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We investigate whether a market served by a multiproduct monopolis-
tic seller can be segmented in a way that benefits all consumers and the
seller. The seller can offer a different product menu in each market
segment, combining second- and third-degree price discrimination.
We show that markets for which profit maximization leads to ineffi-
ciency can, generically, be segmented into two market segments in a
way that increases the surplus of all consumers weakly and of some con-
sumers and the seller strictly. Our constructive proof is based on deriv-
ing implications of binding incentive compatibility constraints when
profit maximization implies inefficiency.
I. Introduction
Market segmentation and price discrimination are common practices that
benefit sellers butmayharmconsumers. In some cases, such as first-degree
price discrimination, all consumers are harmed. In other cases, certain
consumers are harmed, while other consumers benefit from lower prices
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or more suitable products. This paper investigates which markets can be
segmented in away that benefits all consumers and the seller when the seller
can offer multiple products and maximizes profit in each market segment.
Our primary motivation in asking this question is to improve our un-

derstanding of the welfare effects of market segmentation and price dis-
crimination in multiproduct environments. But the question we ask may
also be relevant to regulatory discussions regarding consumer privacy
and sellers’use of consumer data. A regulator interested in increasing con-
sumer welfare may be able to control the data that sellers collect or access
or the scope and type of targeted offers that sellers canmake. Alternatively,
consumers may be able to decide what data to provide to sellers.1 As a re-
port by the Federal Trade Commission (2012) puts it, “The Commission
recognizes the need for flexibility to permit . . . uses of data that benefit
consumers.”Our analysis clarifies for whichmarkets there exists somedata
that—if provided to or collected by a profit-maximizing seller—will be
used by the seller to price discriminate in a way that benefits all consumers.
We consider a setting in which amultiproductmonopolistic seller faces

a market of heterogeneous consumers with preferences over subsets of
products. Consumer preferences are quasi-linear inmoney but are other-
wise quite general.2 If the seller can segment the market, she can offer a
potentially different menu of products and product bundles in eachmar-
ket segment, thereby combining second- and third-degree price discrim-
ination. Otherwise, the seller offers the same menu to all consumers.
Our focus is on Pareto-improving segmentations, in which the surplus ev-

ery consumer obtains when choosing from the menu that the seller offers
in his segment is no lower than the surplus the consumer would obtain in
the unsegmented market and is strictly higher for some consumers and
the seller. If a Pareto-improving segmentation exists for a market, we say
that themarket isPareto improvable. Because any Pareto-improving segmen-
tation increases total surplus, any Pareto improvable market is necessarily
inefficient in that its profit-maximizing menu leads to some inefficiency.
Our main result is that, generically, inefficient markets are Pareto im-

provable by a segmentation with two market segments.3 In other words,
whenever total surplus is not maximized, market segmentation can ben-
efit all consumers and the seller. This suggests that properly regulated
data collection and usage can have unambiguously positive welfare ef-
fects in a wide range of market settings.
A natural approach to proving our result is to consider, for each

market and each segmentation, each consumer’s surplus in the seller’s
1 In the single-agent interpretation of ourmodel, discussed in app. A2, the agent can com-
mit to an information disclosure policy prior to learning his type, as in Ichihashi (2020).

2 Importantly, however, we assume that the number of products and consumer types is
finite. Section VI discusses the implications of increasing the number of products.

3 We formalize our notion of genericity in sec. IV.
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profit-maximizingmenu.However, no characterization of profit-maximizing
menus exists in our multiproduct environment. We therefore develop a
different approach. This novel approach is based on understanding the
interaction between binding incentive constraints and what drives mar-
ket inefficiency: the only reason a seller serves some consumers ineffi-
ciently is to reduce the information rents of other consumers.
This simple observation has far-reaching implications. We show that

for every inefficient market there is an efficient Pareto-dominatingmarket:
every consumer in this market weakly prefers—and some strictly prefer—
the menu that maximizes the seller’s profit in this market to the profit-
maximizing menu in the inefficient market. The seller’s profit from
the consumers in the efficient market also increases. Our constructive
proof shows that the Pareto-dominating market may have to include nu-
merous consumer types.
The Pareto-dominating market forms one of the two segments in the

Pareto-improving segmentation. We then show that for everymarket with
a unique optimal payment rule, induced by the profit-maximizing menu,
a small perturbation of themarket does not change the profit-maximizing
menu and that the set of such markets is generic. For the generic set of
inefficient markets with a unique optimal payment rule, therefore, the
two-market segmentation that consists of a small fraction of the efficient
Pareto-dominating market and the large fraction of the remaining con-
sumers is Pareto improving.
The rest of the paper is organized as follows. Section II discusses the

related literature. Section III describes the model and provides an exam-
ple that illustrates the various concepts. Section IV derives the main re-
sult. Section V presents some special cases and applications. Section VI
discusses several aspects of our model and analysis, including the magni-
tude of the improvements, and concludes. The appendix includes proofs
not given in the main text, a single-agent interpretation of the model, an
additional application, and an example with a large number of products.
II. Related Literature
Our work connects second- and third-degree price discrimination. The
literature that studies third-degree price discrimination and its effects
on producer and consumer surplus is broad. Pigou (1920) provides ex-
amples in which a segmentation may decrease total and hence consumer
surplus. Follow-up work provides conditions for a segmentation to in-
crease or decrease total surplus or consumer surplus (Robinson 1969;
Schmalensee 1981; Varian 1985; Aguirre, Cowan, and Vickers 2010;
Cowan 2016). Our work differs from this literature in three significant
ways. First, with third-degree price discrimination, the seller offers a sin-
gle product to all consumers in amarket, whereas the seller in our setting
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may offer a menu of products. Second, instead of considering expected
consumer surplus, we use the Pareto criterion. Third, most of the litera-
ture assumes that the segmentation is exogenously fixed.
A recent literature on third-degree price discrimination studies surplus

across all possible segmentations of a given market. Bergemann, Brooks,
and Morris (2015) identify the set of producer and consumer surplus
pairs that result from all segmentations of a given market. It follows from
their analysis that in environments with a single product, any inefficient
market can be segmented in a way that is Pareto improving (see proposi-
tion 1). Glode, Opp, and Zhang (2018) study optimal disclosure by an in-
formed agent in a bilateral trade setting and show that the optimal disclo-
sure policy leads to socially efficient trade, even though information is
revealed only partially. Ichihashi (2020) and Hidir and Vellodi (2021)
consider maximum consumer surplus when a multiproduct seller offers
a single product in eachmarket segment. Ichihashi (2020) considers a fi-
nite number of products and compares two regimes, one in which the
sellermay offer the sameproduct at different prices to different segments
and another one in which the seller fixes the price in advance. Hidir and
Vellodi (2021) characterize optimal segmentations with a continuum of
products. Braghieri (2019) studies market segmentation with a contin-
uum of firms, each producing a single differentiated product. In contrast
to these papers, the seller in our setting may offer multiple products in
each market segment. Pram (2021) and Haghpanah and Siegel (2022)
also allow the seller to offer multiple products in each market segment.
Pram (2021) shows that under a single-crossing assumption, a market in
which is it profitable to exclude some consumers is Pareto improvable. This
insight is also present in the single-product setting of Ali, Lewis, and
Vasserman(2022).HaghpanahandSiegel (2022) identifymarkets for which
the entire surplus triangle of Bergemann, Brooks, and Morris (2015) is
achievable and markets for which the highest consumer surplus in the sur-
plus triangle is achievable. Finally, Bergemann, Brooks, and Morris (2015)
provide a parametric example with two types and nonlinear valuations in
which the seller sometimes offers more than one product in a segment.
Our model can also be cast in a Bayesian persuasion framework (Ka-

menica and Gentzkow 2011) with a single consumer, the sender, who faces
the seller, the receiver (app. A2 provides details).However, techniques from
that literature, such as concavification and the duality approach of
Dworczak and Martini (2019), are not applicable to our setting for two
reasons. First, whereas the usual persuasion settings consider the agent’s
expected utility, we consider the agent’s ex post utility. Second, andmore
importantly, these techniques require a specification of the sender’s util-
ity for inducing any given posterior. In our setting, the consumer’s utility
depends on the seller’s optimal menu, for which no characterization ex-
ists when there are multiple products.
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III. Setup
Amonopolistic seller faces a continuum of consumers (app. A2 discusses
the interpretation of a single consumer). The environment includes a set T
of n consumer types and a finite set A of alternatives, where alternative
0 ∈ A is consumers’ outside option. We will refer to k5 jAj21 as the
number of alternatives (excluding the outside option). Each consumer
type specifies a valuation for every alternative: type t’s valuation for alter-
native a is v(t, a). Type t’s valuation for a random alternative x ∈ ΔðAÞ is
vðt, xÞ 5 Ea∼x ½vðt, aÞ�. Type t’s surplus from a random alternative x and
payment p to the seller is vðt, xÞ 2 p. The valuation for the outside option
is zero for all types, that is, vðt, 0Þ 5 0. The seller’s cost of producing each
alternative is normalized to zero without loss of generality.4 We assume
that each type t has a unique efficient alternative �aðtÞ ≠ 0 that maximizes
the type’s valuation over all alternatives.5 Different consumer types may
rank the alternatives differently, and consumers’ valuations need not
be ordered by their types or satisfy a condition like increasing differences.
Each alternative a ≠ 0 corresponds to a product or a set of products.

