
This article was downloaded by: [128.59.163.203] On: 15 October 2019, At: 15:48
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Mathematics of Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Efficient Computation of Optimal Auctions via Reduced
Forms
Saeed Alaei, Hu Fu, Nima Haghpanah, Jason Hartline, Azarakhsh Malekian

To cite this article:
Saeed Alaei, Hu Fu, Nima Haghpanah, Jason Hartline, Azarakhsh Malekian (2019) Efficient Computation of Optimal Auctions
via Reduced Forms. Mathematics of Operations Research 44(3):1058-1086. https://doi.org/10.1287/moor.2018.0958

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2019, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/moor.2018.0958
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

MATHEMATICS OF OPERATIONS RESEARCH
Vol. 44, No. 3, August 2019, pp. 1058–1086

http://pubsonline.informs.org/journal/moor/ ISSN 0364-765X (print), ISSN 1526-5471 (online)

Efficient Computation of Optimal Auctions via Reduced Forms
Saeed Alaei,a Hu Fu,b Nima Haghpanah,c Jason Hartline,d Azarakhsh Malekiane

aGoogle Research, Mountain View, California 94043; bDepartment of Computer Science, University of British Columbia, Vancouver,
British Columbia V6T 1Z4, Canada; cDepartment of Economics, Pennsylvania State University, State College, Pennsylvania 16802;
d EECS Department, Northwestern University, Evanston, Illinois 60208; eRotman School of Management, University of Toronto,
Toronto, Ontario M5S 3E6, Canada
Contact: saeed.a@gmail.com (SA); fu.hu.thu@gmail.com (HF); haghpanah@psu.edu, http://orcid.org/0000-0001-7025-4282 (NH);
hartline@eecs.northwestern.edu (JH); azarakhshm@gmail.com (AM)

Received: March 18, 2016
Revised: September 20, 2017; October 11, 2017;
May 1, 2018
Accepted: May 20, 2018
Published Online in Articles in Advance:
May 30, 2019

MSC2000 Subject Classification:
Primary: 91B26; secondary: 91B32
OR/MS Subject Classification:
Primary: game theory, economics, social and
behavioral sciences: market models (auctions,
bargaining, bidding, selling, etc.);
secondary: game theory, economics, social and
behavioral sciences: resource and cost allocation

https://doi.org/10.1287/moor.2018.0958

Copyright: © 2019 INFORMS

Abstract. We study an optimal auction problem for selecting a subset of agents to receive
an item or service, whereby each agent’s service can be configured, the agent has mul-
tidimensional preferences over configurations, and there is a limit on the number of agents
that can be simultaneously served. We give a polynomial time reduction from the mul-
tiagent problem to appropriately defined single-agent problems. We further generalize
the setting to matroid feasibility constraints and obtain exact and approximately optimal
reductions. As applications of this reduction we give polynomial time algorithms for the
problem with quasi-linear preferences over configurations or with private budgets. Our
approach is to characterize, and in polynomial time optimize and implement feasible
interim allocation rules. With a single item, we give a new characterization showing that
any mechanism has an ex post implementation as a simple token-passing process. These
processes can be parameterized and optimized with a quadratic number of linear con-
straints. With multiple items, we generalize Border’s characterization and give algorithms
for optimizing interim and implementing ex post allocation rules. These implementations
have a simple form; they are randomizations over greedy mechanisms that serve types in
a given order.

Funding: S. Alaei is partially supported by the Office of Naval Research Young Investigator Program
[Grant N000141110662]; H. Fu is supported by the National Science Foundation (NSF) [Grants CCF-
0643934 and AF-0910940] and Natural Sciences and Engineering Research Council of Canada Dis-
covery Grant Accelerator Supplements [RGPAS-2017-507934]. N. Haghpanah is supported by the
NSF [Award CCF 0846113]. J. Hartline is supported by the NSF [Awards CCF 0846113 and CCF
0830773]. A.Malekian is partially supported by the NSF [Awards CCF 0846113 and CCF 0830773].

Keywords: auctions • dimensionality reduction • polymatroid constraints • reduced forms

1. Introduction
Bayesian optimal auctions for revenue are analytically complicated outside the standard linear and single-
dimensional utility model of Myerson [34]. This paper considers this auction problem from an algorithmic
perspective and shows that the space of auctions can be efficiently optimized over and the resulting auction
can be efficiently implemented. Our results apply to the canonical single-item environment and, more gen-
erally, to multiunit and matriod environments (as defined below). The main challenge that our work resolves
is in reducing the computational complexity of these problems from exponential, as it would be in the
straightforward mathematical program, to polynomial in the number of agents.

Consider a seller who faces a set of agents who desire service, whereby there may be multiple configurations for
each agent’s service, possibly with different costs (e.g., when renting a car, you can get a global positioning system
or not, you can get various insurance packages, and you will pay a total price). Each agent has preferences over
the different possible configurations she can be served. The seller is restricted by a feasibility constraint that bounds
the set of agents served (e.g., by the number of cars in the rental shop). When the agents’ private preferences are
drawn independently from a known prior distribution, the seller would like to design an auction to optimize
her objective (e.g., revenue) in expectation over this Bayesian prior distribution, subject to feasibility. A number of
applications that fit within this abstract framework are given at the end of this introduction.

One of the main challenges of this optimization problem is its large size: a mechanism must determine for
every profile of types (i.e., preferences) the allocation, that is the subset of agents who receive service, and also
the configurations and payments. A Bayesian mechanism can be succinctly described by a profile of interim
mechanisms (also referred to as the mechanism’s reduced form in the literature by Border [9]). An agent’s interim

1058

http://pubsonline.informs.org/journal/moor/
mailto:saeed.a@gmail.com
mailto:fu.hu.thu@gmail.com
mailto:haghpanah@psu.edu
http://orcid.org/0000-0001-7025-4282
http://orcid.org/0000-0001-7025-4282
mailto:hartline@eecs.northwestern.edu
mailto:azarakhshm@gmail.com
https://doi.org/10.1287/moor.2018.0958

mechanism specifies for each of her types a distribution over service configurations and payments she is
assigned when types of other agents are drawn at random from their distributions. Importantly, an interim
representation of a mechanism removes the exponential dimensionality dependence on the number of agents.
Although it is immediate that the profile of interim mechanisms is sufficient for checking each agent’s in-
centive constraints, they are also sufficient for checking the designer’s ex post feasibility constraint.

A profile of interim mechanisms is interim feasible if it is induced, as above, by an (ex post feasible) mech-
anism. An interim allocation rule, which specifies the probability that an agent is served as a function of her type
(but not the configurations or payments), contains all the relevant information from the interim mechanisms
for verifying interim feasibility. As an example, consider an allocation problem with a single service and two
identical agents. Suppose an agent’s type is high or low with probability 1/2 each. Consider two interim al-
location rules: rule (a) serves the agent with probability one when her type is high and with probability zero
otherwise, and rule (b) serves the agent with probability 1/2 regardless of her type. It is feasible for both agents
to have rule (b) or for one agent to have rule (a) and the other to have rule (b); on the other hand, it is infeasible
for both agents to have rule (a). This last combination is infeasible because with probability 1/4 both agents
have high types, but we cannot simultaneously serve both of them. An important problem in the general
theory of auctions is to decide when a profile of interim allocation rules is feasible, and furthermore, when it is
feasible to find the ex post description of a mechanism that implements it.

A structural characterization of the necessary and sufficient conditions for the aforementioned interim
feasibility is important for the construction of optimal auctions because it effectively allows the auction problem
to be decomposed across agents. If we can optimally serve a single agent for a given interim allocation rule and
we can check feasibility of a profile of interim allocation rules, then we can optimize over auctions. Effectively, we
can reduce the multiagent auction problem to a collection of single-agent auction problems.

Border [9] characterized single-item interim feasibility (that is, when only one agent can be served). A profile
of interim allocation rules is feasible if for any subspace of the agent types the expected number of served
agents (according to the interim allocation) in this subspace is at most the probability that there is an agent
whose type is in this subspace. Returning to our infeasible example above, the expected number of served
agents with high types is one (according to the interim allocation), whereas the probability that there is an
agent with a high type is 3/4; Border’s condition is violated.

The straightforward formulation of interim feasibility via Border’s characterization has exponentially many
constraints. This issue is addressed in two different lines of work for a single-item feasibility setting. First, in
single-parameter settings or with some extensions, and with symmetric agents (whereby the agents’ type
spaces and distributions are identical), analysis of incentive constraints can be used to simplify feasibility to
a polynomial number of constraints. This simplification of the characterization has led to an analytically
tractable theory of auctions when agents have budgets (Laffont and Robert [24], Pai and Vohra [35]) or are risk
averse (Matthews [29], Maskin and Riley [26]). Second, the combinatorial structure of interim feasibility can be
exploited to solve the interim problem with exponentially many constraints. Vohra [43] showed that interim
feasible allocation rules form a polymatroid. This implies that the interim feasible allocation rules that op-
timize any given linear objective (e.g., Myerson’s virtual surplus) can be found via the greedy algorithm.
Belloni et al. [7] solved a single-item multidimensional problem with configurable quality levels (special case
of our model and equivalent to the quasi-linear preferences of Section 3.1) using a cutting plane method for
verifying feasibility. However, Belloni et al. [7] did not consider the problem of recovering an ex post de-
scription of the mechanism. Our paper contributes to the second line of work by generalizing feasibility from
single-item to multiunit feasibility constraints, that is, at most k agents can be served (and more generally with
matroid feasibility constraints, defined formally later); and by solving and implementing the interim solution in
polynomial time in the size of the problem without restriction to any particular preference structure, but
instead by assuming access to an algorithmic solution to the single-agent problem.

Our main theorems give computationally tractable (i.e., in polynomial time in the total number of agents’
types) methods for optimization and implementation of interim allocation rules. In particular, with single-item
feasibility, we show that the exponentially faceted polytope specified by the interim feasibility constraints is
a projection of a quadratically faceted polytope in a higher dimension, and an ex post allocation rule im-
plementing a feasible profile of interim allocation rules is given immediately by the latter’s preimage in the
higher dimensional polytope. These results combine to give a (computationally tractable) reduction from the
multiagent auction problem to a collection of single-agent problems. In this reduction, interim feasibility is
captured by a linear program with a quadratic number of constraints. Furthermore, our algorithmic procedure
characterizes every single-item auction as implementable by a simple token-passing process: the seller issues
a token which she initially holds. Agents are ordered arbitrarily, visited one by one in this order, and will be

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS 1059

given the token with a certain probability based on their and the current holder’s identity and type. The agent
who holds the token at the end of the process is served (no one is served if the holder is the seller). Going back
to the example above, when the interim allocation rules are (a) for agent 1 and (b) for agent 2, the transitions
are in fact deterministic and are as follows: the high type of agent 1 takes the token deterministically from the
seller; any type of agent 2 takes the token deterministically if seller is the holder; all other probabilities are zero
(there are also other implementations).

For the more general problem in which the seller faces a multiunit (or matroid) feasibility constraint, we
generalize Border’s characterization of interim feasibility and use it to design optimal auctions. Our char-
acterization is based on polymatroidal decomposition. We use the decomposition to show that interim
feasibility is a polymatroid associated with a submodular function referred to as the “expected rank function,”
which is a certain expectation over the rank function of the matriod feasibility constraint. First, though the
number of constraints from this polymatroidal characterization is exponential in the number of agents, any of
the standard algorithms for submodular function minimization can be used as a separation oracle to identify
a violated feasibility constraint in any profile of interim allocation rules, as long as the expected rank function
can be computed in polynomial time. With such a separation oracle, the expected revenue over the space of
interim feasible allocation rules can be efficiently optimized. Second, the vertices of a polymatroid correspond
to particularly simple auctions, which can be implemented by simple greedy allocation rules. Because any
point in the interior of the polytope of interim feasibility can be implemented as a convex combination of its
vertices, the optimal mechanism can be specified as a randomization over these greedy allocation rules. This
approach enables us again to reduce the multiagent problem to single-agent problems. When the expected
rank function cannot be computed in polynomial time, we present a sampling scheme that yields a fully
polynomial time randomized approximation scheme.

