v) = 1. Hence we can write the following LP
relaxation of the optimum revenue.

max
x

∑
i xi(v)φi(vi) (1)

subject to xi(v) ≤ ∑
j∈N(i) xj(v) ∀i

0 ≤ xi(v) ≤ 1 ∀i

Each instantiation of types induces one such LP. As discussed in Section 3, given
the instantiation of types, our problem is more general than the set-buying problem
studied in Feige et al. [2009] whose LP relaxation is shown to have linear gap. Hence
the LP value might seem like a very loose upper bound. However, recall that we only
require our auction to have close-to-optimal revenue on average. In other words, we
need a rounding scheme whose expected value, over the distribution of LPs induced by
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Optimal Auctions with Positive Network Externalities 13:15

the type distributions, is close to the expected value of the LPs. Thus we can perform
poorly on hard instances so long as we do well on average, and so LPs with linear
worst-case integrality gaps might still be useful in designing an LP-based subroutine
with good approximation ratios.

LP-Based Subroutine. Solve LP 1 for the instantiation of types v and let
x∗

i (v) be an optimal solution.
(1) For each i with φi(vi) < 0, give i a copy of the good with probability

x∗
i (v).

(2) For each i with φi(vi) ≥ 0, give i a copy of the good if it has a neighbor
j that either:
(a) has nonnegative virtual value φj( j) ≥ 0, or
(b) has negative virtual value φj( j) < 0 and received the good in

step 1.

To use this subroutine in our auction scheme, we must argue its expected revenue is
at least R = (1 − 1/e)A∗ + B∗ + C∗. The analysis of the randomized rounding requires a
key lemma: the LP constraints corresponding to an agent i with positive virtual value
must be tight in an optimal solution x∗(v). Namely, x∗

i (v) = min(1,
∑

j∈N(i) x∗
j (v)). Hence

to round and get constant contribution from these agents, we can round the nodes with
negative virtual value with probability equal to their LP values and then round nodes
with positive virtual value to one if some neighbor was rounded to one. To bound the
expected allocation of such an agent i in the rounding, we note that in the worst case
all neighbors of i have negative virtual value. However, even in this case, i is allocated
so long as at least one j ∈ N(i) receives the good. This happens with probability x∗

j for
neighbor j and so the allocation probability of i from the rounding scheme is at least
1 − ∏

j∈N(i)(1 − x∗
j ). This is within a (1 − 1/e) fraction of x∗

i .
Let xi(v) be the expected allocation of i in the subroutine, and define A, B, C as the

expected revenue contributions from nodes of each type accordingly.

LEMMA 4.4. A ≥ (1 − 1/e)A∗.

PROOF. Note that conditioned on event P−, we have x∗
i (v) = min(1,

∑
j∈N(i) x∗

j (v)),
and xi(v) = 1 − ∏

j∈N(i)(1 − x∗
j (v)). Let y = ∑

j∈N(i) x∗
j (v) and d = |N(i)|. Fixing the value

of
∑

j∈N(i) x∗
j (v), the minimum of 1 − ∏

j∈N(i)(1 − x∗
j (v)) happens when all the variables

are equal, in which case we have xi(v) = 1 − (1 − y
d )d ≥ 1 − 1

ey . Thus when y ≤ 1, we

have x∗
i (v) = y and so xi(v)

x∗
i (v)

is at least 1−e−y

y , whose minimum value is equal to 1 − 1
e .

When y ≥ 1, we have x∗
i (v) = 1 and so xi(v)

x∗
i (v)

is at least 1 − e−y, whose minimum value

is again 1 − 1
e . Therefore we have

Ai = Evi [ xi(vi)φi(vi)|P−] Pr(P−)

≥ (1 − 1
e
)Evi [ x∗

i (vi)φi(vi)|P−] Pr(P−)

= (1 − 1
e
)A∗

i .

Summing over i yields the result.
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13:16 N. Haghpanah et al.

THEOREM 4.5. The expected revenue of the LP-based subroutine is R = (1−1/e)A∗+
B∗ + C∗.

PROOF. Lemma 4.4 shows A ≥ (1 − 1/e)A∗. Furthermore, from the construction of x
we see that conditioned on P+ and N, x and x∗ are equal so B + C = B∗ + C∗. Therefore
the total revenue of the subroutine is at least (1 − 1/e)A∗ + B∗ + C∗.