This captures horizontal and vertical differentiation, allows for multiunit
demand, and accommodates bundling. To illustrate this, suppose that
the seller can produce two products, 1 and 2, and product 2 has a low-
quality version L and a high-quality version H. Suppose that consumers
may want to buy one or both products but not both versions of product 2.
This setting canmodeled by anenvironment with six alternatives, which cor-
respond to the relevant subsets of {1,L,H }: 0, {1}, {L}, {H }, {1, L}, {1,H }. Alter-
natively, we could specify an alternative for every subset of {1, L,H } and re-
flect in consumers’ valuations the fact that consumers do not want to buy
both versions of product 2. If instead some consumers demand multiple
units of a single product, that would be capturedby additional alternatives.
An allocation rule x : T → ΔðAÞ is a mapping from types to random alter-

natives, where x(t) is the allocation of type t. A (direct) mechanism M 5
ðx, pÞ consists of an allocation rule x and a payment rule p : T →R1.6 A
mechanism is incentive compatible (IC) if no type benefits from misre-
porting, that is,

vðt, xðtÞÞ 2 pðtÞ ≥ vðt, xðt 0ÞÞ 2 pðt 0Þ
4 A nonzero cost c(a) for alternative a ≠ 0 can be accommodated by redefining valua-
tions as ~vðt, aÞ 5 vðt, aÞ 2 cðaÞ without changing the analysis or results. Notice that ~vðt, aÞ
may be negative even if all valuations v(t, a) are nonnegative. Thus, throughout the paper,
we allow for negative valuations.

5 The assumption that �aðtÞ ≠ 0 is without loss of generality because we can remove from
the environment any type whose unique efficient alternative is 0.

6 The restriction to nonnegative payments is without loss of generality since negative
payments are never optimal for the seller.
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for all types t and t 0. Amechanism is individually rational (IR) if every type
obtains at least zero surplus by reporting truthfully, that is,

vðt, xðtÞÞ 2 pðtÞ ≥ 0

for all types t. Any mechanism we will refer to will be IC-IR unless other-
wise stated. Every mechanism can be represented by a menu of random
alternative and price pairs such that each type chooses a pair that maxi-
mizes his surplus. If a type is indifferent between two or more pairs, he
chooses the one with a higher price and chooses any one of the pairs if
the prices are the same.
A market f ∈ ΔðT Þ is a distribution over types, where f(t) is the fraction

of consumers of type t. An IC-IR mechanism is optimal for a market f if it
maximizes the seller’s expected revenue among all IC-IR mechanisms. A
market may have multiple optimal mechanisms, and a type’s surplus may
vary across thesemechanisms. Thus, to compare consumer surplus across
different markets, we fix a selection rule that specifies an optimal mech-
anism for each market. The selection rule should satisfy a mild consis-
tency requirement but is otherwise arbitrary. The requirement is that if
two markets have the same set of optimal mechanisms, then the same
mechanism is selected for both markets. We henceforth fix such a selec-
tion rule and refer to the selected optimal mechanism for amarket as the
optimalmechanism for thatmarket. Type t’s surplus CS(t, f ) inmarket f is
the type’s surplus from the optimal mechanism. A market is efficient if
the allocation in the optimal mechanism of every type in the market is ef-
ficient. In this case, we say that the optimal mechanism is efficient. Oth-
erwise, the optimal mechanism and the market are inefficient.
A segmentation of market f is a distribution m ∈ ΔðΔðT ÞÞ over a finite set

of markets that averages to f, that is, Ef 0∼m½ f 0� 5 f .7 We refer to a market in
the support of a segmentation as a (market) segment. A segmentation is
nontrivial if not all segments are identical to the original market. Given a
segmentation, the seller offers in eachmarket segment the optimalmech-
anism for that segment.
A. Pareto Improvements
Our goal is to understand, for each environment, which markets can be
segmented in a way that benefits all consumers and the seller. To formal-
ize this, we say that market f 0weakly Pareto dominates market f if the set of
types in market f 0 is a subset of the set of types in market f and every type
t in market f 0 weakly prefers the optimal mechanism for market f 0 to the
one formarket f, that is, CSðt, f 0Þ ≥ CSðt, f Þ. If, in addition, the preference
7 The restriction to a finite set of markets is without loss of generality for all our results
and examples because the number of types is finite.
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is strict for some type in market f 0, then f 0 Pareto dominates f. A segmenta-
tion m of market f is Pareto improving if every segment weakly Pareto dom-
inates f, some segment Pareto dominates f, and the segmentation strictly
increases the seller’s revenue.8 A market is Pareto improvable if it has a
Pareto-improving segmentation. Such a segmentation increases the value
of any monotone function of all consumers’ surplus. Because the seller’s
revenue strictly increases, she has a strict incentive to carry out the seg-
mentation. The rest of the paper focuses on identifying, for every environ-
ment, which markets are Pareto improvable and constructing a Pareto-
improving segmentation for these markets.
We begin by observing that if a market is efficient, then it is not Pareto

improvable. This is because a Pareto-improving segmentation strictly in-
creases total surplus, and the total surplus that any segmentation gener-
ates is at most the surplus generated by an efficient mechanism.
Observation 1. Any Pareto improvable market is inefficient.
Which inefficient markets are Pareto improvable? The following prop-

osition provides the answer for environments with a single alternative.
Proposition 1. In any environment with a single alternative, all in-

efficient markets are Pareto improvable.
Proposition1 follows from theproof of theorem1 inBergemann,Brooks,

and Morris (2015). Their result implies that any inefficient market with a
single alternative can be segmented in a way that increases both the seller’s
revenue and average consumer surplus. But their proof in fact shows that
Pareto-improving segmentations exist.9 However, that proof relies heavily
on there being a single alternative and does not generalize tomultiple alter-
natives. The following example illustrates whichmarkets are Pareto improv-
able in a particular environment with two types and two alternatives.
B. Pareto Improvements in a Two-Type,
Two-Alternative Example
Consider an environment with a low type tL, a high type tH, and two alter-
natives aL and aH (in addition to the outside option). Both types prefer aH
to aL. The low type’s valuations for the two alternatives are 0.75 and 1, and
the high type’s valuations for the two alternatives are 1 and 2. Denote a
market by the fraction q of high-type consumers. We will show that all
8 Any segmentation weakly increases the seller’s revenue since the seller can use the op
timal mechanism for the original market in all segments. The increase is strict if the opti
mal mechanism for the original market is not optimal for some segment.

9 A technical point is that their proof and our proposition 1 require selecting the effi
cient mechanism if it is optimal for a market, whereas our definition of the optimal mech
anism allows for any selection rule when there are multiple optimal mechanisms. Proposi
tion 1 does not hold for any selection rule, but our results in the rest of the paper do, and
they apply in particular to markets with a single alternative.
-
-

-
-
-
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the inefficientmarkets except formarket q 5 0:75 are Pareto improvable
by a two-market segmentation.
The set of markets can be divided into three intervals: an efficient low

interval [0, 0.25] in which the optimal mechanism assigns alternative aH

to both types at price 1, an inefficient intermediate interval (0.25, 0.75] in
which the optimal mechanism assigns alternative aL to the low type at
price 0.75 and alternative aH to the high type at price 1.75, and a high
interval (0.75, 1] in which the optimal mechanism assigns the outside
option to the low type at price 0 and alternative aH to the high type at
price 2. Themarkets in the high interval are inefficient except formarket
q 5 1, which includes only high-type consumers.
The surplus of the low type is zero in any market. The surplus of the

high type across markets is depicted in figure 1. This surplus is constant
on each interval because the surplus depends only on the optimal mech-
anism. The surplus is lower on higher intervals.
We now determine which inefficient markets are Pareto improvable.