The reductions discussed above run in polynomial time in the size of the type space. When the type space is
infinite or large but otherwise succinctly described we would prefer reductions that are polynomial time in the
size of the succinct representation of the type space. An important example is the case in which agents’
preferences are multidimensional but the multidimensional parameters are independently distributed. Al-
though the size of such a type space is exponentially large in the dimension, it can be succinctly described in
space linear in the dimension. In Appendix A, we present a (1 + ε)-approximate reduction for any ε; mech-
anisms from this reduction can be optimized over and implemented in a polynomial, in the number of agents
n and 1/ε, basic computational operations and black box calls to solutions to the single-agent problems.
Specifically, there is no dependence on the size or representation of the type space. [Although our results give
reductions from multiagent mechanism design to single-agent mechanism design for agents with succinctly
represented type spaces, some such single-agent problems are known to be computationally intractable (e.g.,
Chen et al. [17]). When the single-agent problems are computationally intractable, our reduction does not side-
step this intractability.]

Several revenue-optimization problems are captured with our model and hence can be computationally
solved using our methods. Direct applications of our model include selling products with configurable quality
levels (Belloni et al. [7]) or delivery time (Dewan and Mendelson [19], Mendelson and Whang [31]), cable TV
subscriptions with configurable bundles of channels subject to capacity and network constraints on the set of
subscribers (Crawford [18], Bakos and Brynjolfsson [5]), and products that can be accompanied with bundles
of information that affect the product’s value (such as user data in online advertising).

Another application of our framework is multiattribute procurement (Beil and Wein [6], Parkes and
Kalagnanam [36], Ronen and Lehmann [39]). The auctioneer is a firm wishing to acquire a service, for example
to outsource a project. The service can be provided with different configurations, for example the duration and
quality, the percentage that is off-shored, etc. Each agent has a private preference over payments and each
configuration of service (e.g., distinct costs for providing each configuration). The auctioneer wishes to
maximize the value for the acquired configuration of service (if any), minus the payment. The mechanism in
this scenario determines for each profile of types (parameterizing preferences) the provider of service and
configuration, and the payment. Though we have phrased our results in terms of an auctioneer as the provider
of a service, the framework applies equally well to solve the problem of multiattribute procurement.

1.1. Related Work
Myerson [34] characterized Bayesian optimal auctions in environments with quasi-linear risk-neutral single-
dimensional agent preferences. Bulow and Roberts [11] reinterpreted Myerson’s approach as reducing the
multiagent single-item auction problem to a related single-agent problem. Alaei [2] relaxes and generalizes
this approach to reduce the problem of approximately optimal multi-item auctions for multidimensional

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
1060 Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS

agents to a multidimensional generalization of the single-agent problems in Bulow and Roberts [11]. The single-
agent problems considered in Bulow and Roberts [11] and Alaei [2] are given by ex ante constraints (i.e., on the
probability that an agent receives a good or service); optimal auctions for multidimensional and nonlinear
agents cannot be generally be reduced to these single-agent problems. Inspired by Alaei [2], our work defines
the single-agent problems (given by interim constraints, i.e., on the probabilities that each type of an agent
receives a good or service) that admit optimal multiagent reductions; and we give such reductions for
matroid-constrained auction problems with general agent preferences. The subsequent work of Alaei et al. [3]
characterizes the environments for which a Bulow and Roberts [11]–style ex ante reduction is optimal and
bounds its loss in revenue more generally when it is not optimal. Importantly, the Bulow and Roberts [11]–style
reduction is analytically and computationally much simpler than the interim reductions that we give in
this paper.

An important aspect of our approach is that it can be applied to general multidimensional agent preferences.
Multidimensional preferences can arise as distinct values for different configurations of the good or service
being auctioned, in specifying a private budget and a private value, or in specifying preferences over risk. We
briefly review related work for agent preferences with multiple values, budgets, or risk parameters.

Multidimensional valuations are well known to be difficult. For example, Rochet and Chone [38] showed
that because bunching (i.e., a group of distinct types treated the same way by the mechanism) cannot be ruled
out easily, the optimal auctions for multidimensional valuations are dramatically different from those for
single-dimensional valuations. Because of this, most results are for cases with special structure (e.g., Armstrong
[4], Wilson [44], and McAfee and McMillan [30]) and often, by using such structures, reduce the problems to
single-dimensional ones (e.g., Roberts [37], Spence [42], and Mirman and Sibley [33]). Our framework does not
need any such structure.

A number of papers consider optimal auctions for agents with budgets; see, for example, Maskin [27], Che
and Gale [15], and Pai and Vohra [35]. These papers rely on budgets being public or the agents being
symmetric; our technique allows for a nonidentical prior distribution and private budgets. Mechanism design
with risk-averse agents was studied by Maskin and Riley [26] and Matthews [28]. Both works assume in-
dependent and identically distributed (i.i.d.) prior distributions and have additional assumptions on risk
attitudes; our reduction does not require these assumptions.

Characterization and ex post implementation of interim feasible mechanisms play vital roles in this work.
For single-item auctions, necessary and sufficient conditions for interim feasibility were developed through
a series of works (Border [9, 8], Matthews [29], Mierendorff [32], Maskin and Riley [26]). These character-
izations have proved useful for deriving properties of mechanisms; the work of Manelli and Vincent [25] is
a recent example. Border [9] characterized symmetric interim feasible auctions for single-item auctions with
identically distributed agent preferences. His characterization is based on the definition of “hierarchical
auctions.” He observes that the space of interim feasible mechanisms is given by a polytope, where vertices of
this polytope correspond to hierarchical auctions, and interior points correspond to convex combinations of
vertices. Mierendorff [32] generalizes Border’s approach and characterization to asymmetric single-item
auctions. The characterization via hierarchical auctions differs from our characterization via ordered subset
auctions in that hierarchical auctions allow for some types to be relatively unordered with the semantics that
these unordered types will be considered in a random order; it is important to allow for this when solving for
symmetric auctions. Convex combinations over hierarchical auctions and ordered subset auctions provide the
same generality. Our work generalizes the characterization from asymmetric single-item auctions to asym-
metric matroid auctions. Independently and concurrently to our work, Che et al. [16] generalize charac-
terization of interim feasibility to auctions with capacity constraints, which includes our matroid feasibility
constraints. However, Che et al. [16] are not concerned with computational issues related to optimization and
implementation on interim allocation rules, nor applications of the characterization in solving optimal auction
problems with general preferences. Che et al. [16] prove the characterization with a network-flow approach,
whereas our proof is based on a polymatroidal decomposition. Subsequent to our work, Cai et al. [13, 14] give
an algorithmic characterization of interim feasibility for general feasibility constraints as stochastic virtual
welfare maximizers. Specifically, they show that the vertices of the interim feasible polytope can be implemented
by an ex post allocation that optimizes an appropriately defined virtual welfare (and any interior point in the
polytope can be implemented as a convex combination of vertices).

Our main result provides computational foundations to the interim feasibility characterizations discussed
above. Independently and contemporaneously, Cai et al. [12] provided similar computational foundations for
the problem with single-item feasibility constraints. Their approach to the single-item constraints is most
comparable to our approach for the matroid constraints, whereby the optimization problem is written as

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS 1061

a convex program that can be solved by the ellipsoid method; although these methods result in strongly
polynomial time algorithms, they are not considered practical. In contrast, our single-item approach, when the
single-agent problems can be solved by a linear program, gives a single linear program that can be practically
solved. Whereas our work gives computationally tractable interim feasibility characterizations with config-
urable service and matroid constraints, Cai et al. [12] study multi-item auctions with agents with additive
preferences (they observe that interim feasibility for multi-item auctions decomposes across the items and,
thus, the single-item characterization of interim feasibility of Mierendorff generalizes). The subsequent work
of Cai et al. [13, 14] generalizes ours and gives polynomial time algorithms for optimizing over and implementing
optimal auctions for general feasibility environments. These algorithms are based on their general characterization
of interim feasibility as stochastic virtual welfare optimizers and the ellipsoid method.

The theses of Alaei [1] and Haghpanah [23] summarize and expound on the results of this paper.

1.2. Organization
In Section 2, we describe single- and multiagent mechanism design problems. In Section 3, we give algorithms
for solving two kinds of single-agent problems: quasi-linear preferences over configurations and private-value
private-budget preferences. In Section 4, we give a high-level description of the multi- to single-agent re-
duction, which allows for efficiently computing optimal mechanisms for many service-based environments.
The key step therein, an efficient algorithm that implements any jointly feasible set of interim allocation rules,
is presented in Section 5. This section is divided into three parts, which address single-unit, multiunit, and
matroid feasibility constraints, respectively. Conclusions and extensions are discussed in Section 6.

2. Preliminaries
We start by defining single-agent preference structure and related incentive and rationality concepts and then
move on to the general multiagent problem definition with interagent feasibility constraints.

2.1. Single-Agent Mechanisms
We consider the provisioning of an abstract service. This service may be parameterized by an attribute (e.g.,
quality of service) and may be accompanied by a required payment. We denote the outcome obtained by an
agent as w ∈ W. We view this outcome as giving an indicator for whether an agent is served and as describing
attributes of the service, such as quality of service and monetary payments. Let Alloc(w) ∈ {0, 1} be an in-
dicator for whether the agent is served; let Payment(w) ∈ R denote any payment the agent is required to make,
and let Cost(w) ∈ R be the cost to the seller. In a randomized environment (e.g., randomness from a ran-
domized mechanism or Bayesian environment), the outcome an agent receives is a random variable from
a distribution over W. The space of all such distributions is denoted Δ(W).

The agent has a type t from a finite type space T. This type is drawn from distribution f ∈ Δ(T) and we
equivalently denote by f the probability mass function. That is, for every t ∈ T, f (t) is the probability that the
type is t. The utility function u : T ×W → R maps the agent’s type and the outcome to real valued utility. The
agent is a von Neumann–Morgenstern expected utility maximizer, and we extend u to Δ(W) linearly, that is,
for w ∈ Δ(W), u(t,w) is the expectation of u where the outcome is drawn according to w. We do not require the
usual assumption of quasi-linearity.

A single-agent mechanism, without loss of generality by the revelation principle, is just an outcome rule, a
mapping from the agent’s type to a distribution over outcomes. We denote an outcome rule by w : T → Δ(W).
We say that an outcome rule w is incentive compatible (IC) and individually rational (IR) if for all t, t′ ∈ T,
respectively,

u(t,w(t)) ≥ u(t,w(t′)), (IC)
u(t,w(t)) ≥ 0. (IR)

We refer to the indicator of service in the outcome rule as the allocation rule. Because the allocation to each
agent is a binary random variable, distributions over allocations are fully described by their expected value.
Therefore the allocation rule x : T → [0, 1] for a given outcome rule w is x(t) � E

[
Alloc(w(t))].

We give two examples to illustrate the abstract model described above. The first example is the standard
single-dimensional linear risk-neutral preference, which is prevalent in auction theory. Here the agent’s type
space is T ⊂ R+, where t ∈ T represents the agent’s valuation for the item. The outcome space is
W � {0, 1} × R+, where an outcome w in this space indicates whether the item is sold to the agent, by Alloc(w),
and at what price, by Payment(w). The agent’s quasi-linear utility function is u(t,w) � t ·Alloc(w) − Payment(w).

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
1062 Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS

The second example is that of an item with m configurations and quasi-linear and risk-neutral preference. Here
the type space is T ⊂ Rm+ , and a type t ∈ T indicates the agent’s valuation for each of the configurations when
the agent’s value for no service is normalized to zero. An outcome space is W � {0, . . . ,m} × R+. The first
coordinate of w specifies which configuration the agent receives or none and Alloc(w) � 1 if it is nonzero; the
second coordinate of w specifies the required payment Payment(w). The agent’s utility for w is the value the
agent attains for the configuration received less her payment. Beyond these two examples, our framework can
easily incorporate more general agent preferences exhibiting, for example, risk aversion or a budget limit (see
Section 3.2).

Consider the following single-agent mechanism design problem. A feasibility constraint is given by an upper
bound x(t) on the probability that the agent is served as a function of her type t; the distribution on types in
T is given by f . The single-agent problem is to find the outcome rule w∗ that satisfies the allocation constraint of x
and maximizes the performance (e.g., revenue). This problem is described by the following program:

max
w

: Et∼f ,w(t)
[
Payment(w(t)) − Cost(w(t))] (SP)

s.t. Ew(t)
[
Alloc(w(t))] ≤ x(t), ∀t ∈ T

w is IC and IR.