We now prove that the aforesaid LP has integrality gap at most 0.828. This means
that we cannot use the LP solutions as an upper bound in order to get approximation
guarantees better than 0.828. We show the gap by proving the gap on the analogous
LP for the PCSC, which using the reduction in Lemma 3.3 implies the gap on the
original LP.

THEOREM 4.6. The preceding LP has integrality gap at most 0.828.

PROOF. We construct an LP gap instance for the prize-collecting set cover problem.
In our instance, the input is a graph; the sets are vertices and the elements are edges,
so that each edge is present in the sets corresponding to its incident vertices. For an n-
vertex graph, the goal is to choose a subset X of vertices to maximize α|E(X)|+ n −|X|,
where E(X) is the subset of edges incident to some vertex in X.

The LP has a variable xe for each edge, which is 1 if the edge is selected in the
event that all vertices in the graph have negative virtual valuation. Similarly, yv is
the variable denoting whether vertex v is selected in the same event. The LP can be
reformulated as

Maximize n −
∑

v

yv + α
∑

e

xe

xe ≤ yu + yv ∀e = (u, v) ∈ E
xe, yu ∈ [ 0, 1] ∀e ∈ E, u ∈ V.

Consider a complete graph on n vertices, for large n. Define β = 1/(αn). Scale the
objective and rewrite it as |E(X)| + (n − |X|)/α = |E(X)| + βn(n − |X|). Set all yv = 1/2
and xe = 1. For this fractional solution, the objective is approximately n2(1 + β)/2.
Suppose the optimal integer solution chooses k vertices and all incident edges. Its value
is approximately nk − k2/2 + βn(n − k). Optimizing over k, we obtain k = n(1 − β), so
that the optimal value is n2(1 + β2)/2. The ratio is therefore (1 + β2)/(1 + β), so that
β = √

2 − 1. This yields a ratio of 2(
√

2 − 1) = 0.828.

5. SUBMODULAR EXTERNALITIES

In order to design an approximately optimal mechanism for the more general problem
with submodular externalities, we identify a set of mechanisms, called influence-and-
exploit mechanisms. In the following, we first show that a simple random-sampling
mechanism which belongs to this category of mechanisms achieves a 0.25-approximate
mechanism for this problem. Then, we focus on optimizing over these mechanisms
and design improved approximation algorithms for this problem. We start by defining
influence-and-exploit mechanisms:

Definition 5.1. For a fixed price p and any set of players S, define the Influence-
and-Exploit Mechanism IE(S) as follows. Give the good to any i ∈ V\S regardless of its
value and to any i ∈ S if his value is more than the threshold p.
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5.1. Constant Approximation

First, we observe that a simple IE mechanism gives a 0.25-approximation to the op-
timal revenue for the setting of single-parameter submodular externalities. Consider
the following algorithm.

— Let S be a random subset of bidders where each i ∈ S is chosen independently
with probability 1

2 .
— Influence: Give the good to all i ∈ V \ S regardless of the value.
— Exploit: Give the good to a bidder j ∈ S if vj ≥ pj(S), where pj(S) = φ−1

j,S (0) is the
inverse virtual value of zero for the distribution Fj,S.

In order to prove the approximation guarantee, we make use of the following
lemma.

LEMMA 5.2. [FEIGE ET AL. 2007]. For a ground set V, let f : 2V → � be a monotone
submodular set function. Form set S by picking elements i ∈ V independently at random
with some fixed probability p. Then

E[ f (S)] ≥ pE[ f (V)] .

Now define the revenue function Ri(S) = maxp p(1 − Fi,S(p)), where Fi,S(p) =
Prvi∈Fi(vigi(S) ≤ p). We first prove that

∑
i Ri(V) is an upper bound on the revenue

of any mechanism.

LEMMA 5.3. The expected revenue of any Bayesian-incentive-compatible mechanism
is at most

∑
i Ri(V).

