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Abstract

We study whether an auctioneer who has only partial knowledge of the distribution of buyers’ valuations 
can extract the full surplus. There is a finite number of possible distributions, and the auctioneer has access 
to a finite number of samples (independent draws) from the true distribution. Full surplus extraction is 
possible if the number of samples is at least the difference between the number of distributions and the 
dimension of the linear space they span, plus one. This bound is tight. The mechanism that extracts the full 
surplus uses the samples to construct contingent payments, and not for statistical inference.
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1. Introduction

Cremer and McLean (1988) design an auction that generically extracts the full surplus for 
selling an indivisible product to one of many potential buyers. The auction given by Crémer 
and McLean requires full knowledge of the distribution of buyers’ valuations, but in reality the 
auctioneer rarely has access to such detailed information. This paper studies the possibility of 
full surplus extraction when the auctioneer has only partial knowledge of the distribution.

In our model, the true distribution of buyers’ valuations is unknown to the auctioneer and all 
buyers. The true distribution belongs to a finite commonly-known set of possible distributions. 
The auctioneer has access to a finite number of independent draws, or sample, from the true 
distribution. Before observing the samples, the auctioneer commits to a mechanism that specifies 
the allocation and payments based on the bids and the realized samples. After the buyers bid, 
samples are revealed and the allocation and the payments are specified.

Does there exist a mechanism that extracts the full surplus for each possible distribution? The 
auctioneer cannot simply ask the buyers to report the true distribution and punish them if they 
disagree, since the buyers do not know the true distribution either. Thus full surplus extraction 
is impossible without samples, since the auctions that extract the full surplus for different distri-
butions may be different. Even with samples, it may seem impossible to extract the full surplus 
since, if samples are used for inference, the auctioneer needs infinitely many samples to infer the 
true distribution with certainty.

We show that it is in fact possible to extract the full surplus. We identify the number of samples 
that are necessary and sufficient for doing so. The number of samples is equal to the number of 
distributions in the set, minus the dimension of the linear space spanned by them, plus one.3 This 
number is at least one and at most the number of distributions minus one. If the distributions are 
linearly independent, the number of samples is one. In particular, for any two distributions, one 
sample suffices.

The mechanism that extracts the full surplus uses the samples to construct contingent pay-
ments, and not for statistical inference. The mechanism is a second price auction plus side 
payments. The side payment of each buyer depends on others’ bids and the realized samples. 
The second price auction maximizes the total surplus. The surplus is fully extracted if each buy-
er’s interim expected utility is zero for each value of the buyer and each distribution, that is, the 
expected side payment equals the expected utility from the second price auction.

The problem is thus to verify whether a solution to a system of linear equalities exists, where 
the variables are the side payments. A solution exists if for each buyer, the rows of the follow-
ing matrix are linearly independent: The matrix specifies, for each distribution and value of the 
buyer, indexing the rows, the conditional probability of each profile of others’ values and sam-
ples, indexing the columns. In the special case where the true distribution is known (the set of 
distributions is a singleton), the matrix is an extension of the one constructed by Cremer and 
McLean (1988), where the columns are not only indexed by profiles of others’ values, but also 
samples. In general, our matrix simply stacks such matrices, one for each distribution in the set, 
on top of each other.

A main technical step in our proof is to identify how many samples are required to guarantee 
linear independence. The key observation is that for a given distribution and value of a buyer, the 
profile of others’ values and each sample are independently distributed. Thus, each row of the 

3 It is also necessary that full surplus extraction is possible for every distribution in the set.
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matrix is an outer product of several vectors, i.e., a vector that specifies the conditional proba-
bilities of others’ values, and multiple copies of a vector that specifies sample probabilities. We 
identify exactly how many times the vector of sample probabilities must be multiplied by itself 
to guarantee linear independence. The fact that this is achieved with relatively few samples is 
one of the main insights of our paper. Samples are used to create linear independence.

There are two ways to interpret our results. The first interpretation views full surplus extrac-
tion as a critique of the features of commonly studied auction models. In this view, our work 
reexamines these features in order to identify one that is responsible for the unsettling prediction 
of full surplus extraction. Instead of identifying an assumption that is responsible, we identify 
one that may be weakened. This assumption is that the true distribution is commonly known. 
Other papers have shown that full surplus extraction is not generically possible if the assump-
tions of risk neutrality and unlimited liability are relaxed (Robert, 1991), if buyers can collude 
(Laffont and Martimort, 2000), or if more than one auctioneer compete (Peters, 2001).

The second interpretation of our results views full surplus extraction as a proof of concept. 
In this view, the possibility of full surplus extraction demonstrates the power of contingent pay-
ments to design robust mechanisms. With only partial knowledge of the distribution, one can 
design mechanisms that perform as well as the mechanisms that have full knowledge of the dis-
tribution. The existing literature on contingent payments (Hansen, 1985; DeMarzo et al., 2005) 
suggests that an auctioneer can increase profit by relating payments to observable events that are 
correlated with buyers’ values (e.g., revenue sharing in auctions for oil lease). In contrast, our 
work highlights the role of contingent payments to obtain robustness.

1.1. Related work

A related literature to our work studies genericity of priors that admit full surplus extracting 
mechanisms in universal type spaces (Heifetz and Neeman, 2006; Barelli, 2009; Chen and Xiong, 
2013). These papers seek implementation in Bayes-Nash equilibria, whereas our solution concept 
is dominant strategy equilibria. Similar to ours, these papers allow for uncertainty over the true 
distributions. Nevertheless, unlike ours, these papers require all buyers to share a common prior 
distribution over distributions. In contrast, in our settings buyers may have different prior beliefs 
over the set of possible distributions.

The linear independence property, often referred to as statistical detectability, has also been 
used in repeated games (Fudenberg et al., 1994), moral hazard in teams (Rahman and Obara, 
2010; Rahman, 2012), and mechanism design (Rahman, 2010). However, this condition is often 
used to design transfer schemes to enforce incentive constraints, and not to resolve uncertainty 
as used in our setting. That is, in equilibrium, the strategies of all players are known. Thus, the 
role of transfer is to deter deviations by ensuring that each player prefers the distribution of 
payoffs it receives by following the equilibrium strategy to what she would receive by deviating. 
In contrast, the transfers in our setting are designed to ensure robustness of the mechanism with 
respect to an unknown state.

Other papers have studied the design of mechanisms without full knowledge of the distribution 
of types, and without access to samples. In Bergemann et al. (2016), the auctioneer knows the 
distribution of values but not the agent’s beliefs. Since no sample is available, the auctioneer 
cannot extract the full surplus for all possible distributions. As a result, Bergemann et al. (2016)
focus on a worst case objective. A common approach in designing mechanisms without full 
knowledge of the distribution is to use the agents’ reported types for inference. For example, in 
Goldberg et al. (2006) and Balcan et al. (2008), the price to be offered to an agent is inferred 
3
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from the bids of other agents (for a survey of the follow up literature see Nisan et al., 2007). 
In Segal (2003) and Baliga and Vohra (2003), an agent’s demand, and consequently her virtual 
valuation, is inferred from bids of other agents.