We denote the outcome rule w∗ that optimizes this program by Outcome(x) and its revenue by Rev(x) �
Et∼f ,w∗(t)

[
Payment(w∗(t)) − Cost(w∗(t))]. We note that, although this paper focuses on revenue maximization, the

same techniques presented can be applied to maximize (or minimize) general separable objectives, such as
social welfare.

2.2. Multiagent Mechanisms
There are n independent agents. Agents need not be identical (i.e., agent i’s type space is Ti, the probability
mass function for her type is fi, her outcome space is Wi, and her utility function is ui). The profile of agent
types is denoted by t � (t1, . . . , tn) ∈ T1 × · · · × Tn � T, the joint distribution on types is f ∈ Δ(T1) × · · · × Δ(Tn),
a vector of outcomes is (w1, · · · ,wn) ∈ W, and an allocation is (x1, . . . , xn) ∈ {0, 1}n. The mechanism has an
interagent feasibility constraint that permits serving at most k agents (i.e.,

∑
i xi ≤ k). Furthermore, in Section 5.3,

we review the theory of matroids and extend our basic results environments with feasibility constraint derived
from a matroid set system. A mechanism that obeys this constraint is feasible. Importantly, the mechanism has
no interagent constraint on attributes or payments.

A mechanism maps type profiles to a (distribution over) outcome vectors via an ex post outcome rule, denoted
ŵ : T → Δ(W), where ŵi(t) is the outcome obtained by agent i. We will similarly define x̂ : T → [0, 1]n as the
ex post allocation rule (where [0, 1] ≡ Δ({0, 1})). The ex post allocation rule x̂ and the probability mass function f
on types induce interim outcome and allocation rules. For agent i with type ti and t ∼ Distt[t | ti] the interim
outcome and allocation rules are wi(ti) � Distt

[
ŵi(t)

∣∣ ti] and xi(ti) � Distt
[
x̂i(t)

∣∣ ti] ≡ Et
[
x̂i(t)

∣∣ ti] (we use notation
Dist[X |E] to denote the distribution of random variable X conditioned on the event E). A profile of interim
allocation rules is feasible if it is derived from an ex post allocation rule as described above; the set of all
feasible interim allocation rules is denoted by X. A mechanism is Bayesian incentive compatible and interim
individually rational if Equations (IC) and (IR), respectively, hold for all i and all ti.

Consider again the examples described previously of quasi-linear single-dimensional and multi-
configuration preferences. For the single-dimensional example, the multiagent mechanism design problem is
the standard single-item k-unit auction problem. For the multiple configurations example, the multiagent
mechanism design problem is an attribute auction. In this problem, there are k units available, and each unit can
be configured in one of m ways. Importantly, the designer’s feasibility constraint restricts the number of units
sold to be k but places no restrictions on how the units can be configured. For example, a restaurant has k
tables, but each diner can order any of the m entrees on the menu.

A reduction from multiagent mechanism design to single-agent mechanism design as we have described
above would assume that for any type space Ti, any probability mass function fi, and interim allocation rule xi,
the optimal outcome rule Outcome(xi) and its performance Rev(xi) can be found efficiently (see Section 3 for
examples). The goal then is to construct an optimal multiagent auction from these single-agent mechanisms.
Our approach to such a reduction is as follows.

1. Optimize, over all feasible profiles of interim allocation rules x � (x1, . . . , xn) ∈ X, the sum of performances
of the allocation rules

∑
i Rev(xi).

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS 1063

2. Implement the profile of interim outcome rulesw given by wi � Outcome(xi)with a feasible ex post outcome
rule ŵ.

Two issues should be noted. First, step 2 requires an argument that the existence of a feasible ex post outcome
rule for a given profile of interim allocation rules implies the existence of one that combines the optimal interim
outcome rules from Outcome(·). We address this issue in Section 4. Second, step 1 requires that we optimize
over jointly feasible interim allocation rules, and after solving for x, its implementation by an ex post allocation
rule is needed to guide step 2. We address this issue in Section 5. For single-unit (i.e., k � 1) auctions
a characterization of the necessary and sufficient condition for interim feasibility was provided by Kim Border.
Roughly speaking, it requires that for any subset of types, the probability of service according to the interim
allocations be upper bounded by the probability that a random profile of types includes at least a member of
that subset.

Theorem 1 (9). In a single-item auction environment, interim allocation rules x are feasible (i.e., x ∈ X) if and only if the
following holds:

∀S1 ⊆ T1, · · · ,∀Sn ⊆ Tn :
∑n
i�1

E
[
xi(ti)

∣∣ ti ∈ Si
] · Pr[ti ∈ Si

] ≤ Prt∼f
[∃i ∈ [n] : ti ∈ Si

]
. (MRMB)

3. The Single-Agent Problem
Given an allocation rule x(·) as a constraint the single-agent problem is to find the (possibly randomized)
outcome rule w(·) that allocates no more frequently than x(·), that is, ∀t ∈ T, Ew(t)

[
Alloc(w(t))] ≤ x(t), with the

maximum expected performance. Recall that the optimal such outcome rule is denoted by Outcome(x), and its
performance (e.g., revenue) is denoted by Rev(x). We first observe that Rev(·) is concave.

Proposition 1. Rev(·) is a concave function in x.

Proof. Consider any two allocation rules x and x′, and any α ∈ [0, 1]. Define x′′ to be αx + (1 − α)x′. We will show
that αRev(x) + (1 − α)Rev(x′) ≤ Rev(x′′), which proves the claim. To see this, let w and w′ be Outcome(x) and
Outcome(x′), respectively. Definew′′ to be the outcome rule that runswwith probability α, andw′ with probability
1 − α. The incentive compatibility of outcome rules w and w′ imply the incentive compatibility of w′′, because for
any t, t′ ∈ T, we have

E
[
u(t,w′′(t))] � αE

[
u(t,w(t))] + (1 − α)E[u(t,w′(t))]

≥ αE
[
u(t,w(t′))] + (1 − α)E[u(t,w′(t′))]

� E
[
u(t,w′′(t′))].

Additionally, w′′ is feasible because E
[
Alloc(w′′(t))] � αE

[
Alloc(w(t))] + (1 − α)E[Alloc(w′(t))] ≤ x′′(t) for all

t ∈ T. As a result, Rev(x′′) is at least the revenue of w′′, which is in turn equal to αRev(x) + (1 − α)Rev(x′). □

We now give two examples for which the single-agent problem is computationally tractable. Both of these
examples are multidimensional. The first example is that of a standard multi-item auction with unit-demand
preferences. The second example is that of a single item and a private budget. For both of these problems the
single-agent problem can be expressed as a linear program with size polynomial in the cardinality of the
agent’s type space.

3.1. Quasi-linear Preferences over Configurations
There are m configurations available. For j ∈ [m], cj is the cost of configuration j to the seller. There is a finite
type space T ⊂ Rm+ ; the outcome space W is the direct product between an assignment to the agent of one of the
m configurations, or none, and a required payment. Δ(W) is the cross-product of a probability distribution
over which configuration the agent receives and a probability distribution over payments. Without loss of
generality for a quasi-linear agent such a randomized outcome can be represented as w � (w1, . . . ,wm,wp),
where for j ∈ [m], wj is the probability that the agent receives configuration j and wp is the agent’s required
payment.

A single-agent mechanism assigns to each type an outcome as described above. An outcome rule specifies
an outcome for any type t of the agent as w(t) � (w1(t), . . . ,wm(t),wp(t)). This gives m + 1 nonnegative real

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
1064 Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS

valued variables for each of |T| types. The following linear program, which is a simple adaptation of one from
Briest et al. [10] to include the feasibility constraint given by x, solves for the optimal single-agent mechanism:

max :
∑

t∈T wp(t) −
∑

j wj(t)cj
()

f (t)
s.t.

∑
j wj(t) ≤ x(t) ∀t ∈ T∑
j tjwj(t) − wp(t) ≥

∑
j tjwj(t′) − wp(t′) ∀t, t′ ∈ T∑

j tjwj(t) − wp(t) ≥ 0 ∀t ∈ T.

The optimal outcome rule from this program is w∗ � Outcome(x) and its performance is Rev(x) � Et∼f
[
w∗

p(t)
]
.

Proposition 2. The single-agent m-configuration quasi-linear problem can be solved in polynomial time in m and |T|.
The model in this section is equivalent to the Belloni et al. [7] problem of different quality levels. Combined

with our reduction, our result generalizes the solution from single item to multiple items with matroid
feasibility. In addition, we recover an ex post description of the optimal mechanism by implementing feasible
interim allocations.

3.2. Private Budget Preferences
There is a single item available with cost c. The agent has a private value for this item and a private budget (i.e.,
T ⊂ R2+); we will denote by tv and tb this value and budget, respectively. The outcome space is W � {0, 1} × R,
where for w ∈ W the first coordinate wx denotes whether the agent receives the item and the second coordinate
wp denotes her payment. The agent’s utility is

u(t,w) � tvwx − wp if wp ≤ tb, and
−∞ otherwise.

{
Claim 1 below implies that when optimizing over distributions on outcomes we can restrict attention to [0, 1] ×
[0, 1] × R+ ⊂ Δ(W), where the first coordinate denotes the probability that the agent receives the item, the
second coordinate denotes the probability that the agent makes a nonzero payment, and the third coordinate
denotes the nonzero payment made.

Claim 1. Any incentive compatible and individually rational outcome rule can be converted into an outcome rule above with
the same expected revenue that is incentive compatible and individually rational.

As a sketch of the argument to show this claim, note that if an agent with type t receives randomized
outcome w, she is just as happy to receive the item with the same probability and pay her budget with
probability equal to her previous expected payment divided by her budget (recall from Section 2 that
a randomized outcome rule is individually rational if the utility of the agent is nonnegative in expectation; our
transformation preserves this property). Such a payment is budget feasible and has the same expectation as
before. Furthermore, this transformation only increases the maximum payment that any agent makes, which
means that the relevant incentive compatibility constraints are only fewer. Importantly, the only incentive
constraints necessary are ones that prevent types with higher budgets from reporting types with lower
budgets.

A single-agent mechanism assigns to each type an outcome as described above. We denote the distribution
over outcomes for t by w(t) � (wx(t),wρ(t), tb), where only the first two coordinates are free variables. This gives
two nonnegative real valued variables for each of |T| types. The following linear program solves for the
optimal single-agent mechanism:

max :
∑

t∈T
(
tbwρ(t) − c

)
f (t)

s.t. wx(t) ≤ x(t) ∀t ∈ T
txwx(t) − tbwρ(t) ≥ tvwx(t′) − t′bwρ(t′) ∀t, t′ ∈ T with t′b ≤ tb
tvwx(t) − tbwρ(t) ≥ 0 ∀t ∈ T

wρ(t) ≤ 1 ∀t ∈ T.

The optimal outcome rule from this program is w∗ � Outcome(x), and its performance is Rev(x) � Et∼f
[
tbw∗

ρ(t)
]
.

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS 1065

Proposition 3. The single-agent private budget problem can be solved in polynomial time in |T|.
4. Multi- to Single-Agent Reductions
An ex post allocation rule x̂ takes as its input a profile of types t � (t1, . . . , tn) of the agents, and indicates by
x̂i(t) a set of at most k winners. Agent i’s type ti ∈ Ti is drawn independently at random from distribution
fi ∈ Δ(Ti). An ex post allocation rule implements an interim allocation rule xi : Ti → [0, 1], for agent i, if the
probability of winning for agent i conditioned on her type ti ∈ Ti is exactly xi(ti), where the probability is taken
over the random types of other agents and the random choices of the allocation rule. A profile of interim
allocation rules x � (x1, . . . , xn) is feasible if and only if it can be implemented by some ex post allocation rule. X
denotes the space of all feasible profiles of interim allocation rules.

The optimal performance (e.g., revenue) of the single-agent problem with allocation constraint given by x is
denoted by Rev(x). The outcome rule corresponding to this optimal revenue is Outcome(x). Given any feasible
interim allocation rule x ∈ X, say with ex post allocation rule x̂, we would like to construct an auction with
revenue

∑
i Rev(xi). We need to be careful because Outcome(xi), by definition, is only required to have al-

location rules upper bounded by xi [see (SP) in Section 2], whereas the ex post allocation rule x̂i implements xi
exactly, and hence we may need to implement a scaled-down version of x̂i. This is defined formally as follows.