PROOF. Recall that we normalized gi(V) = 1. As a result, Fi,V(p) = Fi(p). So by
definition Ri(V) = maxp p(1 − F(p)). Consider any mechanism with allocation function
xi(vi) ≤ 1. By Myerson’s characterization, the expected revenue of the mechanism
is

∑
i Evi [ xi(vi)φi(vi)] ≤ ∑

i E[ max(0, φi(vi))] = ∫ ∞
φ−1(0)

φi(x)f (x)dx = ∫ ∞
φ−1(0)

(xf (x) − (1 −
F(x)))dx = −x(1 − F(x))|∞

φ−1(0)
= pi(S)(1 − Fi,S(pi(S))) = Ri(V).

LEMMA 5.4. If the revenue function is submodular for all agents, then the aforesaid
mechanism is a 4-approximation of the optimal mechanism.

PROOF. Consider any agent i. With probability 1/2, it chosen to be in S. Fixing
the set S, the expected revenue we get from i is Ri(S) = pi(S)(1 − Fi,S(pi(S))). Now
note that each agent is independently sampled, so over the random choices of the
mechanism, and by submodularity of Ri(S) (proved in Lemma 5.5), the expected rev-
enue from i (conditioned on being in S) is at least Ri(V)/2. Since we get this rev-
enue with probability 1/2, the expected revenue from i is at least Ri(V)/4. This gives a
4-approximation.

Similar to Hartline et al. [2008], we may simply assume that the revenue function
Ri is monotone and submodular for each bidder, and indeed our result holds for any
settings that induce monotone submodular revenue functions. Interestingly, for the
single-parameter submodular setting, the submodularity of the revenue function fol-
lows from the submodularity of the local influence function.

LEMMA 5.5. The revenue function is submodular for the single-parameter submod-
ular externalities setting, and the concave externalities setting.
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13:18 N. Haghpanah et al.

PROOF. Consider a player i with distribution Fi over vi. Then

Ri(S) = max
p

p(1 − Fi,S(p))

= max
p

p(1 − Fi(p/g(S)))

= g(S) max
p′ p′(1 − F(p′)).

where p′ = p/g(S). Submodularity of Ri(.) then follows directly from submodularity
of g(.).

Applying the previous two lemmas, we conclude the following.

THEOREM 5.6. There exists a 1
4 -approximate IE mechanism to the optimum rev-

enue in the single-parameter submodular externalities model, and thus in the concave
externalities model.

5.2. Optimizing over IE Mechanisms

Now that we proved that IE mechanisms achieve a constant-factor approximation
to the optimal revenue, it would be interesting to optimize among IE mechanisms.
To do so we need to find a set V \ S of initial (influential) bidders to get the good
regardless of their value, and then exploit the remaining bidders by setting optimal
thresholds as before. Let χ(v) be the outcome of this strategy, that is, χi(v) = 1 if
the good is given to i for the profile of types v in IE(S). Let 	(S) be the expected
revenue of IE(S) over the randomization of types. Our goal is to find a subset S of
bidders that maximizes 	(S). We do so by arguing that 	(S) is a (not necessarily
monotone) submodular function and then using submodular function maximization
results. We present the results in this section with regard to concave externalities
in order to keep notation simple; the results extend easily to the more general
submodular externalities. We first characterize the expected revenue of any IE
strategy.

LEMMA 5.7. Let Xi,S(v) = |{ j ∈ N(i) : χj(v) = 1}| where N(i) is the neighborhood
of i in G. Then the expected revenue of any IE strategy, IE(S), for each i ∈ S is equal
to p(1−Fi(p))Ev[ h(Xi,S(v))] where h(·) is the concave function defining the externalities
(i.e., gi(o) = oi · h(|{ j ∈ N(i) : oj = 1}|)).

PROOF. Consider IE(S) with allocation function x and outcome function χ . By
Myerson’s characterization, we can write the expected revenue of i in IE(S) as

Ev[ xi(v)φi(vi)] = Ev[ gi(χ(v))φi(v)]
= Ev[ χi(v)h(Xi,S(v))φi(v)] .

Note in any IE strategy, χi(v) and χj(v) are independent random variables (when v is
drawn from F) for any i �= j. Thus χi(v) is also independent from Xi,S(v). So we can
write the revenue of i as E[ h(Xi,S(v))] E[ χi(v)φi(vi)]. Since we set χi(vi) = 1 when
φ(vi) ≥ 0, E[ χi(v)φ(vi)] is equal to the optimum revenue from distribution Fi, which is
equal to p(1 − Fi(p)).