The literature on prior-independent mechanism design often assumes access to samples (e.g. 
Fu et al., 2013; Cole and Roughgarden, 2014; Morgenstern and Roughgarden, 2016). These 
works assume that the buyers’ values are independent and focus on obtaining approximately 
optimal mechanisms. The most relevant to our work is Dhangwatnotai et al. (2010), who show 
that an auction that uses a single sample, namely the VCG auction with a reserve equal to the 
sample, gives a 4-approximation to the optimal revenue when the distributions are regular. As an 
extension, Roughgarden and Talgam-Cohen (2013) gave a single-sampling mechanism for the 
more general interdependent value settings under various assumptions, although the benchmark 
is the optimal revenue under ex post individual rationality.

2. The setting

A single indivisible product is to be assigned to at most one of n potential buyers. Each buyer 
i privately knows her value vi . The value vi belongs to a finite set Vi ⊂ R+. Let v = (v1, . . . , vn)

be a profile of values, and V = ∏
i Vi the set of possible value profiles. For a buyer i, v−i ∈

V−i = ∏
i′ �=i Vi′ is a profile of values of buyers other than i.

An allocation is x ∈ X = {(x1, . . . , xn) ∈ [0, 1]n, ∑i xi ≤ 1}, where xi is the probability that i
gets the product. Buyers have linear utilities. That is, the utility of buyer i with value vi ∈ Vi for 
receiving the product with probability xi and paying pi is vixi −pi . Although our results extend 
to more general settings, we restrict attention to this setting to focus on the key features of the 
model.4

Let S be a finite set of signals with elements s ∈ S. Let F = {F 1, . . . , Fm} be a finite set of 
distinct joint distributions over value profiles v ∈ V and signals s ∈ S. That is, Fj ∈ �(V ×S) for 
all j where Fj (v, s) is the probability of (v, s) according to the j ’th distribution. For each j , let 
Dj be the marginal probability distribution of Fj on value profiles, i.e., Dj(v) is the probability 
of value profile v.

We study the design of mechanisms that map the buyers’ bids and the realized signal to al-
location and payments. The signal is interpreted as the external information available to the 
mechanism via market research. We assume that it is commonly known to all buyers that the 
true distribution belongs to F . Nevertheless, buyers may not agree about the identity of the true 
distributions (they may have different priors, or may not be equipped with a prior at all). A buyer 
bids in the mechanism knowing only her own value, and before the signal is revealed. Our goal is 
to design a mechanism that extracts the full surplus in expectation over any distribution in F , to 
be formalized throughout this section. Crucially, since the buyers may disagree about the identity 
of the true distribution, the mechanism cannot simply elicit the true distribution from agents by 
asking them to report the true distribution and punish them if they disagree.

We mainly focus on a special case where the signal s consists of independent draws from 
the distribution of values. In particular, we say that a set F is a k-sample set if S = V k and 

4 In particular, it is possible to extend the setting to allow for interdependence of utilities, in the sense that a buyer’s 
willingness to pay depends on other buyers’ signals. It is also possible to extend a setting to a multi-alternative setting 
with multidimensional types. In such a setting, each buyer i has a finite set of preference types �i . Each buyer i has 
a valuation function vi : A × �i → R. The utility of buyer i with preference type θi ∈ �i for alternative a ∈ A and 
payment p ∈R is vi (a, θi ) − p.
4
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for each (s1, . . . , sk) ∈ S and j , Fj (v, s) = Dj(v) × Dj(s1) × . . . × Dj(sk). Given a k-sample 
set, we refer to each independent draw s� as a sample, and abusing notation, represent F as 
{D1, . . . , Dm}. Note that given the independence assumption, for each distribution the signal is 
uninformative of the value profile.

We study mechanisms with dominant strategy equilibria. We invoke the revelation principle 
and focus on direct mechanisms. A (direct) mechanism consists of a pair of functions (x, p). The 
function x is the allocation function mapping actions and signals to allocations x : V1 × . . . ×
Vn × S → X. The function p is the payment function mapping actions and signal to payments 
p : V1 × . . . × Vn × S → Rn.5

A mechanism is dominant strategy incentive compatible (DSIC) if for any buyer i, values 
vi, v′

i , v−i , and signal s,

vixi(vi, v−i , s) − pi(vi, v−i , s) ≥ vixi(v
′
i , v−i , s) − pi(v

′
i , v−i , s).

A mechanism is interim individually rational (IIR) for F if, for any buyer i, value vi , and distri-
bution Fj ∈F ,

E(v,s)∼Fj [vixi(v, s) − pi(v, s)|vi] ≥ 0. (1)

That is, knowing vi but not v−i or s, buyer i expects non-negative utility from participation, re-
gardless of which distribution is the true distribution.6 Since the participation constraint holds for 
any buyer i and any distribution in F , participation is an equilibrium as long as F is commonly 
known to all buyers, regardless of any additional information that the buyers may have about the 
identity of the true distribution (e.g., in form of heterogeneous prior beliefs over F ).

Definition 1. A mechanism (x, p) extracts full surplus on F if

1. The mechanism is DSIC.
2. The mechanism is IIR for F .
3. In expectation for each distribution in F , the revenue of the mechanism equals the highest 

value. That is, for all j ,

E(v,s)∼Fj

[∑
i
pi(v, s)

]
= E(v,s)∼Fj [maxi vi] .

5 By risk neutrality there is no loss in focusing on deterministic payment rules.
6 An alternative notion of incentive compatibility is Bayesian incentive compatibility (BIC), which requires that for all 

i, vi , v′
i
, and distribution Fj ∈F ,

E
(v,s)∼Fj

[
vixi (v, s) − pi(v, s)|vi

] ≥ E
(v,s)∼Fj

[
vixi (v

′
i , v−i , s) − pi(v

′
i , v−i , s)|vi

]
.

BIC is perhaps a more natural notion of incentive compatibility than DSIC in our setting, given that we define the 
participation constraint also in expectation. DSIC implies BIC. Thus our main result, which is an existence result, holds 
if we replace DSIC with BIC.

Recall that the allocation is allowed to be randomized. A more restrictive definition than DSIC would be to require the 
condition to hold for every internal random choice of the mechanism. The mechanism we construct in our main theorem 
indeed satisfies the stronger condition.
5
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We call a mechanism satisfying properties (1) and (2) above a F -feasible mechanism. We say 
that full surplus extraction is possible for F if there exists a mechanism (x, p) that extracts the 
full surplus on F .7

A special case of our model is when the true distribution is known. We say that the true 
distribution is known if the set of distributions is a singleton F = {F 1}, and the signal s and the 
value profile v are independent in F 1. Cremer and McLean (1988) study the case where the true 
distribution is known. Note that in this case, the signal s does not reveal any extra information 
about the distribution or the value profile and thus there is no gain in conditioning a mechanism 
on s. In particular, there is no loss in assuming that (x, p)(v, s) = (x, p)(v, s′) for all v, s, and 
s′. We will refer to such a mechanism as an auction, and use A to denote the set of auctions.