Definition 1. An optimal auction ŵ∗ for feasible interim allocation rule x (with corresponding ex post allocation
rule x̂) is defined as follows on t. For agent i:

1. Let w∗
i � Outcome(xi) be the optimal outcome rule for allocation constraint xi.

2. Let x∗i � E
[
Alloc(w∗

i)
]
be the allocation rule corresponding to outcome rule w∗

i .
3. If x̂i(t) � 1, output

ŵ∗
i (t) ∼

Dist
[
w∗

i (ti)
∣∣Alloc(w∗

i (ti)) � 1
]

w.p. x∗i (ti)/xi(ti), and
Dist

[
w∗

i (ti)
∣∣Alloc(w*

i (ti)) � 0
]

otherwise.

{

4. Otherwise (when x̂i(t) � 0), output ŵ∗
i (t) ∼ Dist

[
w∗

i (ti)
∣∣Alloc(w∗

i (ti)) � 0
]
.

Proposition 4. For any feasible interim allocation rule x ∈ X, the optimal auction for this rule has expected revenue∑
i Rev(xi).

Proof. The ex post outcome rule ŵ∗ of the auction, by construction, induces interim outcome rulew∗ for which the
revenue is as desired. □

The optimal multiagent auction is the solution to optimizing the cumulative revenue of individual single-
agent problems subject to the joint interim feasibility constraint given by x ∈ X.

Proposition 5. The optimal revenue is given by the convex program

max
x∈X :

∑
i Revi(xi). (CP)

Proof. This is a convex program because Rev(·) is concave andX is convex (convex combinations of feasible interim
allocation rules are feasible). By Proposition 4 this revenue is attainable; therefore, it is optimal. □

5. Optimization and Implementation of Interim Allocation Rules
In this section, we address the computational issues pertaining to (1) solving optimization problems over the
space of feasible interim allocation rules and (2) ex post implementation of such a feasible interim allocation
rule. We present computationally tractable methods for both problems.

Normalized Interim Allocation Rules
It will be useful to “flatten” the interim allocation rule x for which xi(ti) denotes the probability that i with type
ti is served (randomizing over the mechanism and the draws of other agent types); we do so as follows.
Without loss of generality, we assume that the type spaces of different agents are disjoint. This can be achieved
by labeling all types of each agent with the name of that agent; that is, for each i ∈ [n] we can replace Ti with
T′
i � {(i, t)|t ∈ Ti} so that T′

1, · · · ,T′
n are disjoint. Denoting the set of all types by TN � ⋃iTi, the interim allocation

rule can be flattened as a vector in [0, 1]TN .

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
1066 Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS

Definition 2. The normalized interim allocation rule x ∈ [0, 1]TN corresponding to interim allocation rule x under
distribution f is defined as

x(ti) � xi(ti) fi(ti) ∀ti ∈ TN .

For the rest of this section, we refer to interim allocation rules via x instead of x. Note that there is a one-to-one
correspondence between x and x as specified by the above linear equation; so any linear or convex opti-
mization problem involving x can be written in terms of x without affecting its linearity or convexity. Because
X denotes the space of feasible interim allocation rules x, we will use X to denote the space of feasible
normalized interim allocation rules.

In the remainder of this section, we characterize interim feasibility and show that normalized interim allocation
rules can be optimized over and implemented in polynomial time.

5.2. Single-Unit Feasibility Constraints
In this section, we consider environments in which at most one agent can be allocated to. For such envi-
ronments, we characterize interim feasibility as implementability via a particular, simple stochastic sequential
allocation mechanism. Importantly, the parameters of this mechanism are easy to optimize efficiently.

A stochastic sequential allocation mechanism is parameterized by a stochastic transition table. Such a table specifies
the probability by which an agent with a given type can steal a token from a preceding agent with a given type. For
simplicity in describing the process we will assume the token starts under the possession of a “dummy agent”
indexed by 0; the agents are then considered in the arbitrary order from 1 to n; and the agent with the token at
the end of the process is the one that is allocated (or none are allocated if the dummy agent retains the token).

Definition 3 (Stochastic Sequential Allocation Mechanism). Parameterized by a stochastic transition table π, the
stochastic sequential allocation mechanism (SSA) computes the allocations for a type profile t ∈ T as follows:

1. Give the token to the dummy agent 0 with dummy type t0.
2. For each agent i: (in order of 1 to n)

if agent i′ has the token, transfer the token to agent i with probability π(ti′ , ti).
3. Allocate to the agent who has the token (or none if the dummy agent has it).

We provide some examples of SSA in Appendix B. In particular, we present two examples of feasible ex post
allocation rules and show that SSA can implement only the first one. We then show that even though the
second ex post allocation rule cannot be implemented via SSA, SSA still can implement the corresponding
interim allocation rule (with a different ex post allocation). This phenomenon is general. Later in this section
we show that any feasible interim allocation rule is implementable by an SSA.

We next present a dynamic program, in the form of a collection of linear equations, for calculating the
interim allocation rule implemented by SSA for a given π. Let y(ti′ , i) denote the ex ante probability of the event
that agent i′ has type ti′ and is holding the token at the end of iteration i. Let z(ti′ , ti) denote the ex ante
probability in iteration i of SSA that agent i has type ti and takes the token from agent i′, who has type ti′ .

The following additional notation will be useful in this section. For any subset of agents N′⊆N � {1, . . . ,n},
we define TN′ � ⋃i∈N′Ti. (Recall that without loss of generality agent type spaces are assumed to be disjoint.)
The shorthand notation ti ∈ S for S ⊆ TN will be used to quantify over all types in S and their corresponding
agents (i.e., ∀ti ∈ S is equivalent to ∀i ∈ N,∀ti ∈ S ∩ Ti).

The normalized interim allocation rule x resulting from the SSA is exactly given by the dynamic program
specified by the following linear equations.

y(t0, 0) � 1, (S.1)

y(ti, i) �
∑

ti′ ∈T{0,...,i−1}
z(ti′ , ti), ∀ti ∈ T{1,...,n} (S.2)

y(ti′ , i) � y(ti′ , i − 1) −∑
ti∈Ti

z(ti′ , ti), ∀i ∈ {1, . . . ,n},∀ti′ ∈ T{0,...,i−1} (S.3)

z(ti′ , ti) � y(ti′ , i − 1)π(ti′ , ti) fi(ti), ∀ti ∈ T{1,...,n},∀ti′ ∈ T{0,...,i−1} (π)
x(ti) � y(ti,n), ∀ti ∈ T{1,...,n}.

Note that π is the only adjustable parameter in the SSA algorithm, so by relaxing the equation (π) and
replacing it with the following inequality we can specify all possible dynamics of the SSA algorithm.

0 ≤ z(ti′ , ti) ≤ y(ti′ , i − 1) fi(ti), ∀ti ∈ T{1,...,n},∀ti′ ∈ T{0,...,i−1}. (S.4)

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS 1067

Let S denote the convex polytope captured by the four sets of linear constraints (S.1) through (S.4) above, that
is, (y, z) ∈ S if and only if y and z satisfy the aforementioned constraints. Note that every (y, z) ∈ S corresponds
to some stochastic transition table π by solving equation (π) for π(ti, ti′). We show that S captures all feasible
normalized interim allocation rules; that is, the projection of S on x(·) � y(·,n) is exactly X, as formally stated
by the following theorem.

Theorem 2. A normalized interim allocation rule x is feasible if and only if it can be implemented by the SSA algorithm for
some choice of stochastic transition table π. In other words, x ∈ X if and only if there exists (y, z) ∈ S such that x(ti) � y(ti, n)
for all ti ∈ TN.

Corollary 1. Given a blackbox for each agent i that solves for the optimal expected revenue Revi(xi) for any feasible interim
allocation rule x, the optimal interim allocation rule can be computed by the following convex program, which is of quadratic
size in the total number of types.

maximize
∑n
i�1

Revi(xi)
subject to y(ti, n) � x(ti) � xi(ti) fi(ti), ∀ti ∈ TN

(y, z) ∈ S.

Furthermore, given an optimal assignment for this program, the computed interim allocation rule can be implemented by
SSA using the stochastic transition table defined by

π(ti′ , ti) � z(ti′ , ti)
y(ti′ , i − 1) fi(ti) , ∀ti ∈ T{1,...,n},∀ti′ ∈ T{0,...,i−1}.

If y(ti, i′ − 1) � 0, π(ti, ti′) can be set to an arbitrary value in [0, 1].
Next, we present a few definitions and lemmas that are used in the proof of Theorem 2. Two transition

tables π and π′ are considered equivalent if their induced normalized interim allocation rules for SSA are equal.
Type ti is called degenerate for π if in the execution of SSA the token is sometimes passed to type ti but it is
always taken away from ti later, that is, if y(ti, i)>0 but y(ti,n) � 0. The stochastic transition table π is de-
generate if there is a degenerate type. For π, type ti is augmentable if there exists a π′ (with a corresponding y′)
that is equivalent to π for all types except ti and has y(ti,n)< y′(ti, n) (define t0 to be augmentable unless the
dummy agent never retains the token, in which case all agents are nonaugmentable, and for technical reasons
we declare the dummy agent to be nonaugmentable as well).

Lemma 1. For any stochastic transition table π there exists an equivalent π′ that is nondegenerate.

Lemma 2. For any nondegenerate stochastic transition table π, any nonaugmentable type ti always wins against any
augmentable type ti′ . That is,

• if i′ < i and ti′ has nonzero probability of holding the token, then π(ti′ , ti) � 1, that is, ti always takes the token away from
ti′ ; and

• if i< i′ and ti has nonzero probability of holding the token, then π(ti, ti′) � 0, that is, ti′ never takes the token away from ti.

It is possible to view the token passing in stochastic sequential allocation as a network flow. From this
perspective, the augmentable and nonaugmentable types form a minimum-cut and Lemma 2 states that the
token must eventually flow from the augmentable to nonaugmentable types. We defer the proof of this lemma
to Appendix B where the main difficulty in its proof is that the edges in the relevant flow problem have
dynamic (nonconstant) capacities.

Proof of Theorem 2. Any normalized interim allocation rule that can be implemented by the SSA algorithm is
feasible because at most one real agent will hold the token at the end, so we only need to prove the opposite
direction. The proof is by contradiction; that is, given a normalized interim allocation rule x, we show that if there is
no (y, z) ∈ S such that x(·) � y(·, n), then x must be infeasible. Consider the following linear program for a given
x (i.e., x is constant).

maximize
∑

ti∈T{1,...,n}
y(ti,n)

subject to y(ti,n) ≤ x(ti), ∀ti ∈ T{1,...,n}
(y, z) ∈ S.

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
1068 Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS

Let (y, z) be an optimal assignment of this linear programming (LP). If the first set of inequalities are all tight
(i.e., x(·) � y(·,n)), then x can be implemented by the SSA, so by contradiction there must exists a type τ∗ ∈ TN for
which the inequality is not tight. Note that τ∗ cannot be augmentable—otherwise, by the definition of aug-
mentability, the objective of the LP could be improved. Partition TN to augmentable types T+

N and nonaugmentable
types T−

N . Note that T−
N is nonempty because τ∗ ∈ T−

N . Without loss of generality, by Lemma 1 we may assume
that (y, z) is nondegenerate, because there exists a nondegenerate assignment with the same objective value.

An agent wins if she holds the token at the end of the SSA algorithm. The ex ante probability that some
agent with nonaugmentable type wins is

∑
ti∈T−

N
y(ti,n). On the other hand, Lemma 2 implies that the first (in

the order agents are considered by SSA) agent with nonaugmentable type will take the token from her
predecessors and, although she may lose the token to another nonaugmentable type, the token will not be
relinquished to any augmentable type. Therefore, the probability that an agent with a nonaugmentable type is
the winner is exactly equal to the probability that at least one such agent exists, therefore

Prt∼f
[
∃i : ti ∈ T−

N

]
� ∑

ti∈T−
N

y(ti, n)<
∑
ti∈T−

N

x(ti).

The second inequality follows from the assumption above that τ∗ satisfies y(τ∗, n)< x(τ∗). We conclude that
x requires an agent with nonaugmentable type to win more frequently than such an agent exists, which is
a contradiction to interim feasibility of x. □

The contradiction that we derived in the proof of Theorem 2 yields a necessary and sufficient condition, as
formally stated in the following corollary, for feasibility of any given normalized interim allocation rule.