Consider first any market q in the interior of the intermediate interval,
(0.25, 0.75). This market is inefficient and can be segmented into two
market segments, q 0 and q 00, such that q 0 > 0 is in the low interval and
q 00 > q is in the intermediate interval. The surplus of the high type inmar-
ket q 0 increases relative to his surplus in q, and the surplus of the high type
FIG. 1.—Surplus CS(tH, q) of high type in any market q.
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in market q 00 is the same as his surplus in q. The surplus of the seller also
increases because the optimal mechanism for market q is not optimal for
market q 0. This shows that the segmentation is Pareto improving.10 A sim-
ilar argument shows that any market in the interior of the high interval,
(0.75, 1), is Pareto improvable by a two-market segmentation. Thus, it re-
mains to determine only whether market 0.75 is Pareto improvable.
Market 0.75 is inefficient but not Pareto improvable. This is because any

nontrivial segmentation of this market contains some segment strictly
larger than 0.75, and the surplus of the high type in this segment is zero,
which is lower than his surplus of 0.25 in market 0.75.11
IV. The Main Result
Our main result is that, generically, inefficient markets are Pareto im-
provable by a two-market segmentation. We formalize the result after de-
fining our notion of genericity.
Definition 1. A set F of markets is nongeneric in a set G of markets

if, for some l > 0, F \ G is contained in a finite union of hyperplanes of
dimension l 2 1 and G contains a ball of dimension l.12 A set of markets F
is generic in G if G is empty or the complement of F is nongeneric in G.
Theorem 1. For any environment, the set of markets that are Pareto

improvable by a two-market segmentation is generic in the set of ineffi-
cient markets.
Theorem 1 shows that if the set of inefficient markets is not empty,

then the subset of inefficient markets that are not Pareto improvable
lies in a lower dimensional space (comprised of a finite union of lower-
dimensional hyperplanes).
To illustrate definition 1 and theorem 1, consider the two-type example

from section III.B. The set of inefficientmarkets is (0.25, 1), which contains
a ball of dimension l 5 1 (an interval), and the only inefficientmarket that
is not Pareto improvable is 0.75, which is contained in a hyperplane of di-
mension l 2 1 5 0 (a point). Thus, the set of markets that are not Pareto
improvable is nongeneric in the set of inefficient markets, so the set of mar-
kets that are Pareto improvable is generic in the set of inefficient markets.
10 Recall that the surplus of the low type is zero in all markets.
11 In fact, every nontrivial segmentation of market 0.75 also lowers the average consumer

surplus. This can be seen by concavifying the function that maps any market to the average
consumer surplus in the optimal mechanism for that market. Because in any market q the
surplus of the low type is zero, the average consumer surplus is q � CSðtH , qÞ, where CS(tH, q)
is the surplus of the high type in market q, depicted in fig. 1.

12 This implies measure theoretic and topological notions of nongenericity. Indeed, if
l > 0 is the largest integer such that G contains a ball of dimension l, then F \ G , for a
nongeneric F, has Lebesgue measure 0 and is nowhere dense (in Rl).
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The proof of theorem 1 shows that inefficient markets with a unique
optimal payment rule are Pareto improvable by a two-market segmenta-
tion, and the set ofmarkets with a unique optimal payment rule is generic
in the set of inefficient markets.13 The idea behind the genericity is that
the set of payment rules is a convex polytope, and the optimality of mul-
tiple payment rules translates into one or more linear equalities the mar-
ket must satisfy. Since the polytope has a finite number of vertices, the set
of markets for which multiple payment rules are optimal lies in a finite
union of hyperplanes of lower dimension.
Showing that inefficient markets with a unique optimal payment rule

are Pareto improvable by a two-market segmentation relies on a new
two-step approach. The first step is to construct, for any inefficient mar-
ket f, an efficient Pareto-dominatingmarket f 0. This is achieved by under-
standing what makes inefficient mechanisms optimal and is the key to
theorem 1. The second step shows that slightly perturbing a market with
a unique optimal payment rule does not change the set of optimal mech-
anisms. Combining the two steps leads to theorem 1: segmentmarket f by
assigning probability ε to the Pareto-dominating market f 0 and probabil-
ity 1 2 ε to the remaining market f 00 so that f 5 εf 0 1 ð1 2 εÞf 00. If ε is
small, then f 00 is a small perturbation of f ; thus, as long asmarket f belongs
to the generic set of markets with a unique optimal payment rule, market
f 00 has the same optimal mechanism as f and hence weakly Pareto domi-
nates market f.14 The segmentation also strictly increases the seller’s rev-
enue because the optimal mechanism for f 0 is different from the optimal
mechanism for f. Therefore, the segmentation of market f into f 0 and f 00

is Pareto improving. We now describe the approach in greater detail.
A. Step 1: Constructing a Pareto-Dominating Market
The first step is formalized as follows.
Proposition 2. For any market f, there exists an efficient Pareto-

dominating market with a unique optimal mechanism if and only if f
is inefficient.
In the two-type example from section III.B, the set of inefficient mar-

kets is (0.25, 1), and every inefficient market is Pareto dominated by all
the markets in (0, 0.25], which are efficient. The challenge in proving
proposition 2 is that in some environments with more than two types, a
Pareto-dominating market may necessarily include more than two types.
13 A market has a unique optimal payment rule if pðtÞ 5 p 0ðtÞ for any type t in the market
and any two optimal mechanisms (x, p) and (x0, p0) for the market.

14 Recall that if two markets have the same set of optimal mechanisms, the selection rule
selects an arbitrary but identical optimal mechanism for both.
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We first provide an example that illustrates this and then prove proposi-
tion 2.
1. Pareto-Dominating Market with Necessarily More
than Two Types
Consider the environment with three types (t1, t2, and t3) and two alterna-
tives (a1 and a2), illustrated in figure 2A. Each type is described by the cir-
cle with the type’s label to its left. The horizontal axis shows the valuation
for alternative a1, and the vertical axis shows the valuation for alterna-
tive a2.
Figure 2B depicts amechanism in which the two alternatives are offered

at prices pða1Þ 5 vðt1, a1Þ and pða2Þ 5 vðt3, a2Þ 2 vðt3, a1Þ 1 vðt1, a1Þ. At
these prices, the light gray region contains the set of types that prefer
alternative a1, the dark gray region contains the set of types that prefer al-
ternative a2, and the unshaded region contains the set of types that prefer
alternative 0 (the outside option). In particular, type t1 is indifferent be-
tween alternative a1 and the outside option (and chooses a1), and type
t3 is indifferent between a1 and a2 (and chooses a2). Type t2 strictly prefers
(and chooses) alternative a1. This mechanism gives zero surplus to type t1
and strictly positive surplus to the other types.
There exists a market f with full support for which this mechanism is

optimal. In this market, the fraction of type t1 is large enough that it is op-
timal to assign himhis efficient alternative a1 for a price that is equal to his
valuation; among the remaining consumers, the fraction of type t3 is large
enough that is it optimal to assign him his efficient alternative a2 for the
maximal price thatmaintains IC. Thismarket is inefficient because type t2
is assigned alternative a1.
FIG. 2.—A, Environment with three types and two alternatives. B, Optimal prices p(a1)
and p(a2) for market f. C, Optimal prices for Pareto-dominating market f 0. In each panel,
types in the light gray region prefer alternative a1, types in the dark gray region prefer al-
ternative a2, and types in the unshaded region prefer alternative 0.
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There exists an efficient market f 0 with full support that Pareto domi-
nates f. In this market, the fraction of type t1 is large enough that it is op-
timal to assign himhis efficient alternative a1 for a price that is equal to his
valuation; among the remaining consumers, the fraction of type t2 is large
enough that is it optimal to assign him his efficient alternative a2 for the
maximal price that maintains IC. Type t3 is also assigned alternative a2 for
this price. This mechanism is illustrated in figure 2C. Since the price of
alternative a2 is lower than in the optimal mechanism for market f, mar-
ket f 0 Pareto dominates market f.
There is, however, no two-type market that Pareto dominates f : in any

market without type t1, the surplus of one of the other types is zero (any
optimal mechanism gives surplus zero to some type); in any market with-
out type t2, either the allocation and surpluses of the other types is un-
changed or the surplus of type t3 is strictly lower than in market f.15 Sim-
ilarly, in any market without type t3, either the allocation and surpluses of
the other types is unchanged or the surplus of type t2 is strictly lower than
in market f.
The reason that all three types are needed to form a Pareto-dominating

market is that in order to increase the surplus of type t3 (who is already
assigned his efficient alternative a2 in market f ), type t2 must be present
in sufficient proportion tomake it optimal for the seller to lower the price
of alternative a2 in order to extract more surplus from type t2. But type t2’s
surplus in market f is positive; in order to maintain this surplus in the
Pareto-dominating market, type t1 must be present in sufficient propor-
tion to make it optimal for the seller to assign alternative a1 to type t1,
thereby providing information rents to type t2.
2. Proof of Proposition 2
In an inefficient market f, some type t is assigned an inefficient alterna-
tive. This inefficiency allows the seller to lower the surplus (information
rents) of some other type t 0. (In the example from sec. IV.A.1, t 5 t2 and
t 0 5 t3.) In a new market that includes only type t and t 0 and in which the
proportion of type t is sufficiently high, it is optimal to assign type t his
efficient alternative; this increases the surplus that type t 0 obtains from
being able to mimic type t. But the surplus of type tmay decrease; to pre-
vent this, we identify an information rents path in market f that begins
15 If type t1 is assigned the outside option, then the surplus of type t3 is zero. Otherwise,
type t1 must be assigned alternative a2 with probability zero, since replacing alternative a2

with alternative a1 in his allocation allows the seller to charge type t1 and type t3 higher prices.
And among the allocations that assign alternative a2 with probability zero to type t1, the one
that assigns type t1 alternative a1 with certainty gives type t3 the highest surplus, which is equal
to his surplus in f. This is achieved by assigning type t3 alternative a2.
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with type t and ends with some type t00 that has surplus zero, and we add
to the new market all the types in the path and type t0 in the appropriate
proportions. (In the example, t 00 5 t1.) This generates a market that Pa-
reto dominates market f. We now describe this procedure in more detail.
Take an inefficient market f that (without loss of generality) has full