Cremer and McLean (1988) show that, if the true distribution is known and under a correlation 
condition on the value distribution, there exists a DSIC and interim IR auction that extracts the 
full surplus. The auction is a second price auction with side payments where the side payment 
of agent i depends only on v−i . With enough correlation, there is sufficient information in v−i

about vi . As a result, the side payment can be constructed such that in expectation, it equals the 
utility that the agent receives in a second price auction.

To state the Crémer-McLean result, we start with some notation for distributions. Consider 
j ∈ {1, . . . , m}, i ∈ {1, . . . , n}, and vi ∈ Vi . Let �Dj = (

Dj(v)
)
v∈V

be the distribution Dj over v, 
represented as a vector of size |V |. Let

�Dj
vi

= (
Dj(v−i |vi)

)
v−i∈V−i

be the distribution Dj over v−i conditioned on vi , represented as a vector of size |V−i|. A valua-
tion distribution Dj satisfies the Crémer-McLean condition if, for each bidder i, the |Vi | vectors 
in { �Dj

vi
}vi∈Vi

are linearly independent.
We now restate the Crémer-McLean theorem in our setting.

Theorem 0 (Cremer and McLean, 1988). Assume that the true distribution is known. There exists 
an auction that extracts full surplus for F = {F 1} if the marginal distribution on value profiles 
D1 satisfies the Crémer-McLean condition.8

Let us call a set of distributions F a Crémer-McLean set if for each Fj ∈ F , the marginal 
distribution on values Dj satisfies the Crémer-McLean condition. Notice that if a mechanism 
extracts the full surplus on F , then it must also extract surplus on a singleton set {Fj} for all j . 
We later give conditions on the signal so that full surplus extraction extends to a set of distribu-
tions F .

3. The main result

Our main result identifies the number of samples that are necessary and sufficient for full 
surplus extraction. The number of samples is the number of distributions minus the dimension of 
the set of the set of distributions, plus one.

7 If a mechanism extracts full surplus on F , then it maximizes revenue in expectation over any possible distribution 
over F . As a result, our model need not include the auctioneer’s prior belief over F .

8 Further, Cremer and McLean (1988) show that the condition of Theorem 0 is necessary for full surplus extraction if 
the setting is generalized to the one described in footnote 4.
6



H. Fu, N. Haghpanah, J. Hartline et al. Journal of Economic Theory 193 (2021) 105230
The dimension of the set of distributions is defined as follows. Recall that a set of distribu-
tions F is a k-sample set if a signal consists of k independent draws from the distribution of 
value profiles. Recall also that for each distribution Dj over value profiles, �Dj = (Dj (v))v∈V

is its representation as a vector. The dimension of a vector space is the cardinality of its basis. 
The dimension of a k-sample set of distributions F is the dimension of the linear space spanned 
by { �D1, . . . , �Dm}. Note that the dimension of F is between 2 and m.9 Recall that a set of distri-
butions F is a Crémer-McLean set if for each Fj ∈ F , the marginal distribution on values Dj

satisfies the Crémer-McLean condition.

Theorem 1. Consider any m and d such that 2 ≤ d ≤ m. Full surplus extraction is possible for 
all Crémer-McLean k-sample sets of distributions F of size m and dimension d if and only if 
k ≥ m − d + 1.

To fully extract the surplus on F , it is necessary that each distribution Dj satisfies the Crémer-
McLean condition. The theorem shows that additionally, having access to k ≥ m −d +1 samples 
is necessary and sufficient. Since 2 ≤ d ≤ m, the sufficient number of samples is at least 1 and 
at most m − 1. The dimension of the space spanned by any two distinct distributions is 2. As a 
result, only 1 sample is sufficient to extract full surplus for any two distributions.

The following two subsections prove the sufficient and necessary directions of the main theo-
rem.

3.1. Sufficient number of samples

We first define a class of mechanisms that extend the Crémer-McLean construction to our 
setting, without requiring F to be k-sample. Similar to the Crémer-McLean construction and its 
extensions (McAfee and Reny, 1992; Lopomo et al., 2017), a mechanism in this class consists of 
two components. First, a second-price auction is run. The allocation of the second price auction 
is efficient, but buyers have positive expected utility. Second, to extract the remaining surplus 
from the buyers, each buyer makes an additional side payment to the mechanism. In order to 
ensure that these side payments do not violate incentive compatibility, each buyer’s side payment 
depends only on the reports of other buyers and the realized signal (i.e., the payment does not 
depend on the buyer’s own report). The class is defined formally below. The side payments are 
unrestricted in the definition below, and will be constructed later to extract the full surplus.

Definition 2. A second-price auction with signal-dependent payments works as follows:

1. The allocation is efficient. That is, xi(v, s) > 0 only if vi = maxj vj , and also 
∑

i xi(v, s) = 1
(ties among maximum bids are broken arbitrarily).

2. The payment consists of two parts. First, a second price payment pSPA
i (v) that is the second 

highest value if i gets the product and zero otherwise. Second, a side payment qi(v−i , s) that 
for each buyer i depends only on the values of other buyers. Each buyer’s payment is the 
sum of the two parts, pi(v, s) = pSPA

i (v) + qi(v−i , s).

9 The dimension can not be 1. Otherwise, distributions must be scaled versions of each other. This is not possible for 
distinct probability distributions.
7
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For each buyer i and value profile v, let uSPA
i (v) be the ex post utility of buyer i in the second 

price auction.10 For each buyer i with value vi and distribution j , let

uSPA
i,j (vi) = Ev∼Dj

[
uSPA

i (v)
]

be the interim expected utility of buyer i in the second price auction. Now suppose that there 
exist side payments qi such that

E(v,s)∼Fj [qi(v, s)|vi] = uSPA
i,j (vi),∀i, vi, j. (2)

Then, the interim utility of buyer i with value vi is zero in the mechanism, for any distribution j . 
Since the allocation of the mechanism is efficient, this implies full surplus extraction for any dis-
tribution. Therefore, full surplus extraction is possible if side payments that satisfy Equation (2)
exist.

The lemma below specifies conditions for existence of such side payment functions. It pro-
vides conditions on F under which a solution exists for any right hand side uSPA, without 
assuming any structure on uSPA. In particular, it shows that for any i, the set of possible in-
terim expected side payments {(E(v,s)∼Fj [qi(v, s)|vi])j,vi

}qi
is equal to Rm×|Vi |. We first define 

�Fj
vi

as the vector representation of the probability of (v−i , s) under distribution j conditioned on 
vi , below. Consider j ∈ {1, . . . , m}, i ∈ {1, . . . , n}, and vi ∈ Vi . Let

�Fj
vi

= (
Fj (v−i , s|vi)

)
v−i∈V−i ,s∈S

be the distribution Fj over (v−i , s) conditioned on vi , represented as a vector of size |V−i | × S. 
Notice that whereas �Fj

vi
is a distribution of (v−i , s), �Dj

vi
is simply a distribution of v−i .

Lemma 1. Consider a set of distributions F = {F 1, . . . , Fm}. There exists a Crémer-McLean 
mechanism with samples that extracts the full surplus on F , if for each bidder i, the set of 
|Vi | × m vectors { �Fj

vi
}vi∈Vi,j∈{1,...,m} are linearly independent.

We now state and prove the sufficiency part of Theorem 1.