Corollary 2. A normalized interim allocation rule x is feasible if and only if∑
τ∈S

x(τ) ≤ Prt∼f
[∃i : ti ∈ S

]
, ∀S ⊆ TN . (MRMB)

The necessity of condition (MRMB) is trivial because the left-hand side denotes the probability of some type in
S happening and also being allocated to, whereas the right-hand side denotes the probability of at least one
type in S happening. Its sufficiency was previously proved by Border [9]. This condition implies that the space
of all feasible normalized interim allocation rules, X, can be specified by 2D linear constraints on D-di-
mensional vectors x. An important consequence of Theorem 2 is that X can equivalently be formulated by only
O(D2) variables and O(D2) linear constraints as a projection of S, therefore any optimization problem over X
can equivalently be solved over S.

5.3. k-Unit Feasibility Constraints
In this section, we consider environments in which at most k agents can be simultaneously allocated to. First,
we generalize Border’s characterization of interim feasibility to environments with k-unit feasibility constraint.
Our generalization implies that the space of feasible normalized interim allocation rules is a polymatroid
(Theorem 3). Second, we show that the normalized interim allocation rules corresponding to the vertices of
this polymatroid are implemented by simple deterministic ordered-subset-based allocation mechanisms
(Theorem 4). Third, we observe that optimization problems can be efficiently solved over polymatroids; this
allows us to optimize over feasible interim allocation rules (Lemma 4). Furthermore, for any point in this
polymatroid, the corresponding normalized interim allocation rule can be implemented by (1) expressing it as
a convex combination of the vertices of the polymatroid, (2) sampling from this convex combination, and (3) using
the ordered subset mechanism corresponding to the sampled vertex. We present an efficient randomized rounding
routine for rounding a point in a polymatroid to a vertex, which combines the steps (1) and (2) (Theorem 6). These
approaches together yield efficient algorithms for optimizing and implementing interim allocation rules.

5.3.1. Polymatroid Preliminaries. This subsection defines polymatroids and their related concepts. The main
construct is a standard characterization of vertices of a polymatroid using ordered subsets of its ground set in
Proposition 6 (see Schrijver [40] for a comprehensive treatment of polymatroids).

Consider an arbitrary set function ^ : 2U → R+ defined over an arbitrary finite set U; let P(^) denote the
polytope associated with ^ defined as

P(^) �
{
y ∈ RU

+
∣∣∣∀S ⊆ U : y(S) ≤ ^(S)

}
,

where y(S) denotes ∑s∈S y(s). The convex polytope P(^) is called a polymatroid if ^ is a submodular function.
Even though a polymatroid is defined by an exponential number of linear inequalities, the separation problem

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS 1069

for any given y ∈ RU+ can be solved in polynomial time as follows: find S∗ � argmin
S

^(S) − y(S); if y is in-
feasible, the inequality y(S∗) ≤ ^(S∗) must be violated, and that yields a separating hyperplane for y. Note that
^(S) − y(S) is itself submodular in S, so it can be minimized in strong polynomial time. Consequently, convex
optimization problems can be solved over polymatroids in polynomial time. Next, we describe a character-
ization of the vertices of a polymatroid. This characterization plays an important role in our proofs and also in
our ex post implementation of interim allocation rules.

Definition 4. For an arbitrary finite set U, an ordered subset π ⊆ U is given by an ordering on elements π �
(π1, . . . , π|π|), where shorthand notation πr ∈ π denotes the rth element in π.

The following characterization of vertices of polymatroid via ordered subsets was shown by Edmonds [21]
and Shapley [41].

Proposition 6. Let ^ : 2U → R+ be an arbitrary nondecreasing submodular function with ^(∅) � 0 and let P(^) be the
associated polymatroid with the set of vertices V(P(^)). Every ordered subset π of U (see Definition 4) corresponds to
a vertex of (P(^)), denoted by V(P(^), π), which is computed as follows.

∀s ∈ U : y(s) � ^({π1, . . . , πr}) −^({π1, . . . , πr−1}) if s � πr ∈ π
0 if s /∈ π.

{
Furthermore, for every y ∈ V(P(^)) there exists a corresponding π.

We next show that for any vertex of a polymatroid a corresponding ordered subset of elements can be
computed efficiently.

Proposition 7. For any y ∈ V(P(^)) the corresponding π can be computed efficiently via a greedy algorithm.

Proof. The greedy algorithm works as follows. For each i from 1 to |U|, find s ∈ U \ {π1, . . . , πi−1} such that
y(s) � ^({π1, . . . , πi−1, s}) −^({π1, . . . , πi−1}), breaking ties arbitrarily, and set πi ← s. We show the correctness of
the the greedy algorithm via contradiction. Suppose i is the first iteration for which we cannot find such s. Let π∗
denote the ordered subset corresponding to y. Let i∗ be the smallest index such that π∗

i∗ �∈ {π1, . . . , πi−1}. Both
{π1, . . . , πi−1} and {π∗

1, . . . , π
∗
i∗} are tight sets with respect to y, so by submodularity of ^ their union, which is

{π1, . . . , πi−1} ∪ {π∗
i∗}, is also a tight set, hence we could have picked s � π∗

i∗ in iteration i, contradicting the as-
sumption that we could not find such s. □

5.3.2. Characterization and Implementation of Interim Feasibility. This subsection characterizes interim feasible
allocation rules as an appropriately defined polymatroid. It also defines ordered subset allocation mechanisms and
uses Proposition 6 to show that they are simple ex post implementations of interim feasible allocations.

Characterization of Interim Feasibility. We next characterize interim feasible mechanisms with k units, gen-
eralizing Border’s result. Border’s characterization of interim feasibility for k � 1 unit auctions states that the
probability of serving a type in a subspace of type space is no more than the probability that a type in that
subspace shows up. This upper bound is equivalent to the expected minimum of one and the number of types
from the subspace that show up; furthermore, this equivalent phrasing of the upper bound extends to
characterize interim feasibility in k-unit auctions.

We express an ex post allocation for type profile t by x̂t ∈ {0, 1}TN as follows. For all t′i ∈ TN , x̂t(t′i) � 1 if player
i is served and ti � t′i and 0 otherwise. This definition of ex post allocations is convenient because the
normalized interim allocation rule is calculated by taking its expectation, that is, x(t′i) � Et

[
x̂t(t′i)

]
. Ex post

feasibility requires that

x̂t(S) ≤ min(|t ∩ S|, k), ∀t ∈ T,∀S ⊆ TN , (1)

where t ∩ S denotes {t1, . . . , tn} ∩ S. In other words, for any profile of types t, the number of types in S that are
served by x̂t must be at most the number of types in S that showed up in t and the upper bound k. Taking
expectations of both sides of this equation with respect to t motivates the following definition and theorem.

Definition 5. The expected rank function for distribution f and subspace S ⊂ TN is

gk(S) � Et∼f
[
min

(|t ∩ S|, k)]. (gk)

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
1070 Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS

Theorem 3. For supply constraint k and distribution f, the space of all feasible normalized interim allocation rules,X, is the
polymatroid associated with gk, that is, X � P(gk). In particular, for all x ∈ X,

x(S) ≤ Et
[
min(|t ∩ S|, k)] � gk(S), ∀S ⊆ TN . (2)

The proof of this theorem will be deferred to the next section, where we will derive a more general theorem. A
key step in the proof will be relating the statement of the theorem to the polymatroid theory described already.
To show that the constraint of the theorem is a polymatroid, we observe that the expected rank function is
submodular.

Lemma 3. The expected rank function gk is submodular.

Proof. Observe that for any fixed t, min(t ∩ S, k) is a submodular function in S, and therefore gk is a convex
combination (taking the expectation is the same as taking a convex combination) of submodular functions, so gk is
submodular. □

Implementation of Interim Allocation Rules. We now relate vertices of the polymatroid to ordered subset al-
location mechanisms, defined below.

Definition 6 (Ordered Subset Allocation Mechanism). Parameterized by an ordered subset π of TN (see Definition 4),
the ordered subset mechanism, on profile of types t ∈ T, orders the agents on the basis of their types according toπ and
allocates to the agents greedily (e.g., with k units available the k first-ordered agents received a unit). An agent iwith
type ti �∈ π is never served.

Remark 1. The virtual valuation-maximizing mechanisms from the classic literature on revenue-maximizing
auctions are ordered subset mechanisms; see, for example, Myerson [34], an observation made previously by
Edith [20]. The difference between these ordered subset mechanisms and the classic virtual valuationmaximization
mechanisms is that our ordered subset will come from solving an optimization on the whole auction problem,
whereas Myerson’s virtual values come directly from single-agent optimizations.

Theorem 4. For supply constraint k, for an arbitrary vertex x � V(P(gk), π) ∈ X of the polymatroid P(gk), the unique
ex post implementation is the ordered subset mechanism induced by π (Definition 6).

Proof. Let x � V(P(gk), π) be an arbitrary vertex of P(gk) with a corresponding ordered subset π; by
Proposition 6, such a π exists for every vertex of a polymatroid. For every integer r ≤ |π|, define Sr � {π1, . . . , πr} as
the r-element prefix of the ordering. By Proposition 6, inequality (2) must be tight for every Sr, which implies that
inequality (1) must also be tight for every Sr and every t ∈ T. Observe that inequality (1) being tight for a subset S of
types implies that any ex post allocationmechanism implementing xmust allocate asmuch as possible to types in S.
By definition, an ordered subset mechanism allocates to as many types as possible (up to k) from each Sr; this is the
unique outcome given that inequality (1) is tight for every Sr. □

5.3.3. Computationally Efficient Optimization and Implementation. The characterization of interim feasibility as
a polymatroid constraint immediately enables efficient solving of optimization problems over the feasible
interim allocation rules, as long as we can compute gk efficiently (see Schrijver [40] for optimization over
polymatroids). The following lemma states that gk can be computed efficiently.

Lemma 4. For independent agents (i.e., if f is a product distribution), gk(S) can be exactly computed in time O((n + |S|) · k)
for any S ∈ TN using dynamic programming.

Ex Post Implementation of Feasible Interim Allocation Rules. We now address the task of finding an ex post
implementation corresponding to any x ∈ X. By Theorem 7, if x is a vertex of X, it can be implemented by an
ordered subset allocation mechanism as explained in Definition 6. Because any point in the polymatroid (or
any convex polytope) can be specified as a convex combination of its vertices, to implement the corresponding
interim allocation rule it is enough to show that this convex combination can be efficiently sampled from. An
ex post implementation can then be obtained by sampling a vertex and using the ordered subset mechanism
corresponding to that vertex. Instead of explicitly computing this convex combination, we present a general
randomized rounding routine RANDROUND(·), which takes a point in a polymatroid and returns a vertex of the
polymatroid such that the expected value of every coordinate of the returned vertex is the same as the original
point. This approach is formally described next.

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS 1071

Definition 7 (Randomized Ordered Subset Allocation Mechanism). Parameterized by a normalized interim allocation
rule x ∈ X, a randomized ordered subset allocation mechanism (RRA) computes the allocation for a profile of types t ∈ T
as follows.

1. Let (x∗, π∗) ← RR(x).
2. Run the ordered subset mechanism (Definition 6) with ordered subset π∗.

Theorem 5. Any normalized interim allocation rule x ∈ X can be implemented by the randomized ordered subset allocation
mechanism (Definition 7) as a distribution over deterministic ordered subset allocation mechanisms.

Proof. The proof follows from linearity of expectation. □

Randomized Rounding for Polymatroids. We describe RR(·) for general polymatroids. First we present
a few definitions and give an overview of the rounding operator. Consider an arbitrary finite set U and
a polymatroid P(^) associated with a nondecreasing submodular function ^ : 2U → R+ with ^(∅) � 0. A set
S ⊆ U is called tight with respect to a y ∈ P(^) if and only if y(S) � ^(S). A set S � {S0, . . . , Sm} of subsets of U is
called a nested family of tight sets with respect to y ∈ P(^) if and only if the elements of S can be ordered and
indexed such that ∅ � S0 ⊂ · · · ⊂ Sm ⊆ U, and such that Sr is tight with respect to y (for every r ∈ [m]).