support, and let t be some type that is assigned an inefficient alternative
in the optimal mechanismM for market f. We inductively construct a set
of types S that contains t such that for every type t 0 in S, there is a directed
path of types in S from type t to type t 0 such that the IC constraint, given
mechanism M, from each type tj to the next type tj11 in the path binds
(i.e., type tj is indifferent between reporting truthfully and misreporting
that he is type tj11). The construction of S stops when a type that has zero
surplus is added to S. If type t has zero surplus, we are done. Otherwise,
given the set S so far constructed, there is a type t 0 not in S such that
the IC constraint from some type in S to type t 0 binds. Otherwise, the rev-
enue in market f can be increased by increasing the payments of all types
in S by the same small amount. This concludes the construction of S.
Consider the set of types �S ⊂ S in the binding IC path that begins with

type t and ends with the type that has zero surplus. Without loss of gener-
ality, type t is the only type in �S that is assigned an inefficient alternative
(otherwise, denote by t the last type in the path that is assigned an ineffi-
cient alternative and remove from �S all types that preceded t in the path).
Notice that the payments of the types weakly decrease along the path
(otherwise, the revenue in market f can be increased by replacing some
type’s assigned alternative and payment with those of the next type in
the path without violating IC and IR).
Now, modify the optimal mechanismM for market f by assigning type t

his efficient alternative and increasing his payment to leave his surplus
unchanged. The modified mechanismM 1 violates IC; otherwise, mecha-
nism M 1 would generate more revenue than mechanism M in market f.
Therefore, when faced with mechanism M 1, some type t 0 ≠ t strictly pre-
fers to misreport that he is type t. This type t 0 is not in �S , since inM (and
therefore inM 1), every type in �S other than type t is assigned his efficient
alternative and pays less than type t does inM (since payments weakly de-
crease along the path). Modify mechanismM 1 by replacing the assigned
alternative and payment of type t 0 with those of t. This modified mecha-
nism M 2 satisfies IC and IR for the set of types �S [ ft 0g, and type t 0 has
strictly higher surplus than in mechanism M. Finally, if t 0 is not assigned
his efficient alternative in mechanism M 2, modify M 2 by assigning type
t 0 his efficient alternative and increasing his payment to leave his surplus
unchanged.Denote the resultingmechanismbyM*.Notice that inmech-
anism M*, every type in �S is assigned his efficient alternative and pays at
most what t 0 does, so no type different from t 0 benefits frommisreporting
that he is type t 0. Consider the restricted environment with types �S [ ft 0g.
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MechanismM * is efficient and IC-IR in this environment. Moreover, the
surplus of every type in �S [ ft 0g is weakly higher than in mechanism M,
and the surplus of type t 0 is strictly higher.
It remains to show thatM* is the unique optimal mechanism for some

full-support market in the restricted environment. This can be done be-
cause mechanismM* is efficient.16 We provide the intuition here and de-
fer the formal proof to the appendix. Such a market can be constructed
iteratively. Take the path that defined �S and add type t 0 to its beginning
(so type t follows type t 0). Begin with a large enough fraction, smaller than
1, of the last type in the path so that it is strictly optimal for the seller to
assign this type his efficient alternative for a price that is equal to his val-
uation. Add a large enough fraction of the second to last type in the path
so that it is strictly optimal for the seller to assign this type his efficient
alternative for themaximal price thatmaintains IC, and so on. The result-
ing mechanism isM*, which is the unique optimal mechanism for the re-
sulting market.17 This completes the proof of the “if” direction in pro-
position 2. The proof of the “only if” direction is in the appendix.18
3. Revisiting the Example from Section IV.A.1
Consider the optimal mechanism for market f shown in figure 2B. Fig-
ure 3A illustrates the binding IC and IR constraints and the allocation
of each type in the optimal mechanism. Types t1 and t2 are assigned alter-
native a1, and type t3 is assigned alternative a2. The arrows indicate the
binding constraints: type t1’s IR constraint binds, types t1 and t2 are indif-
ferent between reporting truthfully andmimicking each other (since they
both obtain alternative a1), and type t3 is indifferent between reporting
truthfully and mimicking types t1 and t2.
To construct the set S, we begin with type t 5 t 2, whose allocation is in-

efficient. Figure 3A shows that this type’s IR constraint does not bind, so
his surplus is positive. We therefore add to S 5 ft 2g a type t 0 not in S such
that the IC constraint from type t2 to type t

0 binds. Thismust be type t 0 5 t1,
as the binding IC constraints in figure 3A illustrate. This concludes the
construction of S 5 ft1, t2g since the IR constraint of type t1 binds. The
16 This is why we modified mechanism M 2 to obtain mechanism M*.
17 This construction is where we use the assumption that each type has a unique efficient

alternative. If types have multiple efficient alternatives, it is still true that there exists a mar-
ket for which it is optimal to assign each type an efficient alternative. However, that alter-
native may be different from the efficient alternative prescribed by mechanismM*. If there
are multiple efficient alternatives, a more complicated construction may be required to
address the issue of which efficient alternative is selected.

18 That proof shows the stronger result that for an efficient market, there is no Pareto-
dominating market, and not just no efficient Pareto-dominating market with a unique op-
timal mechanism.
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binding IC path in S that begins with type t2 and ends with type t1, whose
surplus is zero, is depicted in figure 3B. Assigning type t 5 t2 his efficient
alternative and increasing his payment to leave his surplus unchanged vi-
olates the IC constraint from type t3 to type t2, which binds in figure 3A.
The appended path with type t 0 5 t3 at its beginning and the modifica-
tions to the optimal mechanism for the original market are illustrated
in figure 3C. The allocation in the resulting mechanism is the one in fig-
ure 2C. The payments in the resulting mechanism can be obtained from
the allocation and the binding IR and IC constraints.
B. Step 2: Perturbing the Market
We now show that for a market with a unique optimal payment rule, per-
turbing the market leaves the set of optimal mechanisms unchanged. We
then show that the set of markets with a unique optimal payment rule is
generic in the set of inefficient markets.
We first describe these results informally and illustrate them in the con-

text of the example from section III.B.19 Consider the set P of all payment
rules p : T →R1 that are part of IC-IR mechanisms. We show that P is a
polytope. The set P in the example from section III.B is the polytope de-
picted in figure 4A, which has three vertices other than the origin. One
vertex is payment rule p1 5 ðp1ðtLÞ, p1ðtH ÞÞ 5 ð1, 1Þ, which is part of a
mechanism that assigns alternative aH to both types at price 1. Another
vertex is payment rule p2 5 ðp2ðtLÞ, p2ðtH ÞÞ 5 ð0:75, 1:75Þ, which is part
of a mechanism that assigns alternative aL to type tL at price 0.75 and al-
ternative aH to type tH at price 1.75. The third vertex is payment rule
p3 5 ðp2ðtLÞ, p2ðtH ÞÞ 5 ð0, 2Þ, which is part of a mechanism that assigns
the outside option to type tL at price 0 and alternative aH to type tH at price 2.
A mechanism is optimal for a market if and only if its payment rule is

maximal in P in the direction specified by the market. If the market is
FIG. 3.—Execution of procedure that constructs a Pareto-dominating market. A, Bind-
ing IC and IR constraints formarket f. B, Path of binding IC constraints that starts with type t2,
whose allocation is inefficient, and ends with type t1, whose IR constraint binds. C, Ap-
pended path with type t3, which strictly benefits in Pareto-dominating market.
19 Recall that in that example, there are two types, tL and tH, and two alternatives, aL and
aH, with vðtL , aLÞ 5 0:75, vðtL , aH Þ 5 vðtH , aLÞ 5 1, and vðtH , aH Þ 5 2.
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not orthogonal to a face of P, then the market has a unique optimal pay-
ment rule, which is a vertex of P. This is the case for market f 1 5
ð f 1ðtLÞ, f 1ðtH ÞÞ 5 ð0:9, 0:1Þ and payment rule p1 in figure 4A. The same
payment rule remains uniquely optimal for small enough perturbations
of such a market. In contrast, if the market is orthogonal to a face of P,
then the market has multiple optimal payment rules and a small pertur-
bation of the market may change the optimal payment rule and there-
fore the optimal mechanism. This is the case for markets f 2 5
ð f 2ðtLÞ, f 2ðtH ÞÞ 5 ð0:75, 0:25Þ and f 3 5 ð f 3ðtLÞ, f 3ðtH ÞÞ 5 ð0:25, 0:75Þ in
figure 4A. For market f 2, the optimal payment rules are p1, p2, and their
convex combinations (corresponding to the face of P that connects p1

and p2). For market f 3, the optimal payment rules are p2, p3, and their
convex combinations.
To see why the effects of small perturbations depend on whether the

market is orthogonal to a face of P and why suchmarkets are nongeneric,
consider the set of all markets and their optimal payment rules among
the vertices of P. Figure 4B depicts this set and the optimal payment rules
for the example. Any market lies on the hyperplane f ðtLÞ 1 f ðtH Þ 5 1,
which is the solid line in figure 4B. A market with multiple optimal pay-
ment rules additionally lies on a hyperplane of vectors that have the same
inner product with all these payment rules.
Market f 1 has a unique optimal payment rule, p1, which is also uniquely