Proposition 1. Consider a Crémer-McLean k-sample set of distributions F of size m and dimen-
sion d . If k ≥ m −d +1, then there exists a second-price auction with signal-dependent payments 
that extracts the full surplus on F .

Proposition 1 is a corollary of Lemma 1 and the lemma below.

Lemma 2. Consider a Crémer-McLean k-sample set of distributions F of size m and dimension 
d . If k ≥ m − d + 1, then for each bidder i, the set of |Vi| × m vectors { �Fj

vi
}vi∈Vi,j∈{1,...,m} are 

linearly independent.

We use outer products on vectors to simplify the proof of Lemma 2 notationally. The outer 
product of two vectors A = (ai)i∈I ∈ R|I | of size |I | and B = (bj )j∈J ∈R|J | of size |J |, denoted 
C = A ⊗ B , is a vector C = (a1B, . . . , a|I |B) of size |I | × |J |. Outer products are bilinear and 

10 The utility is well defined regardless of how ties are broken, since in case of a tie, a buyer with maximum value has 
zero utility regardless of how the tie is broken.
8
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associative, but in general are not commutative.11 We use the following standard property of 
outer products.

Lemma 3. Consider a set of linearly independent vectors A = {A1, . . . , Am} and, for each 
j = 1, . . . , m, a set Bj of linearly independent vectors. The set of vectors in the set {B ⊗
Aj }j∈{1,··· ,m},B∈Bj

(of size 
∑

j |Bj |) are linearly independent.

We also establish the following property on independence of outer product of vectors. Let 
(⊗A)k denote the outer product of k copies of A.

Lemma 4. Consider a set of m vectors {A1, . . . , Am}. Let d be the dimension of the linear space 
spanned by {A1, . . . , Am}. The set of vectors in {(⊗A1)k, . . . , (⊗Am)k} are linearly independent 
if k ≥ m − d + 1.

We next use Lemma 3 and Lemma 4 to prove Lemma 2.

Proof of Lemma 2. Fix a buyer i. Recall the definition of �F , for all j , and vi ,

�Fj
vi

= (
Fj (v−i , s|vi)

)
v−i∈V−i ,s∈S

.

Since F is k-sample, we have,

�Fj
vi

= (
Dj(v−i |vi) × Dj(s1) × . . . × Dj(sk)

)
v−i ,s

.

Using the outer product notation, this simplifies to

�Fj
vi

= �Dj
vi

⊗ (⊗ �Dj)k. (3)

Recall that by assumption, k ≥ m − d + 1, where d is the dimension of the linear space 
spanned by { �D1, . . . , �Dm}. Therefore, by Lemma 4, the m vectors in {(⊗ �D1)k, . . . , (⊗ �Dm)k}
are linearly independent. Also, by the assumption that for each j the distribution Dj satisfies the 
Crémer-McLean condition, the |Vi | vectors in { �Dj

vi
}vi∈Vi

are linearly independent. We can then 
apply Lemma 3, to conclude that the vectors in { �Fj

vi
}vi∈Vi,j∈{1,...,m} are linearly independent. In 

particular, define the set A = {(⊗ �D1)k, . . . , (⊗ �Dm)k} of linearly independent vectors as argued 
above. Also, for each j ∈ {1, . . . , m}, define the set Bj = { �Dj

vi
}vi∈Vi

. Given the Crémer-McLean 
condition, each Bj consists of linearly independent vectors. Now Lemma 3 implies that the vec-

tors in the set {B ⊗ Aj }j∈{1,··· ,m},B∈Bj
= { �Dj

vi
⊗ (⊗ �Dj)k}j∈{1,··· ,m},vi∈Vi

= { �Fj
vi

}j∈{1,··· ,m},vi∈Vi

are also linearly independent. �
3.2. Necessary number of samples

We now show that the number of samples in Theorem 1 is necessary.

Proposition 2. Consider any m and d such that 2 ≤ d ≤ m. If k ≤ m − d then there exists a 
Crémer-McLean k-sample set of distributions F of size m and dimension d such that full surplus 
extraction is not possible for F .

11 Two A ⊗ B and B ⊗ A are identical only up to permutations, for example (1, 2) ⊗ (3, 4) = (1(3, 4), 2(3, 4)) =
(3, 4, 6, 8) and (3, 4) ⊗ (1, 2) = (3(1, 2), 4(1, 2)) = (3, 6, 4, 8).
9
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Let us first point out a difficulty. Recall that Proposition 1 was established through Lemma 1
which ensured that for each buyer i, the set of possible interim expected side payments is equal 
to Rm×|Vi |. Thus, for any interim utilities uSPA

i of the second price auction, side payments qi

exist that extract full surplus. To prove the converse of the theorem, it is not sufficient to show 
that the set of possible interim expected side payments is a strict subset of Rm×|Vi |. The reason 
is that the set of interim utilities uSPA

i is structured. For instance, consider distributions D1, D2, 
and D3 such that for a buyer i, D3(v−i |vi) = D1(v−i |vi)/2 + D2(v−i |vi)/2. Then it must be 
that uSPA

i,3 = uSPA
i,1 /2 +uSPA

i,2 /2. As a result, even though the set of interim expected side payments 
is not equal to Rm×|Vi |, a side payment may exist for each utility function satisfying uSPA

i,3 =
uSPA

i,1 /2 + uSPA
i,2 /2.

We first prove the case where d = 2, and later discuss the generalization which is a simple 
extension. The proof is based on the following instance.

Example 1. Buyer 1 has two possible values, v1 ∈ {2, 3}. There are only two profiles of values 
that other buyers can possibly have, v1−i and v2−i .

12 We only assume that the maximum value in 
v1−1 and v2−1 is 1, that is maxj �=i v

1
j = maxj �=i v

2
j = 1, and otherwise leave them unconstrained. 

Construct basis distributions B1, B2 as follows.

B1 =
( v1−i v2−i

2 1/3 0

3 0 2/3

)
, B2 =

( v1−i v2−i

2 0 2/3

3 1/3 0

)
.

Consider α1 to αm, where 0 ≤ αj ≤ 1, αj �= 1/2. Construct each distribution Dj in the set F as 
a convex combination of D1 and D2 with weight αj , that is, Dj = αjB

1 + (1 − αj )B
2.

Assume for contradiction that a full surplus extracting mechanism exists for Proposition 2. 
Then buyer 1 must be allocated regardless of the profile of values, since buyer 1 has the highest 
value. As a result, buyer 1’s utility from allocation, ignoring payments, is equal to her value. 
Therefore, to extract surplus the expected payment of each value must be equal to the value,

Ev∼Dj ,s∼(×Dj )k [p1(v, s)|v1] = v1, ∀j, v1.

Since buyer 1 gets the product regardless of her value, incentive compatibility requires that the 
payment of buyer 1 does not depend on her report. We thus write the payment function of buyer 
1 as p1(v−1, s). The above equality becomes

Ev∼Dj ,s∼(×Dj )k
[
p1(v−1, s)|v1

] = v1, ∀j, v1.