RR(y) takes an arbitrary y ∈ P(^) and iteratively makes small changes to it until a vertex is reached.
At each iteration � it computes y� ∈ P(^) and a nested family of tight sets S� (with respect to y�) such that

• E[y� |y�−1] � y�−1, and
• y� is closer to a vertex (compared with y�−1) in the sense that either the number of nonzero coordinates has

decreased by one or the number of tight sets has increased by one.
Observe that the above process must stop after at most 2|U| iterations (in fact we will show that it stops after

at most |U| iterations). At each iteration � of the rounding process, a vector ŷ ∈ RU and δ, δ′ ∈ R+ are computed
such that both y�−1 + δ · ŷ and y�−1 − δ′ · ŷ are still in P(^), but closer to a vertex. The algorithm then chooses
a random δ′′ ∈ {δ,−δ′} such that E[δ′′] � 0, and sets y� ← y�−1 + δ′′ · ŷ.
Definition 8 (RR(y)). This operator takes as its input a point y ∈ P(^) and returns as its output a pair
(y∗, π∗), where y∗ is a random vertex of P(^) and π∗ is its associated ordered subset (see Proposition 6) and such that
E[y∗] � y.

The algorithm modifies y iteratively until a vertex is reached. It also maintains a nested family of tight sets S
with respect to y. As we modify S, we always maintain an ordered labeling of its elements, that is, if S �
{S0, . . . ,Sm}, we assume that ∅ � S0 ⊂ · · · ⊂ Sm ⊆ U; in particular, the indices are updated whenever a new tight
set is added. For each s ∈ U, define 1s ∈ [0, 1]U as a vector whose value is 1 at coordinate s and 0 everywhere else.

1. Initialize S ← {∅}.
2. As long as any of the following steps is applicable, apply the step (in any order):
• If there exist distinct s, s′ ∈ Sr \ Sr−1 for some r ∈ [m]:

(a) Set ŷ ← 1s − 1s′ , and compute δ, δ′ ∈ R+ such that y + δ · ŷ has a new tight set S and y − δ′ · ŷ has a new tight
set S′; that is,

—set S ← argmin
Sr−1+s⊆S⊆Sr−s′

^(S) − y(S), and δ ← ^(S) − y(S);
—set S′ ← argmin

Sr−1+s′⊆S′⊆Sr−s
^(S′) − y(S′), and δ′ ← ^(S′) − y(S′).

(b)
with prob. δ

δ+δ′ : set y ← y + δ · ŷ, and add S to S.
with prob. δ′

δ+δ′ : set y ← y − δ′ · ŷ, and add S′ to S.

{
• If there exists s ∈ U \ Sm for which y(s)> 0:

(a) Set ŷ ← 1s, and compute δ, δ′ ∈ R+ such that y + δ · ŷ has a new tight set S and y − δ′ · ŷ has a zero at
coordinate s; that is,

—set S ← argmin
S⊇Sm+s

^(S) − y(S), and δ ← ^(S) − y(S);
—set δ′ ← y(s).

(b)
with prob. δ

δ+δ′ : set y ← y + δ · ŷ, and add S to S.
with prob. δ′

δ+δ′ : set y ← y − δ′ · ŷ
{

3. Set y∗ ← y and define the ordered subset π∗ : Sm → [m] according to S; that is, for each r ∈ [m] and s ∈ Sr \ Sr−1,
define π∗(s) � r.

4. Return (y∗, π∗).

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
1072 Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS

Theorem 6. For any nondecreasing submodular function ^ : 2U → R+ and any y ∈ P(^), the operator RR(y)
returns a random (y∗, π∗) such that y∗ ∈ V(P(^)), and π∗ is the ordered subset corresponding to y∗ (see Proposition 6),
and such that E[y∗] � y. Furthermore, the algorithm runs in strong polynomial time. In particular, it runs for O(|U|)
iterations, whereby each iteration involves solving two submodular minimizations.

5.4. Matroid Feasibility Constraints
In this section, we consider environments where the feasibility constraints are encoded by a matroid } �
(TN ,(). For every type profile t ∈ T, a subset S ⊆ {t1, . . . , tn} can be simultaneously allocated to if and only if S ∈ (.
We show that the results of subsection 5.3 can be generalized to environments with matroid feasibility constraints.

5.4.1. Matroid Preliminaries. A matroid } � (U,() consists of a ground set U and a family of independent sets
(⊆ 2U with the following two properties.

• For every I, I′, if I′ ⊂ I ∈ (, then I′ ∈ (.
• For every I, I′ ∈ (, if |I′|< |I|, there exists s ∈ I \ I′ such that I′ ∪ {s} ∈ (.
For every matroid }, the rank function r} : 2U → N ∪ {0} is defined as follows: for each S ⊆ U, r}(S) is the

size of the maximum independent subset of S. A matroid can be uniquely characterized by its rank function;
that is, a set I ⊆ U is an independent set if and only if r}(I) � |I|. A matroid rank function has the following two
properties:

• r}(·) is a nonnegative nondecreasing integral submodular function.
• r}(S) ≤ |S|, for all S ⊆ U.
Furthermore, every function with the above properties defines a matroid.
Any set S ⊆ U can be equivalently represented by its incidence vector χS ∈ {0, 1}U, which has a 1 at every

coordinate s ∈ S and 0 everywhere else.

Proposition 8. Consider an arbitrary finite matroid } � (U,() with rank function r}(·). Let P(r}) denote the polymatroid
associated with r}(·) (see Section 5.3); the vertices of P(r}) are exactly the incidence vectors of the independent sets of }.

See Schrijver [40] for a comprehensive treatment of matroids.

5.4.2. Characterization of Interim Feasibility. We now generalize the characterization of interim feasibility as the
polymatroid given by the expected rank of the matroid. From this generalization the computational results of
the preceding section can be extended from k-unit environments to matroids.

Let b denote the random bits used by an ex post allocation rule, and let x̂t,b ∈ {0, 1}TN denote the ex post
allocation rule (i.e., the incidence vector of the subset of types that get allocated to) for type profile t ∈ T and
random bits b. By definition of polymatroidal feasibility constraint, x̂t,b is a feasible ex post allocation if and
only if it satisfies the following class of inequalities.

x̂t,b(S) ≤ r}(t ∩ S), ∀t ∈ T,∀S ⊆ TN . (3)

The above inequality states that the subset of types that get allocated to must be an independent set of the
restriction of matroid } to {t1, . . . , tn}. The expectation of the left-hand side is exactly the normalized interim
allocation rule; that is, for any t′i ∈ TN , x(t′i) � Et,b

[
x̂t,b(t′i)

]
. Taking expectations of both sides of (3) then mo-

tivates the following definition and theorem that characterize interim feasibility.

Definition 9. The expected rank for distribution f, subspace S ⊂ TN , and matroid } with rank function r} is

g}(S) � Et∼f
[
r}(t ∩ S)], (g})

where t ∩ S denotes {t1, . . . , tn} ∩ S.

Theorem 7. For matroid } and distribution f, the space of all feasible normalized interim allocation rules, X, is the
polymatroid associated with gk, that is, X � P(g}), that is, for all x ∈ X,

x(S) ≤ Et
[
r}(t ∩ S)] � g}(S), ∀S ⊆ TN . (4)

Theorem 8. For matroid }, if x ∈ X is the vertex VERTEX (P(g}), π) of the polymatroid P(g}) the unique ex post
implementation is the ordered subset mechanism induced by π (Definition 6).

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS 1073

To prove the above theorems, we use the following decomposition lemma, which applies to general
polymatroids.

Lemma 5 (Polymatroidal Decomposition). Let U be an arbitrary finite set, ^1, . . . ,^m : 2U → R+ be arbitrary non-
decreasing submodular functions, and^∗ � ∑m

j�1 λj^j be an arbitrary convex combination of them. For every y∗ the following
holds: y∗ ∈ P(^∗) if and only if it can be decomposed as y∗ � ∑m

j�1 λjyj such that yj ∈ P(^j) (for each j ∈ [m]). Furthermore, if
y∗ is a vertex of P(^∗), this decomposition is unique. More precisely, if y∗ � V(P(^∗), π) for some ordered subset π, then
yj � V(P(^j), π) (for each j ∈ [m]).
Proof. First, observe that the only-if part is true; that is, if yj ∈ P(^j) (for each j ∈ [m]), we can write

yj(S) ≤ ^j(S) ∀S ⊆ U, (5)

multiplying both sides by λj and summing over all j ∈ [m] we obtain

y∗(S) � ∑m
i�1

λjy j(S) ≤ ∑m
j�1

λj^j(S) � ^∗(S) ∀S ⊆ U, (6)

which implies that y∗ ∈ P(^∗).
Next, we prove that for every y∗ ∈ P(^∗) such a decomposition exists. Note that a polymatroid is a convex

polytope, so any y∗ ∈ P(^∗) can be written as a convex combination of vertices as y∗ � ∑
� α

�y∗�, where each y∗�
is a vertex of P(^∗); consequently, if we prove the claim for the vertices of P(^∗), that is, that y∗� � ∑m

j�1 λjy�,j for
some y�,j ∈ P(^j), then a decomposition of y∗ � ∑m

j�1 λjyj can be obtained by setting yj � ∑
� α

�y�,j.
Next, we prove the second part of the theorem, which also implies that a decomposition exists for every

vertex of P(^∗). Let y∗ � V(P(^∗), π) be an arbitrary vertex of P(^∗) with a corresponding ordered subset
π; by Proposition 6, such a π exists for every vertex of a polymatroid. For every integer r ≤ |π|, define Sr �
{π1, . . . , πr} as the r-element prefix of the ordering. By Proposition 6, inequality (6) is tight for every Sr, which
implies that inequality (5) must also be tight for each Sr and for every j ∈ [m]. Consequently, for each s ∈ πwith
r being the index for which s � πr, and each j ∈ [m], by taking the difference of the inequality (6) for Sr and Sr−1,
given that they are tight, we obtain

yj(s) � ^j(Sr) −^j(Sr−1).
Furthermore, for each s �∈ π, y∗(s) � 0, which implies that yj(s) � 0 for every j ∈ [m]. Observe that we have
obtained a unique yj for each j ∈ [m], which is exactly the vertex of P(^j) corresponding to π as described in
Proposition 6, and we have∑m

j�1
λjyj(s) � ∑m

j�1
λj(^j(Sr) −^j(Sr−1)) � y∗(Sr) − y∗(Sr−1) � y∗(s). N

Proof of Theorem 7. The inequality in Equation (3) states that the subset of types that get allocated to must be an
independent set of the restriction of matroid } to {t1, . . . , tn}. Define rt}(S) � r}(t ∩ S) (for all (S ⊆ TN). Notice that
rt} is a submodular function. The above inequality implies that x̂t,b ∈ P(rt}). Define x̂t � Eb[x̂t,b]. Observe that
x � Et[x̂t], so x is a feasible normalized interim allocation rule if and only if it can be decomposed as x � ∑

t∈T f (t)x̂t,
where x̂t ∈ P(rt}) for every t ∈ T; by Lemma 5, this is equivalent to x ∈ P(g}), where g}(S) � ∑

t∈T f (t)rt}(S) �
Et[rt}(S)] (for all S ⊆ TN), as defined in Definition 9. □

Proof of Theorem 8. Suppose x � V(P(g}), π) for some ordered subset π. By Lemma 5, the decomposition of
x is unique and is given by x̂t � V(P(rt}), π). Notice that this is the same allocation obtained by the de-
terministic rank-based allocation mechanism, which ranks according to π (see Definition 6). □

5.4.3. Computationally Efficient Optimization and Implementation. As in Section 5.3, the characterization of
interim feasibility as a polymatroid constraint immediately enables efficient solving of optimization problems
over the feasible normalized interim allocation rules as long as we can compute g} efficiently (see Schrijver
[40] for optimization over polymatroids). Depending on the specific matroid, it might be possible to compute
g} exactly in polynomial time (e.g., as in Lemma 4); otherwise, an approximate expected rank function ĝ} can
be computed in polynomial time such that ĝ} is a [1 − δ, 1 + δ]-approximation of g} everywhere with high
probability as formally stated in Theorem 9; we then compute the optimal interim allocation rules with respect

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
1074 Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS

to the polymatroid of (1 − δ)ĝ}. Note that with high probability the polymatroid of (1 − δ)ĝ} is contained in the
polymatroid of g}; conversely, with high probability the polymatroid of (1 − 2δ)g} is contained in (1 − δ)ĝ};
therefore with high probability the optimal interim allocation rule with respect to (1 − δ)ĝ} is feasible with
respect to g}, and the optimal mechanism with respect to (1 − δ)ĝ} is a 1 − 2δ approximation of the optimal
mechanism with respect to g}. Subsequent to our work, Gopalan et al. [22] showed that exact calculation of
optimal auctions is computationally hard in this setting (we will revisit this discussion in Section 6).