optimal for nearby markets. Market f 2 has two optimal payment rules
that are vertices of P, p1 and p2. This market lies on the hyperplane
f ðtLÞ 2 3f ðtH Þ 5 0, which is the dashed line that goes through f 2 in
FIG. 4.—A, Shaded polytope is set P of all payment rules in example from section III.B.
Market f 1 is not orthogonal to a face of P. Markets f 2 and f 3 are orthogonal to a face of P.
B, Solid line is set of all markets in this environment. A perturbation of f 1 does not change
the optimal mechanism, but a perturbation of f 2 and f 3 may do so.
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figure 4B.20 For markets on one side of this hyperplane, payment rule p1

has a higher revenue than payment rule p2, so a small perturbation of
f 2 in that direction makes p1 uniquely optimal. A small perturbation of
f 2 in the other direction makes p2 uniquely optimal. Market f 3 has two op-
timal payment rules that are vertices of P, p2 and p3. This market lies on the
hyperplane 3f ðtLÞ 2 f ðtH Þ 5 0, which is the dashed line that goes through
f 3 in figure 4B. Both markets f 2 and f 3 are not Pareto improvable, but f 2 is
the only inefficient market that is not Pareto improvable.
Before presenting the formal perturbation and genericity arguments,

we point out that the argument is not completely self-evident; we allow for
random alternatives, of which there is a continuum, and appendix A4
shows that in some environments with a continuum of alternatives, the
perturbation argument fails. The finite number of types and (nonran-
dom) alternatives leads to the set of payment rules being a polytope,
which facilitates the perturbation argument.
C. Formalizing the Perturbation Argument
To formalize the argument, we observe that the set of IC-IR mechanisms
is a polytope in R

ðk12Þn
1 , where k is the number of alternatives and n is the

number of types. Indeed, amechanism is a point inR
ðk12Þn
1 (for each of the

n types, it specifies the nonnegative payment and the probability of being
assigned each one of the k alternatives and the outside option), each of
the finite number of IC and IR constraints corresponds to a half space,
and the (linear) probability constraints together with the IR constraints
guarantee that the set is bounded. The set P of payment rules that are part
of IC-IRmechanisms is a projection of the set of IC-IRmechanisms and is
therefore a polytope inRn

1. Consequently, set P has a finite set of vertices.
Lemma 1. There exists a finite set PV ⊆Rn

1 such that P is the convex
hull of PV.
We say that markets f and f 0 are ε-close if j f ðtÞ 2 f 0ðtÞj ≤ ε for all types t.

We say that perturbing market f leaves the set of optimal mechanisms
unchanged if for some ε > 0, the set of optimal mechanisms for f is equal
to the set of optimal mechanisms for any market f 0 that is ε-close to f. The
consistency requirement from the selection of optimal mechanisms
guarantees that the optimal mechanism selected for f is the same as
the one selected for f 0.
Lemma 2. If a market has a unique optimal payment rule, then per-

turbing the market leaves the set of optimal mechanisms unchanged.
20 For a market (f(tL), f(tH)), the revenues from payment rules p1 5 ð1, 1Þ and p2 5
ð0:75, 1:75Þ are f ðtLÞ 1 f ðtH Þ and 0:75 � f ðtLÞ 1 1:75 � f ðtH Þ, which are equal if and only
if f ðtLÞ 2 3f ðtH Þ 5 0.
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Proof. Consider a market f with a unique optimal payment rule p.
Since the set PV is finite (lemma 1) and p is the unique optimal payment
rule, there exists d > 0 such that Et∼f ½pðtÞ� > Et∼f ½p 0ðtÞ� 1 d for all p 0 ∈
PV nfpg. By continuity of the expected revenue in f, there exists ε > 0
such that Et∼f 0 ½pðtÞ� > Et∼f 0 ½p 0ðtÞ� for all p 0 ∈ PV nfpg and all f 0 that are
ε-close to f. Since all payment rules are convex combinations of the pay-
ment rules in PV, we have Et∼f 0 ½pðtÞ� > Et∼f 0 ½p 0ðtÞ� for all payment rules p 0 ∈
Pnfpg. That is, the payment rule p is also the unique optimal payment
rule for all f 0 that are ε-close to f. Therefore f and any such f 0 have the
same set of optimal mechanisms, since any twomechanisms with the same
payment rule generate the same revenue. QED
We complete step 2 by showing that the set of markets that have a

unique optimal payment rule—and can therefore be perturbed without
changing the set of optimal mechanisms—is generic in the set of ineffi-
cient markets.
Lemma 3. The set of markets with a unique optimal payment rule is

generic in the set of inefficient markets.
Proof. By definition 1, if all markets are efficient, we are done. Sup-

pose that not all markets are efficient.21 We will show that the set of in-
efficient markets contains a ball of dimension n 2 1 and the set of mar-
kets with multiple optimal payment rules is contained in a finite union of
hyperplanes of dimension n 2 2 (so the same is true for the set of inef-
ficient markets with multiple optimal payment rules).
Since not all markets are efficient, the first-best mechanism—which as-

signs to each typehis efficient alternative at a price equal to his valuation—
is not IC.Denote by t and t 0 two types such that in the first-bestmechanism,
the IC constraint from t 0 to t is violated (so type t 0 prefers tomisreport that
he is type t). We will construct a market with full support that has a unique
optimal payment rule p and for which any optimal mechanism is ineffi-
cient because the allocation of type t is inefficient. We construct the pay-
ment rule p and the market together inductively as follows. First, set the
payment p(t 0) of type t 0 equal to his valuation for his efficient alternative
and put a large enough fraction of type t 0 in the market that any optimal
payment rule in P specifies for type t 0 payment p(t 0).22 Now take a type t 00

that has not yet been added to the market and consider the maximal pay-
mentof type t 00 across all payment rules inP that coincidewith thepayment
rule p so far constructed. Set p(t 00) equal to this maximal payment and add
to the market a large enough fraction of type t 00 that any optimal payment
21 In particular, n > 1.
22 Recall that the polytope P is the set of all payment rules that are part of some IC-IR

mechanism. Since P has a finite number of vertices, there is a finite number of vertices
in which the payment of type t 0 is less than p(t 0). Thus, in all those vertices, the payment
of type t 0 is bounded away from p(t 0), so none of these vertices can be an optimal payment
rule for any market with a large enough fraction of type t 0.
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rule in P specifies for type t 00 payment p(t 00). Repeat this process until the
market includes all n types.
By construction, p is the unique optimal payment rule for the resulting

market. And any optimal mechanism with this payment rule is inefficient
because the payment of type t 0 is equal to his valuation for his efficient al-
ternative, so the allocation of type t must be inefficient (because in the
first-best mechanism, the IC constraint from t 0 to t is violated). Therefore,
by lemma 2, perturbing the market leaves the set of optimal mechanisms
unchanged, so these optimal mechanisms are all inefficient. This shows
that the set of inefficient markets contains a ball of dimension n 2 1.
We now turn to the set of markets with multiple optimal payment

rules. Consider a market f for which more than one payment rule max-
imizes revenue. Since P is the convex hull of PV, there exist two payment
rules p ≠ p 0 in PV that are both optimal for f. Thus, f is contained in the
hyperplane of dimension n 2 2 defined by the equations ot f ðtÞðpðtÞ2
p 0ðtÞÞ 5 0 and ot f ðtÞ 5 1. Since PV is finite, the set of markets with mul-
tiple optimal payment rules is contained in a finite union of such
hyperplanes, one for each pair of payment rules in PV. QED
V. Special Cases and Applications
The key to our construction of Pareto-improving segmentations is iden-
tifying Pareto-dominating markets. These Pareto-dominating markets
can vary widely across environments andmarkets: theymay necessarily in-
clude a large number of types or they may include only two types, and
these types can vary across dominated markets with the same set of types.
Many settings, however, satisfy properties that may allow us to say more
about the Pareto-dominating markets. We briefly describe two examples
of such properties and their implications and relegate the details to ap-
pendix A3.
The first property of a market is the presence of a lowest type, whose

valuation for any alternative (other than the outside option) is strictly
lower than the valuation of any other type in the market for that alterna-
tive. We show that any inefficient market with a lowest type has a Pareto-
dominatingmarket that includes the lowest type. In the example from sec-
tion IV.A.1, type t1 is the lowest type. The secondproperty of amarket is that
a best alternative exists, which is the efficient alternative for all the types in
themarket.We show that any inefficientmarket with a best alternative has a
Pareto-dominating market that includes only two types. In the example
from section IV.A.1, not all types have the same efficient alternative, and
there is no Pareto-dominating market that includes only two types.
In specific environments, even more can be said about the structure of