Now consider any profile β = (βj,v1)j,v1 such that 
∑

j,v1
βj,v1 = 0. Note that this implies that ∑

j βj,2 = − 
∑

j βj,3. Assume further that 
∑

j βj,2 �= 0. We must have∑
j,v1

βj,v1 Ev∼Dj ,s∼(×Dj )k
[
p1(v−1, s)|v1

] =
∑

j
βj,2 · 2 +

∑
j
βj,3 · 3

= (2 − 3)(
∑
j

βj,2) �= 0.

12 Strictly speaking, V−i is any product set v1−i
and v2−i

. We only consider v1−i
and v2−i

since they are the only profiles 
that may have positive probability.
10
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Summarizing the argument so far, we have shown that if a full surplus extracting mechanism 
exists, then there must exist a function p1 : V−1 ×S →R such that for any profile β = (βj,v1)j,v1

that satisfies (i) 
∑

j,v1
βj,v1 = 0 and (ii) 

∑
j βj,2 �= 0, we have∑

j,v1
βj,v1 Ev∼Dj ,s∼(×Dj )k

[
p1(v−1, s)|v1

] �= 0.

The next lemma shows that no such function p1 exists.

Lemma 5. Consider the set of distributions F = {D1, . . . , Dm} defined in Example 1 and assume 
that the number of samples is k ≤ m − 2. There exists a profile β = (βj,v1)j,v1 such that (i) ∑

j,v1
βj,v1 = 0 and (ii) 

∑
j βj,2 �= 0 such that any payment function p1 : V−1 × S → R satisfies∑

j,v1
βj,v1 Ev∼Dj ,s∼(×Dj )k

[
p1(v−1, s)|v1

] = 0.

4. Discussion and conclusions

The surplus extracting auction of Crémer and McLean is often seen as a critique on com-
monly studied models of auction design. The arguably counter-intuitive phenomenon of surplus 
extraction is often attributed to the unrealistic combination of several assumptions in the model: 
first, that the buyers are risk neutral; second, that the auctioneer has exact knowledge of the un-
derlying distribution of the buyers’ values; and third, that the distribution is commonly known 
to all buyers. The second and third assumptions are seen as a violation of the desired Wilson’s 
principle.

Our result suggests that the second and third assumptions may not be the main driver of full 
surplus extraction: The assumption that the auctioneer knows the distribution can be weakened, 
as long as sampling from the underlying distribution is available, and the number of samples 
does not have to be large; similarly, it is sufficient to assume it is commonly known to the buyers 
that the true distribution belongs to the set, without requiring the buyers to agree on the true 
distribution. A main conceptual step in our construction is to define a matrix of conditional 
probabilities that is common knowledge to all buyers, even though the true distribution is not. 
We accomplish this by indexing the rows of the conditional probability matrix by each potential 
distribution.

An important assumption is that the auctioneer can credibly commit to how the mechanism 
uses the signal. In particular, the signal space must be commonly known. The commitment as-
sumption may be justified in a setting where the signals are publicly verifiable and contractible. 
For example, in oil-lease auctions, the value of the asset is partially verifiable ex post. Thus it 
is common to design auctions in which transfers depend on the realization of a state (signaling 
the value of the asset). If the auctioneer cannot commit, then an inference-based approach may 
be more effective than our mechanism with contingent payments. With an inference-based ap-
proach, the auctioneer observes the signal and then publicly announces an auction that maps bids 
to allocation and payments. Thus to verify the allocation and payments, there is no need to verify 
the signal. A natural question is whether such an approach can approximately extract the full 
surplus. In another manuscript Fu et al. (2020), we provide bounds on the number of samples 
needed.

Let us comment on how “belief-free” our model is. Note that the expected utility of a buyer 
does depend on the buyer’s belief about the true distribution. However, assuming that all other 
buyers participate, a buyer expects non-negative utility from participation for any prior belief. In 
11
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fact, the buyers may not be equipped with a prior at all. For example, the buyer may maximize the 
minimum expected utility. For all buyers to participate, it only needs to be common knowledge 
among buyers that the true distribution is in F . Agent 1 may know that the true distribution is 
in F ′ ⊆ F , may know that buyer 2 knows that it is in F ′′ ⊆ F , and so on. The assumption that 
the set of distributions is common knowledge is a weakening, although admittedly a limited one, 
that the distribution itself is common knowledge.13

Another assumption made in this paper is that the set of distributions is finite. This is typically 
assumed in the literature on auctions with contingent payments. This assumption can also be 
justified when all buyers have access to an anonymized distribution of values, but it is unknown 
how the identities in the anonymized distribution maps to the that of the buyers. For instance, 
with three players, there are six possible ways by which the identities in the distribution can 
be mapped to the identities of the buyers. Nevertheless, it would be interesting to investigate 
full surplus extraction on infinite sets of distributions. Even though our approach involves in-
verting matrices whose entries are probabilities of atom events, there may be hope to extend 
the approach to infinite-support distributions, since there have been such extensions to Crémer 
and McLean’s auction (McAfee and Reny, 1992; Rahman, 2010). This seems a prerequisite for 
possibly extending the approach further to infinite families of distributions.

Appendix A. Proofs

A.1. Proofs from Section 3

A.1.1. Proof of Lemma 1

Proof of Lemma 1. Recall that a mechanism that extracts full surplus exists if the following 
system has a solution

E(v,s)∼Fj [qi(v, s)|vi] = uSPA
i,j (vi),∀i, vi, j

The system has a solution for any right hand side uSPA
i,j (vi) if the set of |Vi | × m vectors 

{ �Fj
vi

}vi∈Vi,j∈{1,...,m} are linearly independent. �
A.1.2. Proof of Lemma 3

Proof of Lemma 3. Suppose that there is a vector �α = (αj,B)j∈{1,··· ,m},B∈Bj
such that∑

j∈{1,...,m},B∈Bj

αj,B(B ⊗ Aj) = �0,

where �0 is a vector of zeros. We show that �α must be a vector of zeros. Using the definition of 
the outer product, and writing B = (b1, . . . , b�), we have

13 Consider an alternative setting in which all the players share a common prior over the set of distributions F . Without 
samples, the problem reduces to one in which the average distribution is known to all players. It might be possible that 
the average distribution satisfies the linear independence condition of Crémer and McLean, even though some or all 
distributions in F do not. Our approach rules out such a possibility. Conversely, the average distribution may fail to 
satisfy the linear independence conditions even though all distributions in F do. We show that it is nevertheless possible 
to extract the full surplus in such a case.
12
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∑
j∈{1,...,m},B∈Bj

αj,B(b1A
j , . . . , b�A

j ) = �0.

Therefore,∑
j∈{1,...,m}

((
∑

B∈Bj

αj,Bb1)A
j , . . . , (

∑
B∈Bj

αj,Bb�)A
j ) = �0.

We thus have a system of � equalities. For i ∈ {1, . . . , �}, the i’th equality is∑
j∈{1,...,m}

(
∑

B∈Bj

αj,Bbi)A
j = 0.