We next prove the key structural property of the revenue function 	(S) for IE mech-
anisms, namely that it is submodular.

LEMMA 5.8. The set function 	 is a nonnegative submodular function of S.
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PROOF. First note that each agent i ∈ V\S contributes 0 to the revenue, and each
i ∈ S contributes 	i(S) = p(1−Fi(p))Ev[ h(Xi,S(v))], where Xi,S(v) is a random variable
denoting the number of i’s neighbors that are given the good to at profile v, that is
Xi,S(v) = |{ j ∈ N(i) : χj(v) = 1}|. For all i, S, let Fi,S be the discrete distribution (with
density function fi,S) of Xi,S(v) when v is drawn from the joint distribution of types.
We show submodularity of 	(.) by proving submodularity of all 	i(.) for all i, that is
	i(S ∪ { j}) − 	i(S) ≤ 	i(S′ ∪ { j}) − 	i(S′), for all S′ ⊆ S and all i and j. Submodularity
of 	(.) follows from submodularity of 	i(.)’s, since 	(S) = ∑

i�∈S 	i(S). Formally for
S ⊇ S′ and j /∈ S,

	(S ∪ { j}) − 	(S) =
∑

i/∈(S∪{ j})
	i(S ∪ { j}) −

∑
i/∈S

	i(S)

=
∑

i/∈(S∪{ j})
(	i(S ∪ { j}) − 	i(S)) − 	j(S)

=
∑

i/∈(S′∪{ j})
(	i(S ∪ { j}) − 	i(S))

−
∑

i∈(S\S′)
(	i(S ∪ { j}) − 	i(S)) − 	j(S)

≤
∑

i/∈(S′∪{ j})
(	i(S′ ∪ { j}) − 	i(S′))

−
∑

i∈(S\S′)
(	i(S ∪ { j}) − 	i(S)) − 	j(S)

≤
∑

i/∈(S′∪{ j})
(	i(S′ ∪ { j}) − 	i(S′)) − 	j(S)

≤
∑

i/∈(S′∪{ j})
(	i(S′ ∪ { j}) − 	i(S′)) − 	j(S′)

= 	(S′ ∪ { j}) − 	(S′),

in which the first inequality follows because 	i(.) is submodular, and the second and
third inequalities follow because 	i(S) is monotone as long as i /∈ S (in contrast to
	(S)).

In the rest we prove submodularity of 	i(.). First note that if i is not a neighbor of
j, then we have 0 = 	i(S ∪ { j}) − 	i(S) ≤ 	i(S′ ∪ { j}) − 	i(S′) = 0. Now assume that
i is a neighbor of j. Define 	 = 	i(S ∪ { j}) − 	i(S). Now we have

	 = p(1 − Fi(p))(Ev[ h(Xi,S∪{ j}(v))] −Ev[ h(Xi,S(v))] )

= p(1 − Fi(p))(Ek∼Fi,S∪{ j} [ h(k)] −Ek∼Fi,S [ h(k)] )

= p(1 − Fi(p))
∑

k

h(k)(fi,S∪{ j}(k) − fi,S(k)).

First we show that fi,S∪{ j}(k) = Fj(p)fi,S(k+1)+(1−Fj(p))fi,S(k). To compute the prob-
ability that i has k neighbors using strategy IE(S∪{ j}), we consider two events. First is
the event in which vj < p, which happens with probability Fj(p). In this case, we need
k−|V\(S∪{ j})| neighbors of i in set S to have value more than p. If this happens when
using strategy IE(S), i is going to have k−|V\(S∪{ j})|+ |V\(S∪{ j})|+1 = k+1 neigh-
bors that are allocated (note that j is in the influence set and therefore allocated). The

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 13, Publication date: May 2013.



�

�

�

�

�

�

�

�

13:20 N. Haghpanah et al.

probability of this event is fi,S(k + 1) by definition. The second event is the event
in which vj ≥ p, which happens with probability 1 − Fj(p). In this case, we need
k − |V\(S ∪ { j})| − 1 neighbors of i in set S to have value more than p. If this happens
when using strategy IE(S), i is going to have k − |V\(S ∪ { j})| − 1 + |V\(S ∪ { j})| + 1 = k
neighbors that are allocated. The probability of this event is fi,S(k) by definition. Sum-
ming up, we conclude our desired equation, fi,S∪{ j}(k) = Fj(p)fi,S(k+1)+(1−Fj(p))fi,S(k).