Pareto-dominating markets. We illustrate this in the context of two ap-
plications. The first application is a version of Mussa and Rosen (1978)
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with linear valuations and ranked types. We show that in this setting, for
every inefficient market there exists a Pareto-dominating market that
consists of a type and all lower types in the market. In addition, Pareto-
dominating markets may necessarily include more than two types. The
second application, whose details are in appendix A3, is a bundling set-
ting with multiple products, additive valuations, and zero production
costs. The grand bundle of all products is the best alternative in every
market, so for every inefficient market there exist Pareto-dominating seg-
ments with only two types. But we show that these types may differ across
inefficient markets with the same set of types.
We now describe the application with linear valuations in greater de-

tail. There are k alternatives 0 < a1 ⋯ < ak (in addition to the outside op-
tion) and n types 0 < t1 ⋯ < tn. The valuation of type t for alternative a is
vðt, aÞ 5 ta. The cost of producing an alternative a is cðaÞ ≥ 0, where
cð0Þ 5 0 and c is increasing and convex.23 Recall our assumption that
each type t has a unique efficient alternative �aðtÞ; that is, �aðtÞ is the
unique alternative that maximizes ta 2 cðaÞ.
We apply the procedure for constructing a Pareto-dominating segment

as described in section IV.A. Given an inefficient market f with full sup-
port (for notational simplicity), we start by choosing some type tj that is
assigned an inefficient alternative in the optimal mechanism for f. We
then identify a binding IC path of types in which each type is indifferent
between his own allocation and payment and those of the next type in the
path, and the last type in the path has zero surplus. To identify such a
path, we observe, by standard analysis of optimal mechanisms, that in
the optimal mechanism for f, the IC constraint from type ti to the next
lowest type ti21 binds for every i. In addition, the IR constraint of at least
one type binds. Thus, there is a binding IC path (tj, tj21, ::: , t j 0) that begins
with type tj and ends with type t j 0 whose IR constraint binds.
As in section IV.A, we assume without loss of generality that tj is the only

type in this path that is assigned an inefficient alternative in the optimal
mechanism for f. The path contains only type tj if his IR constraint binds
in the optimalmechanism for f and otherwise contains additional types.24

Now consider the restricted environment that contains type tj11 and
the types in the binding IC path.25 The procedure constructs an efficient
23 Even though costs can be normalized to zero, as discussed in sec. III, it is convenient
in this application to write them explicitly.

24 For an example of a path with necessarily more than one type, consider an envi-
ronment with three types, t1 5 1, t2 5 2, and t3 5 3; two alternatives, a1 5 1 and a2 5 2;
and costs cða1Þ 5 0:25 and cða2Þ 5 1:75. The efficient alternatives are ð�aðt1Þ, �aðt2Þ,
�aðt3ÞÞ 5 ða1, a2, a2Þ. For market f 5 ð f ðt1Þ, f ðt2Þ, f ðt3ÞÞ 5 ð2=3, 1=6, 1=6Þ, the allocation in
the optimal mechanism is a 5 ðað1Þ, að2Þ, að3ÞÞ 5 ða1, a1, a2Þ. The only type assigned an
inefficient alternative is type t2, but the only type whose IR binds is type t1, so the binding
IC path consists of type t2 followed by type t1.

25 Type tj11 exists, i.e., j < n, because in any market in a linear environment, the optimal
allocation of the highest type is efficient (no distortion at the top).
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market that includes all the types in the restricted environment. For any
market f 0 in this environment, consider the virtual value (Myerson 1981;
see Vohra 2011 for the formulation used here with a finite number of
types) of each type ti: fi 5 ti 2 ðti11 2 tiÞðoi0>i f 0ðti0 Þ=f 0ðtiÞÞ, where the sum-
mation is over types in the restricted environment. If oi0>i f 0ðt i0 Þ is small
enough relative to f 0ðtiÞ for each i, then the virtual value of each type ti
approaches ti.26 Consequently, for such a market f 0, any optimal mecha-
nism assigns to each type his efficient alternative. By standard arguments,
the surplus of each type is pinned down by the allocation of all lower types
(and the surplus of the lowest type) and strictly increases in the allocation
of each of those lower types. Thus, all types in the restricted environment
other than type tj11 obtain the same surplus in f and in f 0, and the surplus
of type tj11 is strictly higher in f 0. This shows that market f 0 Pareto domi-
nates market f.
We now discuss the second step in the proof of theorem 1. Because

market f 0 Pareto dominatesmarket f, market f is Pareto improvable if per-
turbing it does not change the optimal mechanism. This is the case if for
each type ti, there is a unique alternative that maximizes the virtual sur-
plus fia 2 cðaÞ over all a, because then that same alternative continues
to be optimal if the virtual value fi is perturbed slightly. We now show that
uniqueness of the virtual surplus maximizers is a generic property. Fix a
type ti. As we vary the market, the virtual value fi can take any value not
greater than ti. But there is only a finite number of values for which mul-
tiple alternatives maximize the virtual surplus: by convexity of the cost
function, this happens if and only if fiaj 2 cðajÞ 5 fiaj11 2 cðaj11Þ for
some j.
In this application with linear valuations, the procedure results in a

Pareto-dominating market f 0 that has a special structure: it consists of
some interval of types from t 0j to tj11. If the allocation of multiple types
in the optimal mechanism for market f is inefficient, then the Pareto-
dominating market we obtain may depend on which of those types we
start with.27 Despite this multiplicity, for any inefficient market there
exists a binding IC path that ends in t1, so the corresponding Pareto-
dominating market contains a prefix of all types t1, ... , tj, tj11. To see this,
start the process from type tjwho is the lowest type whose allocation in the
optimal mechanism for the market is inefficient. Then the only type
26 In particular, virtual values strictly increase in type, so no ironing is needed.
27 For example, suppose that there are three types, t1, t2, and t3, and consider a market

such that in the optimal mechanism, type t1 is assigned the outside option, type t2 is as-
signed an inefficient alternative different from the outside option, and type t3 is assigned
his efficient alternative. Then the IR constraints of types t1 and t2 bind, and the same two
types have inefficient allocations. If the procedure starts by choosing type t1, then the bind-
ing IC path consists of only type t1, and the Pareto-dominating market contains types t1 and
t2. If the procedure starts by choosing type t2, then the binding IC path consists of only type t2,
and the Pareto-dominating market contains types t2 and t3.
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weakly lower than tj whose IR constraint may bind in the efficient mech-
anism for the market is type t1, because an efficient allocation for type t1
necessarily means that the surplus of all other types is strictly positive, so
their IR cannot bind. As a result, the binding IC path must end in t1.
VI. Discussion
This paper studies the existence of Pareto-improving segmentations,
which weakly increase the surplus of all consumers and strictly increase
the surplus of some consumers and the seller relative to the unsegmented
market. We show that, generically, inefficient markets can be segmented
in a way that is Pareto improving. This finding may contribute to discus-
sions about regulating sellers’ use of information and ability to price dis-
criminate and consumers’ privacy and control of their data. The result
implies that, generically, consumers in inefficientmarkets can provide in-
formation to the seller (or allow this information to be collected by the
seller) in a way that benefits all consumers and the seller.
To obtain this result, we developed a novel methodology that avoids

the difficult problem of characterizing optimal menus with multiple
products. The methodology relies on implications of binding incentive
compatibility constraints when the seller optimally serves some types in-
efficiently. This methodology could potentially be useful in addressing
other mechanism design questions in multiproduct settings that so far
have proven intractable.
Our notion of Pareto improvements does not speak to the magnitude

of the improvements. A natural question is how this magnitude changes
with the number of alternatives and whether the improvements become
small as the number of alternatives increases. Adding alternatives that are
worse than the outside option clearly has no effect, but even adding alter-
natives that are valuable may have little or no impact. Consider, for exam-
ple, adding an alternative that is equivalent to a convex combination of
two existing alternatives.28 The addition of this alternative has no welfare
implications because it does not change the set of random alternatives.
Thus, we can add an infinite number of such alternatives without chang-
ing the magnitude of any Pareto improvements.
But in many cases, adding valuable alternatives affects the scope and

magnitude of the possible Pareto improvements. The improvements may
also become arbitrarily small as the number of alternatives increases. This,
however, may depend on how the improvements are measured, since Pa-
reto improvements can increase the surplus of different consumers by dif-
ferent amounts. One possibility is to consider the average improvement
28 That is, for some a in [0, 1] and alternatives a1 and a2, every type t’s valuation for the
new alternative is avðt, a1Þ 1 ð1 2 aÞvðt, a2Þ.
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over all consumers. In appendix A4, we construct a sequence of environ-
ments with two types and an increasing number of alternatives. We show
that for half the markets, which are inefficient, the increase in the seller’s
revenue and in the average consumer surplus from any Pareto-improving
segmentation approaches zero along the sequence. But even for thesemar-
kets, the largest increase across all consumers does not approach zero. In
the limit with a continuumof alternatives, thesemarkets are not Pareto im-
provable, so the set of Pareto improvablemarkets is not generic in the set of
inefficient markets.
Our main result shows that inefficient markets are generically Pareto

improvable with two-market segmentations. This raises the question of
whether some nongeneric markets are Pareto improvable but not by a
two-market segmentation. Exploring this possibility is beyond the scope
of this paper and likely requires a deeper understanding of how the sur-
plus of different types varies across different markets. We point out, how-
ever, that in the example from section III.B, any Pareto improvable mar-
ket (the inefficient markets other thanmarket 0.75) is Pareto improvable
by a two-market segmentation. We leave for future work a characteriza-
tion of environments in which Pareto improvability is equivalent to Pareto
improvability using two segments.
Finally, an important aspect of our analysis is that we do not impose any

constraints on the set of segmentations we consider. In reality, the type of
information that can be collected and the seller’s ability to price discrim-
inate on the basis of the available information may be restricted because
of technological and other limitations, and these limitations may vary
across settings. Our results establish that in general there is scope for Pa-
reto improvements via segmentation. One direction for future research
is to investigate specific settings by identifying and incorporating the lim-
itations they imply.
Appendix

A1. Completing the Proof of Proposition 2

We complete the proof of proposition 2 in two steps. First, we show that mech-
anism M* is optimal in the restricted environment, completing the proof of
the “if” direction. Second, we prove the “only if” direction.