Theorem 9. Let g}(S) � Et∼f[r}(t ∩ S)] be an expected rank function, and let D � ∑
i |Ti| be the total number of agent types.

For any ε, δ ∈ (0, 1), an approximate expected rank function ĝ}(S) can be constructed by using O n4D3(ln(1/ε)+D)
δ4

()
randomly

sampled type profiles such that, with probability 1 − ε, ĝ} is a [1 − δ, 1 + δ]-approximation of g}.

Proof. The basic idea is to randomly sample a set of type profiles in advance and then use them to estimate g}(S) on
any given S by taking the average of r}(t ∩ S) over all the samples. The problem with this approach is that the
number of samples necessary to obtain the desired multiplicative approximation for g}(S) on any given S is
proportional to 1/g}(S), which could be arbitrarily large. Note that even though r}(t ∩ S) is integral, g}(S) �
Et∼f[r}(t ∩ S)] could still be arbitrarily small because the types in S could happen with arbitrarily low probability.
We show that the problem can be avoided by a nonuniform sampling scheme in which we only sample type
profiles with at most one rare type by fixing one agent and one rare type at a time and randomly sampling the
nonrare types of the rest of the agents as formally described next.

A type τ ∈ Ti is called rare if and only if Pr[ti � τ] ≤ θ for some choice of θ to be specified later. Let 5 be the
random variable denoting the number of rare types in t. Let 5i be the indicator random variable for ti being
rare, and let 5−i be the random variable for the number of rare types in t−i. Furthermore, let Ri ⊆ Ti denote the
set of all rare types of agent i.

Given an event %, let g%}(S) denote the expected rank function conditioned on % defined as g%}(S) �
Et[r}(t ∩ S) 1(t ∈ %)].
Sampling Scheme. Consider the set of disjoint events

H � {{5 � 0}} ∪ {{ti � τ,5−i � 0}}i∈[n],τ∈Ri
.

For each % ∈ H, let {t%,j}j∈[N] be N type profiles sampled independently at random with replacement con-
ditioned on %. We compute the estimated expected rank function as

ĝ}(S) �
∑
%∈H

1
N

∑N
j�1

r}(t%,j ∩ S) Pr [%]. (7)

Observe that E[ĝ}(S)] � ∑
%∈H g%}(S) � g5≤1

} (S) because E[r}(t%,j ∩ S) |%]Pr[%] � g%}(S) and because H is a par-
tition of the event {5 ≤ 1}. Therefore the following two steps are enough to complete the proof:

(I) We prove that g5≤1
} is a [1 − δ/2, 1]-approximation of g}.

(II) We prove that, with probability at least 1 − ε, ĝ} is within [1 − δ/2, 1 + δ/2] factor of its mean, which is g5≤1
} .

Step 1. We prove that setting θ to δ/(2nD) is enough to guarantee g5≤1
} to be a [1 − δ/2, 1]-approximation of

g}. Let μ � Pr[5 ≥ 1] be the probability of at least one agent having a rare type.
First, we establish a lower bound on g5≤1

} (S) in terms of g(·) and μ:

g5≤1
} (S) � Et

[
r}(t ∩ S) 1(5 ≤ 1)]

≥ Et

[
max

i
r}(ti ∩ Si) 1(5 ≤ 1)

]
≥ max

i
Et
[
r}(ti ∩ Si) 1(5 ≤ 1)]

≥ max
i

Et
[
r}(ti ∩ Si) 1(5−i � 0)]

� max
i

(
Eti

[
r}(ti ∩ Si)] Prt−i [5−i � 0

])
by independence of ti and 5−i

≥ max
i

g}(Si) (1 − μ). (8)

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS 1075

Second, we establish an upper bound on g5≥2
} (S) in terms of g(·) and μ:

g5≥2
} (S) � Et

[
r}(t ∩ S) 1(5 ≥ 2)]

≤ Et

[∑
i
r}(ti ∩ Si) 1(5 ≥ 2)

]
by submodularity of r}

� ∑
i
Et
[
r}(ti ∩ Si) 1(5 ≥ 2)]

≤ ∑
i
Et
[
r}(ti ∩ Si) 1(5−i ≥ 1)]

� ∑
i
Eti

[
r}(ti ∩ Si)] Prt−i[5−i ≥ 1

]
by independence of ti and 5−i

≤ nmax
i

g}(Si) μ. (9)

By combining (8) and (9) we get

g5≥2
} (S) ≤ nμ

1 − μ
g5≤1
} (S),

which together with the fact that g}(S) � g5≤1
} (S) + g5≥2

} (S) implies

g5≤1
} (S) ≥ 1 − μ

1 + (n − 1)μ g}(S).

To obtain the desired approximation factor we need to satisfy 1−μ
1+(n−1)μ ≥ 1 − δ/2, for which it is enough to

ensure μ ≤ δ/(2n). Given that μ ≤ Dθ, where D � ∑
i |Ti| is the total number of agent types, it is enough to

choose θ such that

θ ≤ δ/(2nD). (10)

Step 2. We derive a lower bound on N which guarantees, with probability at least 1 − ε, ĝ}(S) is within
[1 − δ/2, 1 + δ/2] factor of its mean, which is g5≤1

} (S), for all S. Note that there are 2D choices of S, so by
applying union bound it is enough to show that the approximation holds for each S with probability at
least 1 − ε/2D.

First, we establish an upper bound on the probability of ĝ}(S) not being within [1 − δ/2, 1 + δ/2] factor of its
means g5≤1

} (S), which we formally denote by η(S) � Pr[|ĝ}(S)| − g5≤1
} (S)|> δ

2 g
5≤1
} (S)]. According to (7), ĝ} is

defined as a sum in which each term 1
N r}(t%,j ∩ S) Pr[%] is either an independent random variable in the range

[0,n Pr[%]/N] or is trivially always 0 for the given combination of S and %. Let H(S) be the subset of events in
H for which r}(t%,j ∩ S) is nonzero with a nonzero probability.

Applying Hoeffding’s theorem yields the following bound on η(S):

η(S) ≤ 2 exp
−2 δ

2
∑

%∈H(S) 1
N
∑N

j�1 g%}(S)
()2

∑
%∈H(S)

∑N
j�1 nPr[%]/N()2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 2 exp
−Nδ2

(∑
%∈H(S) g%}(S)

)2
2n2

∑
%∈H(S) Pr[%]2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ 2 exp
−Nδ2

(∑
%∈H(S) θPr[%]

)2
2n2

∑
%∈H(S) Pr[%]2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ by g%}(S) ≥ θPr [%] to be proven

≤ 2 exp

(
−Nδ2θ2

2n2

)
.

For the second to last inequality to hold we prove g%}(S) � E[r}(t ∩ S) |%]Pr[%] ≥ θPr[%] as follows: given that
% is in H(S), there must exist a type τ ∈ Si for some agent i with r}({τ}) � 1 such that either τ is a nonrare type

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
1076 Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS

occurring with probability at least θ under %, or τ is a rare type occurring with probability 1 under %, with % being
the event {ti � τ,5−i � 0}; in either case it follows that E[r}(t ∩ S) |%] ≥ E[r}(t ∩ {τ}) |%] � Pr[ti � τ |%] ≥ θ,
which proves g%}(S) ≥ θPr[%].

Next, to guarantee the desired bound on the overall probability of error it is enough to choose N such that
η(S) ≤ 2 exp −Nδ2θ2

2n2

()
≤ ε/2D, which implies

N ≥ 2n2(ln(1/ε) + (D + 1) ln 2)
δ2θ2

� 8n4D2(ln(1/ε) + (D + 1) ln 2)
δ4

by substituting θ from (10). (11)

The total number of samples is at most DN, which completes the proof. □

Ex Post Implementation of Feasible Interim Allocation Rules. An ex post implementation for any x ∈ X can be
obtained exactly as in Section 5.3.

Corollary 3. Any normalized interim allocation rule x ∈ X can be implemented by the randomized rank-based allocation
mechanism (Definition 7) as a distribution over deterministic rank-based allocation mechanisms (Definition 6).

6. Conclusions and Extensions
In this paper, we have focused on binary allocation problems in which an agent is either served or not served.
For these binary allocation problems distributions over allocations are given by a single number (i.e., the
probability that the agent is served). Our results can be extended to environments with multiunit demand
when the agent’s utility is linear in the expected number of units the agent receives.

In Section 5, we described algorithms for optimizing over feasible interim allocation rules and for (ex post)
implementation of the resulting rules. Neither these algorithms nor the generalization of Border’s condition
require the types of the agents to be independently distributed. However, our formulation of incentive
compatibility for interim allocation rules does require independence. For correlated distributions the interim
allocation rule is a function of the actual type of the agent (which conditions the types of the other agents) and
the reported type of the agent. Therefore, this generalization of our theorem to correlated environments has
little relevance for mechanism design.

The algorithms in Section 5 do not require the feasibility constraint to be known in advance. A simple
example in which this generalization is interesting is a multiunit auction in which the supply k is stochastically
drawn from a known distribution. Our result shows that the optimal auction in such an environment can be
described by picking the random ordering on types and allocating greedily by this ordering while supplies
last. We do not know of many examples other than this in which this generalization is interesting.

Our techniques can also be used in conjunction with the approach of Cai et al. [12] for solving multi-item
auction problems for agents with additive values.

In symmetric environments, that is, when the agents’ type distribution and the designer’s feasibility
constraint are symmetric (e.g., for i.i.d. multiunit auctions), the optimal interim allocation constraint imposed
by feasibility is symmetric; furthermore, the constraint is given by a simple formula. Therefore, symmetric
multiagent problems reduce to solving the single-agent problem for a very specific constraint on the interim
allocation rule. In comparison with the computational task of optimizing over feasible interim allocation rules
and solving for ex post implementations (e.g., from Section 5), this multiagent reduction for symmetric
environments is computationally trivial.

Our characterization of interim feasibility allowed us to efficiently compute optimal auctions with k items,
and approximately optimal auctions more generally with matroid feasibility. The challenge with the matroid
feasibility setting is to calculate the expected rank function (Theorem 9). Subsequent work of Gopalan et al.
[22] showed, among other results, that the optimal auction problem with matroid feasibility is #P hard (the
hardness is shown for graphical matroids).

Acknowledgments
The authors thank anonymous referees and the associate editor for useful suggestions.

Appendix A. Large and Continuous Type Spaces
This section contains approximate reductions when the type space is infinite or large but has a succinct representation. If
we relax our objective of finding an optimal mechanism to finding a (1 + ε)-approximation for any given ε (i.e., a polynomial

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS 1077

time approximation scheme, a.k.a., a PTAS), then we can significantly reduce the complexity of the interface between the
multi- and single-agent problems in the reduction. Although the interface via the type space described in the preceding
sections gave a direct approach to the reduction, the interface we present in this section is more intuitive.

Recall from Definition 2 that for allocation rule x the normalized interim allocation rule specifies the probability that an
agent with a specific type is allocated, that is, x(t) � f (t)x(t). Here the probability is taken over the type of the agent and
randomization in the allocation rule. It is useful to view this normalized interim probability as the area of a rectangle with
width f (t) and height x(t). Imagine arranging these rectangles by decreasing height.

The heights and widths in this decreasing order of height induce a monotone decreasing function on the interval [0, 1]
(note: the widths correspond to probabilities that sum to one). We refer to the horizontal axis as quantile q ∈ [0, 1] and the
function as the quantile allocation rule x(q) for all q (the use of x will be clear from the context, because we denote the
allocation rule x(t) and the quantile allocation rule x(q)). The allocation rule can be interpreted as inducing an ordering on
agents whereby stronger agents are more likely to be allocated and weaker agents are less likely to be allocated. The
quantile of a type is then the probability that a random type from the distribution is stronger. For discrete distributions
and type spaces this normalized allocation rule is piece-wise constant; it can be similarly defined for continuous dis-
tributions and type spaces.