Since vectors A1, . . . , Am are linearly independent, we must have∑
B∈Bj

αj,Bbi = 0,

for all i and j . Since vectors in Bj are linearly independent, we must have αj,B = 0 for all j and 
B , completing the proof. �
A.1.3. Proof of Lemma 4

Proof of Lemma 4. Recall the assumption that d is the dimension of the linear space spanned 
by the m vectors in { �D1, . . . , �Dm}. Let {B1, · · · , Bd} be a basis. Then for each j , we can write 
Dj as a linear sum of these vectors: �Dj = ∑d

�=1 αj�B�.
We consider the outer product (⊗ �Dj)k . By bilinearity,

(
⊗ �Dj

)k =
(

⊗
d∑

�=1

αj�B�

)k

=
∑

1≤�1,...,�k≤d

αj�1B�1 ⊗ . . . ⊗ αj�k
B�k

=
∑

1≤�1,...,�k≤d

αj�1 . . . αj�k
B�1 ⊗ . . . ⊗ B�k

where �j identifies the term selected from the j ’th multiplier. We next factor out the terms with 
the same scalar multiplier. That is, for any τ , 1 ≤ τ ≤ d , let γτ = |{�j = τ }| be the number of 
times that αjτ appears in the multiplication. Note that γ1 + . . . + γd = k. Factoring out the terms 
with the same scalar multiplier, we have(

⊗ �Dj
)k =

∑
γ1+···+γd=k,
γ1,··· ,γd≥0

α
γ1
j1α

γ2
j2 . . . α

γd

jd

∑
�1,...,�k,

γτ =|{�j =τ }|,∀τ

B�1 ⊗ . . . ⊗ B�k

To simplify notation, define

Cγ1,··· ,γd
=

∑
�1,...,�k,

γτ =|{�j =τ }|,∀τ

B�1 ⊗ . . . ⊗ B�k
.

That is, Cγ1,··· ,γd
is the sum of terms that are outer products of B1, · · · , Bd , such that in each 

term B1 appears γ1 times, and so on. Since outer product is not commutative, these products do 
13
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not have to be the same. For instance, when d = 2, C1,2 = B1 ⊗B2 ⊗B2 +B2 ⊗B1 ⊗B2 +B2 ⊗
B2 ⊗ B1. We have(

⊗ �Dj
)k =

∑
γ1+···+γd=k,
γ1,··· ,γd≥0

α
γ1
j1α

γ2
j2 . . . α

γd

jdCγ1,··· ,γd
.

An inductive application of Lemma 3 implies that the set of vectors {B�1 ⊗ · · · ⊗ B�k
}�1,··· ,�k∈[d]

are linearly independent. To see this, assume that {B�1 ⊗ · · · ⊗ B�k−1}�1,··· ,�k−1∈[d] are lin-
early independent. Define A = {B�1 ⊗ · · · ⊗ B�k−1}�1,··· ,�k−1∈[d], and for j ∈ {1, . . . , |A|}, define 
Bj = {B1, . . . , Bd}. Now Lemma 3 states that {B ⊗B�1 ⊗· · ·⊗B�k−1}B∈{B1,...,Bd },�1,··· ,�k−1∈[d] =
{B�1 ⊗ · · · ⊗ B�k

}�1,··· ,�k∈[d] are linearly independent. Since each Cγ1,··· ,γd
is a summation over 

vectors in {B�1 ⊗ · · · ⊗ B�k
}�1,··· ,�k∈[d], the vectors in {Cγ1,...,γd

}γ1+...+γd=k are also linearly in-
dependent.

Now note that each (⊗ �Dj)k is expressed as a linear combination of linearly independent 
vectors, with the linear coefficient on Cγ1,··· ,γd

being the product αγ1
j1 . . . α

γd

jd . To show linear 

independence of the set of vectors {(⊗ �Dj)k}j , we only need to show that the set of m linear 
coefficients as vectors are linearly independent. More specifically, we show that the m vectors in 
the set {(αγ1

j1 . . . α
γd

jd)γ1+...+γd=k}j are linearly independent.

The vector (αγ1
j1 . . . α

γd

jd)γ1+···+γd=k is the image of the vector �αj = (αj1, . . . , αjd) under a 

mapping ν : Rd →R(d+k−1
d−1 ) which evaluates all the k-th degree monomials in R[x1, . . . , xd ] at a 

point in Rd . We now show that these m images ν(�α1), . . . , ν(�αm) are linearly independent when 
k = m − d + 1.

We will show that for every j , there exists a linear form on R(d+k−1
d−1 ) that vanishes at ν(�αj ′) for 

all j ′ �= j and does not vanish at ν(�αj ). This will show that there cannot be any linear dependence 
among the m points ν(�αj ).

Since { �Dj }j spans a linear space of dimension d , and since {B1, · · · , Bd} is a basis of this 
space, the vectors �α1, . . . , �αm span a d-dimensional linear space. Without loss of generality, 
consider �α1, we can find d − 1 other vectors that are linearly independent with �α1. Therefore we 
can find a linear form f1 : (y1, . . . , yd) �→ β1y1 + · · · + βdyd which vanishes at all these d − 1
vectors but does not vanish at �αj . Without loss of generality, let the remaining m − d vectors be 
�αd+1, . . . , �αm. Note that since each �Dj represents a probability distribution, its entries sum to 
one. Therefore, no two �αj and �αj ′ are scalar copies of each other, i.e., there are no j �= j ′ such 
that αj� = ζαj ′� for each �, for some ζ . Thus, for each j ′ = d + 1, · · · , m, we can find a linear 
form fj ′ such that fj ′ vanishes at �αj ′ but does not vanish at �αj . Now consider the product of 
these m − d + 1 linear forms,

f = f1fd+1 . . . fm.

If we take k to be m − d + 1, f itself is a linear form on R(d+k−1
d−1 ), and can be evaluated at 

ν(�α1), . . . , ν(�αm), and

f (ν(�α)) = f1(�α)fd+1(�α) . . . fm(�α), ∀�α ∈Rd .

By construction, f (ν(�αj )) = 0 for all j �= 1 and f (ν(�α1)) �= 0. Since the choice of �α1 was ar-
bitrary, the construction works for arbitrary �αj , and so ν(�α1), . . . , ν(�αm) are linearly independent 
for k = m − d + 1. This completes the proof. �
14



H. Fu, N. Haghpanah, J. Hartline et al. Journal of Economic Theory 193 (2021) 105230
A.1.4. Proof of Lemma 5
Before we prove Lemma 5, we need some definitions and a technical lemma. Given 

y1, . . . , ym ∈ R, consider an m by m matrix V̄ defined as follows.

V̄ =

⎛
⎜⎜⎜⎜⎜⎝

1 y1 . . . ym−2
1 (1 + 3y1

1−y2
1
)(1 + y1)

m−2

1 y2 . . . ym−2
2 (1 + 3y2

1−y2
2
)(1 + y2)

m−2

...
...

...
...

1 ym . . . ym−2
m (1 + 3ym

1−y2
m
)(1 + ym)m−2

⎞
⎟⎟⎟⎟⎟⎠ . (4)

Matrix V̄ is closely related to an m by m Vandermonde matrix V .

V =

⎛
⎜⎜⎜⎝

1 y1 . . . ym−2
1 ym−1

1
1 y2 . . . ym−2

1 ym−1
2

...
...

...
...

1 ym . . . ym−2
m ym−1

m

⎞
⎟⎟⎟⎠ .