Lemma 4. Consider an environment with a set of types {t1, ... , tn} and an ef-
ficient mechanism M* such that the IC constraint from each type tj to the next
type tj11 and the IR constraint for type tn bind. There exists a market with full sup-
port over {t1, ... , tn} for which mechanism M* is the unique optimal mechanism.

Proof. Consider any IC-IR mechanism (x, p) and any market f. Using the IC
and IR constraints, we can write the expected revenue of the mechanism. For
each type tj, let F ðtjÞ 5 oi ≤j f ðtiÞ be the cumulative fraction of types t1 to tj.
Now define pðtn11Þ 5 0, xðtn11Þ 5 0 (i.e., xðtn11Þ is a deterministic assignment
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of the outside option), and F ðt0Þ 5 0 and write

o
j

pðtjÞf ðtjÞ 5 o
j

ðpðtjÞ 2 pðtj11ÞÞF ðtjÞ

≤ o
j

vðtj , xðtjÞÞ 2 vðtj , xðtj11ÞÞ
� �

F ðtjÞ

5 o
j

vðtj , xðtjÞÞF ðtjÞ 2 vðtj21, xðtjÞÞF ðtj21Þ
� �

:

(1)

Therefore, for any market f, the revenue of any IC-IR mechanism is at most the
maximum of expression 1 over all allocation rules x.

By definition, the efficient alternative �aðtjÞ of type tj satisfies vðtj , �aðtjÞÞ > vðtj , aÞ
for all alternatives a ≠ �aðtjÞ. Thus, if F ðtj21Þ is small enough relative to F(tj), that
is, F ðtj21Þ ≤ dj F ðtjÞ for some dj > 0, then

vðtj , �aðtjÞÞF ðtjÞ 2 vðtj21, �aðtjÞÞF ðtj21Þ > vðtj , aÞF ðtjÞ 2 vðtj21, aÞF ðtj21Þ
for all a ≠ �aðjÞ. As a result, for such a market, the unique maximizer of
vðtj , xÞF ðtjÞ 2 vðtj21, xÞF ðtj21Þ over all distributions x over alternatives is a distribu-
tion that assigns probability 1 to alternative �aðtjÞ.

Now consider any market f with full support over the set of types {t1, ... , tn} such
that F ðtj21Þ ≤ dj F ðtjÞ for all j. By the above discussion, the allocation rule of the
mechanismM* is the unique maximizer of expression 1 over all allocation rules.
In addition, since the IC constraint from each type tj to the next type tj11 and the
IR constraint for type tn bind, then the revenue of the mechanismM* is equal to
the maximum of expression 1 over all allocation rules. Thus, mechanism M* is
the unique optimal mechanism for market f. QED

Proof of proposition 2, the “only if” direction. Consider an efficient market f with
an efficient optimal mechanism M 5 ðx, pÞ, and suppose that some market f 0

with an optimal mechanism M 0 5 ðx 0, p 0Þ Pareto dominates f. By Pareto domi-
nance, for every type t in f 0, the surplus vðt, x 0ðtÞÞ 2 p 0ðtÞ of type t inM 0 is weakly
higher than the surplus vðt , �aðtÞÞ 2 pðtÞ of type t in M and is strictly higher for
some type. Since vðt, �aðtÞÞ ≥ vðt , x 0ðtÞÞ, we have that pðtÞ ≥ p 0ðtÞ for every type t
in f 0, with a strict inequality for some type, so in market f 0, mechanism M gener-
ates a strictly higher revenue than mechanism M0, a contradiction. QED

A2. Single-Agent Interpretation

Consider an agent whose type is drawn from the set T according to a prior distri-
bution f. Before learning his type, the agent commits to an information disclosure
policy, which maps every type in T to a distribution over signals. The seller ob-
serves the policy and the realized signal and forms a posterior f 0 over the agent’
type. The seller then selects a mechanism to maximize revenue, and the agent re-
sponds by reporting his type optimally.29 For which prior distributions f does
there exist an information disclosure policy that, for each signal, increases the
29 Onemotivating example is an online purchase setting in which the sellermay be better
than the consumer at determining which products are most appropriate for the consumer
on the basis of personal data the consumer discloses (see Ichihashi 2020 for a discussion).
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agent’ ex post utility relative to a policy that discloses no information? This model
and question are equivalent to those described earlier. Following Aumann,
Maschler, and Stearns (1995) and Kamenica and Gentzkow (2011), we can de-
scribe the process as the agent choosing a distribution m over posteriors f 0 that
averages to f, that is, Ef 0∼m½ f 0� 5 f .

The single-agentmodel corresponds to aBayesian persuasion setting (Kamenica
and Gentzkow 2011) in which the agent is the sender and the seller is the receiver.
The state is the sender’s type, the receiver’s set of actions is the set of IC-IR mech-
anisms, and the sender’s state-dependent utility from the receiver’s chosen mech-
anism (action) is the sender’s utility from responding optimally to themechanism.
Existing results and techniques in the Bayesian persuasion literature concern the
sender’s expected utility, whereas our focus is on ex post utility.30 In addition, no
analytical description exists of the sender’s state-dependent utility as a function
of the receiver’s action because there is no characterizationof optimalmechanisms
in our environment.

A3. Appendix for Special Cases and Applications

We formally define a lowest type and a best alternative and show that their exis-
tence implies the existence of Pareto-dominating markets with certain proper-
ties. We then discuss a bundling setting with multiple products, additive valua-
tions, and zero production costs.

A3.1. Lowest Type

Type t in the support of a market is the lowest type in the market if vðt , aÞ <
vðt 0, aÞ for any type t 0 ≠ t in the support of the market and any alternative
a ≠ 0.

Lemma 5. For any inefficient market f with a lowest type t, there exists a
Pareto-dominating market that includes t. If t is not assigned the outside option
in the optimal mechanism for f, then any Pareto-dominating market includes t.

Proof. If t is not assigned the outside option in the optimal mechanism for f,
then because every other type can mimic t, the surplus of every type other than t
is strictly positive. Thus, every market that Pareto dominates f contains t, because
in any optimal mechanism some type has surplus zero. If t is assigned the outside
option in the optimal mechanism for f, then the allocation of type t is inefficient
and his surplus is zero. The proof of proposition 2 then shows that there exists a
Pareto-dominating market that includes only type t and one other type. QED

A3.2. Best Alternative

Alternative a is the best alternative in a market if it is the efficient alternative for
all types in the market.
30 This ex post criterion may be relevant, e.g., when we would like to find improvements
that work for all possible social welfare functions, which assign possibly different weights to
different types.
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Lemma 6. For any inefficient market f with a best alternative a, there exists a
Pareto-dominating market that includes only two types.

Proof. The result follows from the following observation: if an inefficient mar-
ket has a best alternative, then in the optimal mechanism the IR constraint of
some type t with an inefficient allocation binds. This observation implies the re-
sult because the proof of proposition 2 shows that somemarket that Pareto dom-
inates the original market includes only type t and some type t 0 that is indifferent
between mimicking type t and reporting truthfully.

To show the observation and complete the proof, choose an inefficient market
with a best alternative, and suppose for contradiction that in the optimal mech-
anism the surplus of any type not assigned the best alternative is strictly positive.
Consider such a type and the binding IC path that starts with this type and ends
with a type whose IR constraint binds (as in the proof of proposition 2). By as-
sumption, this latter type is assigned the best alternative. Thus, along the path
there are consecutive types t and t 0 such that type t is not assigned the best alter-
native and type t 0 is assigned the best alternative. We argue that this contradicts
the optimality of the mechanism for the market. Indeed, because type t is not
assigned the best alternative, his valuation for his allocation is strictly lower than
his valuation for the allocation of type t 0, which is the best alternative. The bind-
ing IC constraint from type t to t 0 then implies that the payment of type t is strictly
lower than that of type t 0, that is, pðtÞ < pðt 0Þ. But then we can increase the mech-
anism’s revenue by assigning type t the best alternative and charging him p(t 0).
Because no type’s surplus is changed and the allocation and the payment of
type t in this new mechanism is the same as the allocation and payment of type t0

in the original mechanism, the new mechanism is IR and IC. QED

A3.3. Product Bundling

We now discuss an application with m products that may be bundled together.
There are 2m alternatives, which we call bundles, each corresponding to a subset
of the set of products {1, ... , m}. We refer to the alternative {1, ... , m} as the grand
bundle.’ Valuations are additive; that is, the valuation v(t, b) of type t for a bundle b
is the sum og∈bvðt , fggÞ of his valuations for the individual products in that bun-
dle. The cost of producing a bundle is the sum of the costs of producing the prod-
ucts in that bundle, and we assume that all these costs are zero (this may be the
case for digital goods). We assume that there are at least two types and all types’
valuations for each of the products are strictly positive. Therefore, the efficient
alternative for each type is the grand bundle.