As a result,

	 = p(1 − Fi(p))Fj(p)
∑

k

h(k)(fi,S(k + 1) − fi,S(k))

= p(1 − Fi(p))Fj(p)
∑

k

fi,S(k)(h(k − 1) − h(k)).

Now recall that h is a concave function of k. As a result, H(k) = h(k − 1) − h(k) is a
nondecreasing function of k. Therefore,

	i(S′ ∪ {j}) − 	i(S′) − (	i(S ∪ {j}) − 	i(S))

= p(1 − Fi(p))Fj(p)
∑

k

H(k)(fi,S′(k) − fi,S(k))

= p(1 − Fi(p))Fj(p)
∑

k

H(k)(Fi,S′(k) −

Fi,S′(k − 1) − (Fi,S(k) − Fi,S(k − 1)))

= p(1 − Fi(p))Fj(p)

·
∑

k

(Fi,S′(k) − Fi,S(k))(H(k) − H(k + 1)).

Note that for S′ ⊃ S, Fi,S′(k) ≥ Fi,S(k). This is because any vertex in S′\S is
always allocated in IE(S), but only with some probability in IE(S′), and therefore
the probability that i has k or less allocated neighbors in IE(S) is only less than in
IE(S′). So Fi,S′(k) − Fi,S(k) ≥ 0 for all k. Also, since H is a nondecreasing function,
H(k) − H(k + 1) ≤ 0.

It only remains to consider the revenue function of j when we add j to sets. For S
such that j /∈ S, we have

	j(S ∪ { j}) − 	j(S) = p(1 − Fj(p))Ev[ h(Xj,S(v))] .

Again, note that for S′ ⊃ S, Fj,S(k) ≤ Fj,S′(k), therefore

EFj,S′ [ h(k)] − EFj,S [ h(k)]

=
∑

k

h(k)(fj,S′(k) − fj,S(k))

=
∑

k

(Fj,S′(k) − Fj,S(k))

·(h(k) − h(k + 1)) ≤ 0.

Function 	(.) as described previously is nonnegative and submodular, but not nec-
essarily monotone. In order to obtain a constant-factor approximation for maximizing
over IE mechanisms, we can simply apply nonmonotone submodular maximization al-
gorithms for this problem [Feige et al. 2007; Gharan and Vondrak 2011]. For example,
the following simple local search algorithm gives a 0.33-approximation to this prob-
lem [Feige et al. 2007]: (i) Let S = {i|i = arg maxi′∈V(	({i′})}, and (ii) at each step
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either add or remove a bidder i from S if this adding or removing increases the value
of 	(S) by a 1 + ε

n factor, (ii) after reaching a local optimal L, output the better of L
and L̄. The preceding simple algorithm acheives 0.33-approximation for the problem of
maximizing over IE strategies. One can apply a recently developed randomized local
search algorithm to acheive a 0.41-approximation of Gharan and Vondrak [2011] for
this problem. We conclude with the following theorem.

THEOREM 5.9. The problem of optimizing over IE mechanisms can be approximated
within a factor 0.41 in polynomial time.

APPENDIXES

A. LOOSE UPPER BOUND

Consider an upper bound on the optimal expected revenue which is equal to the sum
of positive virtual values. The following example shows that the optimal expected rev-
enue can be just a 3/4-fraction of this upper bound, indicating that better approxima-
tions require better upper bounds.

Example A.1. Consider the following tree: there is a root vertex; the root has n
children, called level 1 nodes; and each level 1 node has one child, the level 2 nodes. As-
sume that the distribution on values is such that the virtual value is 1 with probability
p = 1/2, and −1 with probability 1/2. The upper bound’s value is

∑
i E[ max(0, φ(vi))] =

(2n+1)/2. Now consider any pair v1 and v2. Assuming that the root is always allocated
(the best case for the pair), the optimum solution is to allocate both when they are pos-
itive, only v1 when it is the only one with positive value, and neither otherwise. The
expected value of this allocation is 3/4. There are n pairs and at best the optimum can
get revenue 1 from the root, and so the optimum revenue is at most 3

4n + 1. Hence the

ratio of the optimum to the upper bound is at most
3n
4 +1
2n+1

2
→ 3/4.