The Vandermonde matrix V has full rank (Bellman, 1997). In the following lemma, we use this 
fact to show that the matrix V̄ also has full rank.

Lemma 6. For distinct y1, . . . , ym, none equal to ±1, the m by m matrix V̄ defined in Equa-
tion (4) has rank m.

Proof. The proof strategy is to convert the matrix V̄ to the Vandermonde matrix using operations 
that preserve the rank. Note that

(1 + y)m−2 =
m−2∑
i=0

(
m − 2

i

)
yi.

Therefore, by multiplying each column i by 
(
m−2

i

)
and subtracting it from the last column, we 

can convert the matrix to⎛
⎜⎜⎜⎜⎜⎝

1 y1 . . . ym−2
1

3y1

1−y2
1
(1 + y1)

m−2

1 y2 . . . ym−2
2

3y2

1−y2
2
(1 + y2)

m−2

...
...

...
...

1 ym . . . ym−2
m

3ym

1−y2
m
(1 + ym)m−2

⎞
⎟⎟⎟⎟⎟⎠ ,

which is equivalent to⎛
⎜⎜⎜⎜⎝

1 y1 . . . ym−2
1

3y1
1−y1

(1 + y1)
m−3

1 y2 . . . ym−2
2

3y2
1−y2

(1 + y2)
m−3

...
...

...
...

1 ym . . . ym−2
m

3ym

1−ym
(1 + ym)m−3

⎞
⎟⎟⎟⎟⎠ .

Now divide the last column by 3, and multiply each row j of V̄ by 1 − yj . The result is the 
following matrix.
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⎛
⎜⎜⎜⎝

1(1 − y1) y1(1 − y1) . . . ym−2
1 (1 − y1) y1(1 + y1)

m−3

1(1 − y2) y2(1 − y2) . . . ym−2
1 (1 − y2) y2(1 + y2)

m−3

...
...

...
...

1(1 − y2) ym(1 − y2) . . . ym−2
m (1 − y2) ym(1 + ym)m−3

⎞
⎟⎟⎟⎠ .

The remaining operations are on columns. So we focus on a fixed row and drop the index j for 
simplicity. A row is

1(1 − y), y(1 − y), . . . , ym−2(1 − y), y(1 + y)m−3.

Index columns from 1 to m. For column � from 1 to m − 1, the �’th entry is y�−1(1 − y). Now 
replace the element in each column � from 2 to m − 1 with the sum of all elements from 1 to �. 
Note that the sum 

∑�
i=1 yi−1(1 − y) is equal to 1 − y�. The result is

1 − y,1 − y2, . . . ,1 − ym−1, y(1 + y)m−3.

Now for each � from 1 to m −2, multiply the �’th element by 
(
m−3
�−1

)
and add it to the last element. 

Since y(1 + y)m−3 = ∑m−3
�=0

(
m−3

�

)
y�+1, the result is

1 − y,1 − y2, . . . ,1 − ym−1,

m−2∑
�=1

(
m − 3

� − 1

)
.

Divide the last column by 
∑m−2

�=1

(
m−3
�−1

)
,

1 − y,1 − y2, . . . ,1 − ym−1,1.

Multiply the first m − 1 columns by −1, and subtract the last column from it to obtain

y, y2, . . . , ym−1,1.

This is the row of the Vandermonde matrix (permuted such that the first column appears last). 
Since the Vandermonde matrix has rank m, we conclude that so should the matrix V̄ . �

We now prove Lemma 5.

Proof of Lemma 5. To prove the lemma, we need to show existence of β of size m × |V1| such 
that β · �1 = ∑

j,v1
βj,v1 = 0, 

∑
j βj,2 �= 0, and∑

j,v1

βj,v1 Ev,s1,...,sk∼Dj

[
p1(v−1, s)|v1

] = 0,∀p1. (5)

Recall that �Fj
v1 is the vector representation of probability of (v−i , s) conditioned on v1 in distri-

bution j . In this proof it is convenient to represent F as a |V1| ·m by |V−i | · |S| matrix that stacks 
the vectors { �Fj

v1}j,v1 on top of each other, that is,

F =

⎛
⎜⎜⎜⎝

. . . v−1, s . . .

...

j, v1 . . . F j (v−1, s|v1) . . .

...

⎞
⎟⎟⎟⎠ .
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Using this notation we can write∑
j,v1

βj,v1 Ev,s1,...,sk∼Dj

[
p1(v−1, s)|v1

] = β · F · p1.

Therefore, to show Equation (5) it is sufficient to show that β · F = 0.
For any j , since the samples in s are drawn independently,

�Fj
v1

(v−1, s) = �Dj(v−1|v1)Prj [s] = �Dj(v−1|v1) · �Dj(s1) · . . . · �Dj(sk).

Recall the assumption of the lemma that k ≤ m − 2. Let v1
1 = 2 and v2

1 = 3. By construction of 
Example 1, Dj(s�) = αj if the sample is a “match”, that is, s� = (v1

1, v1−1) or s� = (v2
1, v2−1), 

and otherwise Dj(s�) = 1 − αj . Therefore, to abbreviate notation we simply assume that s ∈
[0, m − 2] encodes the number of matches, and thus Prj [s] = (αj )

s(1 − αj )
k−s . We therefore 

simply represent F as a 2m by 2(m − 1) matrix as follows

F =

⎛
⎜⎜⎜⎜⎝

. . . v−1, � . . .

...

j, v1 Prj [v−1|v1](αj )
�(1 − αj )

m−2−�

...

⎞
⎟⎟⎟⎟⎠ .

Let V be an m by m − 1 Vandermonde matrix, that is,

V =

⎛
⎜⎜⎜⎝

1 (α1/(1 − α1)) . . . (α1/(1 − α1))
m−2

1 (α2/(1 − α2)) . . . (α2/(1 − α2))
m−2

...
...

...
...

1 (αm/(1 − αm)) . . . (αm/(1 − αm))m−2

⎞
⎟⎟⎟⎠ .

Let �v1,v−1 be a m by m diagonal matrix such that �v1,v−1(j, j) = Prj [v−1|v1](1 − αj )
m−2. 

Using this notation, rewrite F as

F =
(

�v1
1 ,v1−1

· V �v1
1 ,v2−1

· V
�v2

1 ,v1−1
· V �v2

1 ,v2−1
· V

)
.

Recall that β is a vector of size 2m. Let β be composed of two parts βL and βH , each of size m. 
That is, β = (βL, βH ). Now the equation β · F = 0 becomes

(βL�v1
1 ,v1−1

+ βH �v2
1 ,v1−1

)V = 0, (6)

(βL�v1
1 ,v2−1

+ βH �v2
1 ,v2−1

)V = 0. (7)

For a reason to become clear shortly, consider adding an extra column as the m’th column to 
matrix V . In particular, consider an m by m matrix V̄ , whose first m − 1 columns are identical 
to that of V , and the entry in row j and column m is

(1 + 3yj

1 − y2
j

)(1 + yj )
m−2,

where yj = αj/(1 − αj ). By Lemma 6, there exists α1, . . . , αm such that matrix V̄ is invertible. 
In particular, we have
17
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V̄ =

⎛
⎜⎜⎜⎜⎜⎝

1 y1 . . . ym−2
1 (1 + 3y1

1−y2
1
)(1 + y1)

m−2

1 y2 . . . ym−2
2 (1 + 3y2

1−y2
2
)(1 + y2)

m−2

...
...