Regardless of the number of types, lemma 6 shows that any inefficient market
has a Pareto-dominating market that contains only two types because the grand
bundle is the best alternative.’ But unlike the application with linear valuations,
the binding IC paths do not have a prefix or interval structure. That is, different
inefficientmarkets with the same support may have dominatingmarkets in which
the types with inefficient allocations whose IR constraint bind differ. We show this
in an environment with three types and two products, which is illustrated in figure
A1A. Each of the three types t1, t2, and t3 is described by the circle with the type’s
label to its left. The horizontal axis shows the valuation for product 1, and the ver-
tical axis shows the valuation for product 2.
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Figure A1B depicts amechanism in which product 1 is offered at price v(t2, {1}),
and the grand bundle is offered at price vðt3, f2gÞ 1 vðt2, f1gÞ. At these prices,
the light gray region contains the set of types that prefer product 1, the dark gray
region contains the set of types that prefer the grand bundle, and the unshaded
region contains the set of types that prefer the outside option. In particular, type t2
is indifferent between product 1 and the outside option (and chooses product 1),
and type t3 is indifferent between product 1 and the grand bundle (and chooses
the grand bundle). Type t1 strictly prefers (and chooses) product 1. Consider a
market for which this mechanism is optimal.31 This market is inefficient because
type t2 is not assigned the grand bundle. To find a Pareto-dominating market, no-
tice that because type t2 is the only type whose IR constraint binds, any binding IC
path necessarily ends in t2. For example, a Pareto-dominatingmarket may consist
of types t2 and t3, where the fraction of type t2 is large enough that it is optimal to
assign both types the grand bundle for a price equal to the valuation of t2. This
mechanism is depicted in figure A1C. In this mechanism, the surplus of type t3
is ðvðt3, f1gÞ 1 vðt3, f2gÞÞ 2 ðvðt2, f1gÞ 1 vðt2, f2gÞÞ, which is strictly higher than
his surplus of vðt3, f1gÞ 2 vðt2, f1gÞ in the original market, because vðt3, f2gÞ >
vðt2, f2gÞ.

Now consider a market with all three types in which the fraction of type t2 is
large enough that the mechanism depicted in figure A1C is optimal. The IR con-
straints of both types t1 and t2 bind, and t1 is the only type whose allocation is in-
efficient. Thus, unlike in the market discussed above, where any binding IC path
ends in t2, any binding IC path in this market necessarily ends in t1. For this mar-
ket, there are Pareto-dominating markets with two types, type t1 and either type t2
or type t3, where the fraction of type t1 is large enough that it is optimal to assign
both types in the market the grand bundle for a price equal to the valuation of
type t1. This strictly increases the surplus of the other type in the market.

A4. Increasing the Number of Alternatives

We construct a sequence of environments with two types and linear valuations, as
in section V. Along the sequence, the number of alternatives increases and for
half the markets the gains from Pareto-improving segmentations become arbi-
trarily small.

The sequence of environments is E1, E2, ::: , and the set of alternatives in envi-
ronment Ek is f0, 1=k, 2=k, ::: , k=kg. The cost of producing alternative a is
cðaÞ 5 a2=2. The two types, t1 and t2, have valuations a and 2a for alternative a,
respectively. A market is identified by the proportion q of type t2. In any market,
the surplus of type t1 in the optimal mechanism is zero. The surplus CSk(t2, q) of
type t2 in the optimalmechanism is depicted in figure A2A. The unit interval of all
markets is partitioned into k 1 1 intervals [0, t0], ðt0, t1�, ::: , ðtk21, tk 5 1� such
that the surplus of type t2 is constant within each interval, is lower on higher in-
tervals, and is zero in the last interval. The surplus CS(t2, q) of type t2 in the lim-
iting case with a continuum of alternatives [0, 1] is depicted in figure A2B. The
31 This mechanism is optimal, e.g., when the values are ðvðt1, f1gÞ, vðt1, f2gÞÞ 5 ð2:5, 1Þ,
ðvðt2, f1gÞ, vðt2, f2gÞÞ 5 ð2, 2Þ, and ðvðt3, f1gÞ, vðt3, f2gÞÞ 5 ð3, 4Þ and the market is f ðt1Þ 5
ε, f ðt2Þ 5 ð1 2 εÞð2=5Þ, and f ðt3Þ 5 ð1 2 εÞð3=5Þ for some small ε > 0.
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surplus is strictly decreasing on the interval [0, 0.5] and is identically zero on the
interval [0.5, 1].32

We start by considering the largest gain in average consumer surplus across all
markets q < 0:5, where for eachmarket we consider the Pareto-improving segmen-
tation with the largest gain. We show that the largest gain across these markets ap-
proaches zero as the number k of alternatives increases. To see this, consider an
environment Ek and a market q in some interval ðtk 021, tk0 � with k 0 < k. Any Pareto-
improving segmentation of qmay involve segments only in [0, tk0], since the surplus
of type t2 in any other segment is lower than his surplus in q. Since the expectation
of the segments in any segmentation is q, to find the largest average gain across
Pareto-improving segmentations of q, we concavify the average consumer surplus
function q � CSkðt2, qÞ over the interval [0, tk0]. The average consumer surplus is de-
picted by solid lines in figure A2C, and the average consumer surplus q � CSðt2, qÞ
in the limiting case with a continuum of alternatives [0, 1] is depicted by a solid
curve in figure A2D. It is easy to see that this surplus q � CSkðt2, qÞ is concave over
the domain {0, t1, ..., tk0 }, so the concavification linearly connects the average sur-
plus function at consecutivemarkets in {0, t1, ... , tk0 }. This is depicted by the dashed
lines in figure A2C. In particular, the largest gain for market q is achieved by seg-
menting it into markets tk021 and tk0 , which is Pareto improving for q ≠ tk 0 . As the
number of alternatives goes to infinity, both the average consumer surplus func-
tion and its concavification converge uniformly (acrossmarkets) to the limit shown
in figure A2D, so the largest average gain for all markets converges to zero.

However, not every consumer’s gain converges to zero. To see this, consider an
environment Ek and, for k 0 ≥ 2, a market q in (tk021, tk 0). This market can be seg-
mented in a Pareto improving way into markets t1 2 εk for small εk > 0 and tk 0

(we segment into t1 2 εk and not t1 because our notion of Pareto improvement
requires that the seller’s revenue also increases). For large k, the surplus of the
type t2 consumers in segment t1 2 εk increases from approximately CS(t2, q) to ap-
proximately CS(t2, 0), where CS is the surplus function in the limit with the con-
tinuumof alternatives [0, 1]. Therefore, for eachmarket in[k 0≥2ðtk021, tk 0 Þ, which is
generic in [0, 0.5], there is a positivemeasure set of consumers for whom the gain
from some Pareto-improving segmentation is bounded away from zero. There-
fore, for some g > 0 and all large enough k > 0, each market q in a generic set
ofmarkets in [0, 0.5] has the property that a positivemeasure of type t2 consumers
gain at leastg from some Pareto improvement.Of course, thismeasure approaches
zero as k grows large, since the weight of any market substantially lower than q in
any Pareto-improving segmentation of q approaches zero. (This also shows that
the seller’s revenue increase fromanyPareto-improving segmentation approaches
zero.) In the limit with a continuum of alternatives [0, 1], inefficient markets in
(0,0.5) are not Pareto improvable. Because this set is generic in the set of all inef-
ficient markets, theorem 1 fails in the limit. The reason for this is that the pertur-
bation argument in section IV.B no longer applies with infinitely many alterna-
tives: perturbing a market in (0,0.5) necessarily changes the optimal mechanism.
32 If q ≤ 0:5, then type t1 is assigned alternative ð1 2 2qÞ=ð1 2 qÞ at a price of ð1 2 2qÞ=
ð1 2 qÞ, type t2 is assigned his efficient alternative, and the surplus of type t2 is ð1 2 2qÞ=
ð1 2 qÞ. If q > 0:5, then type t1 is assigned the outside option and type t2 is assigned his
efficient alternative at a price equal to his valuation.



FIG. A1.—A, Environment with three types and two products. B, Mechanism in which
product 1 is offered at price v(t2, {1}) and grand bundle is offered at price vðt2, f1gÞ 1
vðt3, f2gÞ. C, Mechanism in which grand bundle is offered at price vðt2, f1gÞ 1 vðt2, f2gÞ.
In each panel, types in the light gray region prefer product 1, types in the dark gray region
prefer the grand bundle, and types in the unshaded region prefer alternative 0.
FIG. A2.—Surplus of type t2 as a function of fraction q 5 f ðt2Þ of consumers of type t2 is
shown for an environment Ek (A) and for the limiting environment with a continuum of
alternatives [0, 1] (B). The average consumer surplus is shown for an environment Ek

(C) and for the limiting environment (D).
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