B. LIMITED-SUPPLY SETTING

All auctions discussed so far assume the auctioneer has an unlimited supply of the
good. When there is a limited supply, we must modify the aforesaid techniques to sat-
isfy the supply constraint. The next theorem shows how to extend our simple (1/2)-
approximation presented at the beginning of Section 4 to get a (1/4)-approximation
with limited supply. The LP-based auction also has a natural extension to the limited-
supply setting. Namely, we can add a constraint to the LP forcing the total number of
distributed goods to be at most the supply limit. However, we cannot apply our round-
ing scheme directly to this altered LP: it does not satisfy supply constraints (even in
expectation). We leave the problem of rounding this altered LP as an open question.

THEOREM B.1. There is a (1/4)-approximation auction for the limited-supply
setting.

PROOF. Suppose the auctioneer has k copies of the good. Compute a spanning tree
of the social network and color the nodes red and blue such that each red node has a
blue neighbor in the spanning tree (and vice versa). Pick a color uniformly at random
and name the nodes of this color S1 and nodes of the other color S2. Allocate to the k/2
highest positive virtual values in S1, and their neighbors in S2 to ensure feasibility.
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We now compute the expected virtual value of this allocation for the red nodes. We
condition on the event E that the red nodes were chosen to be set S1.

Ev[
∑
i red

xi(v)φi(vi)] = Ev[
∑
i red

xi(v)φi(vi)|E] Pr[ E]

+Ev[
∑
i red

xi(v)φi(vi)|E] Pr[ E]

≥
(

1
2

)
Ev[

∑
i red

xi(v)φi(vi)|E]

=
(

1
2

)
Ev[ max

S⊆ red:|S|≤k/2

∑
i∈S

φi(vi)]

where the second step follows since the expected allocation of any red node i is indepen-
dent of its value conditioned on E. Therefore by Fact 2.3 each such vertex contributes
a nonnegative amount to the revenue. The third step follows since conditioned on E we
picked the best set of size at most k/2 from the red nodes.

Now to prove the approximation guarantee first define X = E[ maxS:|S|≤k
∑

i∈S φ(vi)],
and note this is an upper bound on the optimum revenue, since in the best case we can
allocate the highest (positive) k virtual values. But we know that for any sampling of
the values,

max
S:|S|≤k

∑
i∈S

φ(vi) ≤ max
S⊆ red:|S|≤k

∑
i∈S

φ(vi)

+ max
S⊆ blue:|S|≤k

∑
i∈S

φ(vi)

≤ 2 · ( max
S⊆ red:|S|≤k/2

∑
i∈S

φ(vi)

+ max
S⊆blue:|S|≤k/2

∑
i∈S

φ(vi)),

and therefore,

X = E[ max
S:|S|≤k

∑
i∈S

φ(vi)]

≤ 2(E[ max
S⊆S1:|S|≤k/2

∑
i∈S

φ(vi)]

+E[ max
S⊆S2:|S|≤k/2

∑
i∈S

φ(vi)] ),

by linearity of expectation. Recalling that the expected value of our allocation is at
least

E[ max
S⊆S1:|S|≤k/2

(
∑
i∈S

φi(vi))] ,

and noting that we picked each of the two sets with probability 1/2 to be S1, we con-
clude that the expected revenue of our allocation (over the randomness of the algorithm
and sampling of values), is at least 1/4 of the upper bound.
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C. THRESHOLD STRATEGIES

In this section, we observe that no threshold strategy can have better than
0.5-approximation. Our example compares the value of all possible strategies to the
optimum value, and therefore the result holds for any upper bound on optimum. Con-
sider a pair of vertices and assume that the virtual value is 1 with probability p and
−p/(1− p) with probability 1− p. Also assume that p is very small. Consider the strat-
egy in which we allocate both nodes of a pair when at least one of them has positive
value. The value that we get is 2p2 + 2p(1 − 2p). Now consider any pricing strategy.
The value we get when we set one of the thresholds equal to −p

1−p is at most p. If we
set both thresholds to p we get p2. In any case, the ratio of optimum to any pricing
strategy goes to 2 as p → 0.
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