...
...

1 ym . . . ym−2
m (1 + 3ym

1−y2
m
)(1 + ym)m−2

⎞
⎟⎟⎟⎟⎟⎠ .

Now Lemma 6 applies to imply that V̄ has full rank. Therefore, there exists a solution w to 
the following system w · V̄ = (0, . . . , 0, 1) of m equations and m unknowns. The first m − 1
equations are equivalent to Equation (6) together with Equation (7). Therefore, β · F = 0 if

βL�v1
1 ,v1−1

+ βH �v2
1 ,v1−1

= w,

βL�v1
1 ,v2−1

+ βH �v2
1 ,v2−1

= w.

Solving these two equations gives

βL = w(�v2
1 ,v2−1

− �v2
1 ,v1−1

) · (�v1
1 ,v1−1

· �v2
1 ,v2−1

− �v1
1 ,v2−1

· �v2
1 ,v1−1

)−1,

βH = w(�v1
1 ,v2−1

− �v1
1 ,v1−1

) · (�v2
1 ,v1−1

· �v1
1 ,v2−1

− �v2
1 ,v2−1

· �v1
1 ,v1−1

)−1.

To summarize the arguments so far, if βL and βH satisfy the above equations, then β ·F = 0 and 
therefore 

∑
j βj Ev−1∼Dj [p1(v−1)|v1] = 0. We will next show that additionally, 

∑
j βj,2 �= 0.

Multiply Equation by �1, a vector of 1’s, to get

βH · �1 =w(�v1
1 ,v2−1

− �v1
1 ,v1−1

) · (�v2
1 ,v1−1

· �v1
1 ,v2−1

− �v2
1 ,v2−1

· �v1
1 ,v1−1

)−1 · �1.

We next show that

(�v1
1 ,v2−1

− �v1
1 ,v1−1

) · (�v2
1 ,v1−1

· �v1
1 ,v2−1

− �v2
1 ,v2−1

· �v1
1 ,v1−1

)−1 · �1 (8)

is the m’th column of matrix V̄ . Note that since w is the solution to w · V̄ = (0, . . . , 0, 1)T , this 
implies that

βH · �1 =w(�v1
1 ,v2−1

− �v1
1 ,v1−1

) · (�v2
1 ,v1−1

· �v1
1 ,v2−1

− �v2
1 ,v2−1

· �v1
1 ,v1−1

)−1 · �1 = 1 �= 0.

So to complete the proof, we need to argue that Expression (8) is the m’th column of matrix V̄ . 
The j ’th element in the column vector is

= (Prj [v2−1|v1
1] − Prj [v1−1|v1

1])(1 − αj )
m−2

(Prj [v1−1|v2
1]Prj [v2−1|v1

1] − Prj [v2−1|v2
1]Prj [v1−1|v1

1])(1 − αj )2(m−2)
.

By construction of Example 1, we have Prj [v1−1|v1
1] = αj/(αj + 2(1 − αj )), Prj [v2−1|v1

1] =
2(1 − αj )/(αj + 2(1 − αj )), Prj [v1−1|v2

1] = (1 − αj )/((1 − αj ) + 2αj ), and Prj [v2−1|v2
1] =

2αj/((1 − αj ) + 2αj ). Therefore, the j ’th element becomes

=
2(1−αi)−αj

αj +2(1−αj )

1−αj

(1−αj )+2αj
· 2(1−αi)

αj +2(1−αj )
− 2αj

(1−αj )+2αj
· αj

αj +2(1−αj )

· (1 − αj )
−(m−2)

= (2 − 3αj )(1 + αj )

2(1 − αj )2 − 2α2
j

· (1 − αj )
−(m−2).
18
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Substituting αj = yj/(1 + yj ),

=
2−yj

1+yj

1+2yj

1+yj

2( 1
1+yj

)2 − 2(
yj

1+yj
)2

· (1 + yj )
(m−2)

= (2 − yj )(1 + 2yj )

2(1 − y2
j )

· (1 + yj )
(m−2)

= (1 + 3yj

1 − y2
j

)(1 + yj )
m−2.

We have argued that Expression (8) is the m’th column of matrix V̄ , which completes the 
proof. �
A.1.5. Proof of Proposition 2

Proof of Proposition 2. Consider the following extension of Example 1. The set of values 
of buyer 1 is V1 = {v1

1 = 2, v2
1 = 3, vm−d+3

1 , vm−d+4
1 , . . . , vm

1 }. The set of possible profiles 
of other buyers is {v1−1, v

2−1, v
m−d+3
−1 , vm−d+4

−1 , . . . , vm
−1}. Similarly to Example 1, assume that 

maxj �=1 v1
j = maxj �=1 v2

j = 1. Now consider the following d bases. The two basis B1 and B2 are 
defined as in Example 1, that is

B1 =
( v1−i v2−i

2 1/2 0

3 0 1/2

)
, B2 =

( v1−i v2−i

2 0 1/2

3 1/2 0

)
,

with probability zero on every other value profile. For � = m −d +3, . . . , m, define a distribution 
B� that puts probability 1 on profile (v�

1, v
�
−1), and probability zero everywhere else. Note that 

defined bases are linearly independent, and that the number of bases is d . Now define the m
distributions as follows. For j = 1, . . . , m −d +2, define Dj similar to Example 1, Dj = αjB

1 +
(1 −αj )B

2. For j = m − d + 3, . . . , m, define Dj = Bj . Note that the number of distributions is 
m and that the dimension of the linear space spanned by them is d . We show that no mechanism 
can extract full surplus with k ≤ m − d samples. The argument parallels the argument following 
Example 1.

If a surplus extracting mechanism exists, then we must have

Ev,s1,...,sk∼Dj [p1(v, s)|v1] = v1, ∀j ∈ {1, . . . ,m − d + 2}, v1 ∈ {2,3}.
If v−1 = v1−1 or v−1 = v2−1, buyer 1 must win the product. Incentive compatibility implies that 
in this case, the payment of agent 1 does not depend in its own report. Therefore we write the 
payment as p1(v−1,s), and must have

Ev,s1,...,sk∼Dj

[
p1(v−1, s)|v1

] = v1, ∀j ∈ {1, . . . ,m − d + 2}, v1 ∈ {2,3}.
The argument following Example 1 implies that for the function p1 : V−1 × S → R, and for any 
profile β = (βj,v1)j,v1 that satisfies (i) 

∑
j,v1

βj,v1 = 0 and (ii) 
∑

j βj,2 �= 0, we have∑
j,v1

βj,v1 Ev,s1,...,sk∼Dj

[
p1(v−1, s)|v1

] �= 0.
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Now Lemma 5 can be applied to show that no such function p1 exists. In particular, consider 
the set of m′ = m − d + 2 distributions {D1, . . . , Dm−d+2}, and k ≤ m′ − 2 = m − d . Lemma 5
shows that no function p1 satisfying the above inequalities exists. �
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