We will refer to the integral of the quantile allocation rule as the cumulative allocation rule, notated X. Because the
quantile allocation rule is monotone decreasing the cumulative allocation rule is concave.

Although we considered the single-agent problem with an allocation constraint in type-space, we could equivalently
have expressed it in quantile space. Recall definitions x(S) � ∑

t∈S x(t) and f (S) � ∑
t∈S f (t). By monotonicity of x we must

have

∀S ⊂ T, x(S) ≤ X(f (S)).
The composition a concave function X with the linear set function f (·) is submodular, therefore, the feasibility constraint is
polymatroid. This fact is useful for solving single-agent problems; however, we will not be doing so here.

Intuitively now the goal for reducing multiagent problems to single-agent problems is to optimize the sum of the single-
agent revenues as a function of feasible normalized interim allocation constraints. For discrete type spaces the normalized
interim allocation constraints are piece-wise constant, with a number of pieces equal to the number of types. The main task
to be addressed in this section is to show that this interface between the multi- and single-agent problems can be ap-
proximated with piece-wise constant normalized interim allocation constraints with a very small number of pieces. We
will give (1 + ε) approximations with O(1ε log n

ε) pieces. These can be plugged into the theorems of the preceding section to
give effective type space TN of size O(nε log n

ε).
Our approach is in two steps. First, given any feasible quantile allocation constraint, there is a feasible quantile al-

location constraint that for all agents i is constant on [0, εn] and is a (1 + ε)-approximation to the original revenue for each
agent. Second, given any feasible quantile allocation constraint that is constant on [0, εn] for each agent, there is a feasible
quantile allocation constraint that is piece-wise constant with O(1ε log n

ε) pieces with widths of the form ε
n (1 + ε)j for integers

j and is a (1 + ε)-approximation to the original revenue for each agent. This construction shows that the optimal
mechanism constrained to piece-wise constant normalized interim allocation rules (of the above form) is within an
(1 + ε)2-approximation of the optimal unconstrained mechanism. Of course, (1 + ε)2 ≈ (1 + 2ε), so a change of variables
yields the desired approximation.

Lemma A.1. Given any feasible quantile allocation constraint x, there is a feasible quantile allocation constraint x′ that for all agents i is
constant on [0, εn] and is a (1 + ε)-approximation to the original revenue for each agent.

Proof. Let δ � ε
n � 1.Wemake the following transformation to each xi. First define xi(q) � 1 for q ∈ [−δ, 0]. Now define x′′i as the

right-shift of xi by δ, that is, x′′i (q) � xi(q − δ). Notice that x′′i is a more permissive constraint than xi, and therefore the optimal
single-agent revenue is only (weakly) improved. Now we define x′i as x′′i scaled down by a factor of (1 + ε), that is

x′i (q) �
x′′i (q)
1 + ε

.

This can be viewed as a convex combination of the allocation rule with one that never allocates, and therefore the revenue
loss from this transformation is exactly a (1 + ε)-factor.

We will show that feasibility of x implies feasibility of x′. Feasibility of x and Theorem 7 state that

∀q ∈ [0, 1]n, ∑i Xi(qi) ≤ g(q). (A.1)

We would like to show that

∀q ∈ [0, 1]n, ∑i X
′
i (qi) ≤ g(q).

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
1078 Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS

Note that by definition for all q ∈ [δ, 1]n, ∑
i X

′
i (qi) �

1
1 + ε

∑
i X

′′
i (qi)

� 1
1 + ε

∑
i δ + Xi(qi − δ)

� 1
1 + ε

(nδ +∑
i Xi(qi − δ))

≤ 1
1 + ε

(nδ + g(q − δ)),

where the last inequality followed by feasibility of Xi (A.1), and short-hand notation q − δ denotes the vector with
coordinates given by qi − δ, for all i. It is therefore sufficient to show that

1
1 + ε

(nδ + g(q − δ)) ≤ g(q). (A.2)

We will next show that inequality (A.2) is satisfied when ε � δn. Notice that this condition depends only on g(·) and not on
either allocation rule. We are left only to show that this inequality holds for the ε and δ satisfying ε � δn as specified in the
statement of the lemma.

Observe that g(q−i, qi) for any fixed q−i is linear in qi. In fact, this value of g is exactly g(q−i, 0) plus qi times the probability
that i is independent from the set of agents j with quantile exceeding their bound qj; however, this specific formula will not
be important for the proof of the lemma. This linearity implies that both sides of (A.2) are linear and therefore the
difference between the left- and right-hand sides with q ∈ [δ, 1]n is minimized at q ∈ {δ, 1}n. In terms of δ, we will get
bounds on ε that are sufficient for this minimum to be nonnegative, which is sufficient for implementability via (A.2).
Rearranging (A.2), we need to show that

∀q ∈ {δ, 1}n, ε ≥ nδ + g(q − δ)
g(q) − 1. (A.3)

We break this into two cases, the first in which there exists an i with qi � 1 and the second in which qi � δ for all i. In the first
case, note that qi � 1 for some i implies that g(q) ≥ 1. In addition, monotonicity of g implies that g(q − δ)/g(q) ≤ 1. As a result,

δn ≥ nδ + g(q − δ)
g(q) − 1.

Therefore, by setting ε � δn, the inequality (A.3) is satisfied.
Now consider the second case, in which q � δ is the all-δ vector. First note that g(q − δ) � 0. Note also that the expected

rank of the number of types that show up is lower bounded by the probability any type shows up, that is, g(δ) ≥
1 − (1 − δ)n (for the k � 1 unit auction environment, this bound on g is in fact the definition of g). Now we have

g(δ) ≥ 1 − (1 − δ)n ≥ 1 − e−nδ ≥ 1 − 1
nδ + 1

� nδ
nδ + 1

,

where second inequality follows from 1 − δ ≤ e−δ and the third inequality follows from log(1 + z) ≤ z. Combining the above
inequality with the fact that g(q − δ) � 0 implies that the right-hand side of inequality (A.3) is at most δn � ε. □

Lemma A.2. Given any feasible normalized interim allocation constraint x which is constant for all agent i on qi ∈ [0, δ], there is a feasible
normalized interim allocation constraint x′ which is piece-wise constant for all agent i on intervals of the form [δ(1 + ε) j, δ(1 + ε) j+1] for all
integer j and is a (1 + ε)-approximation to the original revenue for each agent.

Proof. Define the cumulative allocation constraint X′ as the piece-wise linear function that interpolates between the points
(q,X(q)) for q � (1 + ε)j for integer j or zero. The optimal revenue given cumulative allocation constraint X/(1 + ε) is exactly
a (1 + ε) factor from that of X; we will show that this rule is more restrictive than X′, therefore the optimal revenue from
constraint X′ is at least a (1 + ε)-approximation.

We will show that for all q, X′
i (q) ≥ Xi(q)/(1 + ε). Let a � δ(1 + ε) j and b � a(1 + ε) and consider the interval [a, b]. We show

that the maximum of Xi(q)/X′
i (q) over this interval is at most 1 + ε. Let γ� Xi(a)/a be the slope of the line from the origin

through point (a,Xi(a)). Concavity of Xi(·) implies that the line γq upperbounds Xi(q) on [a, b]. Therefore, an upper bound
on Xi(q) for q in this interval is γb. Because X′

i is monotone and X′
i (a) � Xi(a), a lower bound on X′

i (q) is Xi(a) � γa. Therefore
the maximum ratio of the former to the latter Xi(q)/X′

i (q) over this interval is at most γb/(γa) � (1 + ε). This argument
addresses all intervals except for [0, δ]; of course, Xi(q) � X′

i (q) on this interval, and so the same bound holds. □

Appendix B. Examples and Proofs from Section 5.2
SSA Examples
Consider a setting with a single item and two agents, with types {H1, L1} for agent 1 and {H2, L2} for agent 2, where for
each agent, each type happens with probability 1/2. Consider the ex post allocation x̂1(·, ·) presented in Table B.1.

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS 1079

SSA can implement x̂1 with transition table π presented in Figure B.1. The mechanism visits agent 1 first. The token is
passed to agent 1 if and only if the type is H1. The mechanism then visits agent 2. The token is passed to agent 2 if and only
if its type is H2 and the current holder of the token is the dummy type.

Now consider the post allocation x̂2 presented in Table B.2. We show that this allocation rule cannot be implemented by
any stochastic sequential allocation mechanism. Consider two cases. If the mechanism visits agent 1 first, then as shown in
the top of Figure B.2, x̂2(H1,H2) � (1, 0) requires that type H1 must take the token from the dummy type; but then if the
type of agent 2 is L2, because the token must either remain with H1 or be passed to L2 (or a randomization over these two
decisions), the requirement that x̂2(H1,L2) � (0, 0) would be violated. Similarly, consider the other case, in which the
mechanism visits agent 2 first. As presented in the bottom of Figure B.2, the requirement that x̂2(L1, L2) � (0, 1) requires that
L2 must take the token from the dummy type, but then x̂2(H1, L2) � (0, 0) would be violated because the token should either
remain with L2 or be passed to H1.

Note that in this example, x(H1) � 1/2, x(L1) � 0, x(H2) � 0, and x(L2) � 1/2, which can be implemented via SSA presented in
Figure B.3. This mechanism visits agent 1 first. If agent 1 has type H1, the token will be passed to him with probability 1/2.
Otherwise, the token will stay with dummy. The mechanism then visits agent 2. If the current holder of the token is dummy
type (which happens with probability 1/2) and the type of agent 2 is L2, then he will take the token from the dummy.

A Network Flow Formulation of S
We first describe another interpretation of S as a type of network flow with dynamic edge capacities, which will be used to
prove Lemma 1 and Lemma 2.

We construct a network with dynamic capacities in which every feasible flow corresponds to some (y, z) ∈ S. The
network (see Figure B.4) has a source node 〈S〉, a sink node 〈S〉, and n − i + 1 nodes for every ti ∈ TN labeled as
〈ti, i〉, · · · , 〈ti, n〉, where each node 〈ti′ , i〉 corresponds to the type ti′ at the time SSA algorithm is visiting agent i.

For each ti′ ∈ TN and for each i ∈ {i′, . . . , n − 1} there is an edge (〈ti′ , i〉, 〈ti′ , i + 1〉) with infinite capacity whose flow is equal
to y(ti′ , i); we refer to these edges as horizontal edges. The flow on horizontal edge (〈ti′ , i〉, 〈ti′ , i + 1〉) represent the probability
that ti′ has the token at the beginning of time i and the token is not passed to ti by the end of time i, which was denoted by
y(ti′ , i). For every ti′ and every ti where i′ < i, there is an edge (〈ti′ , i〉, 〈ti, i〉) whose flow is equal to z(ti′ , ti) and whose capacity
is equal to the total amount of flow that enters 〈ti′ , i〉 multiplied by fi(ti), that is, it has a dynamic capacity which is equal to
y(ti′ , i − 1) fi(ti); we refer to these edges as diagonal edges. The flow on these edges represents the probability that ti′ has the
token at the beginning of time i and will pass it to ti by the end of time i. The dynamic capacity constraint on each diagonal
edge (〈ti′ , i〉, 〈ti, i〉) ensures that (π) also holds. Moreover, because (y, z) ∈ S, (S.2) and (S.3) holds if and only if we have the
conservation of flow.

There is an edge (〈S〉, t0) through which the source node pushes exactly one unit of flow. Finally, for every ti ∈ TN ,
there is an edge (〈ti, n〉, 〈S〉) with unlimited capacity whose flow is equal to y(ti, n). Note that a flow (y, z) is feasible if and
only if it satisfies both conservation of flow and also the capacity constraints, which is equivalent to (y, z) ∈ S. To simplify
the proofs we sometimes use 〈t0, 0〉 as an alias for the source node 〈S〉 and 〈ti, n + 1〉 as aliases for the sink node S. The
network always has a feasible flow because all the flow can be routed along the path 〈S〉, 〈t0, 1〉, . . . , 〈t0, n〉, 〈S〉.

We define the residual capacity between two types ti′ , ti ∈ TN with respect to a given (y, z) ∈ S as follows.

RCy,z(ti′ , ti) �
y(ti′ , i − 1) fi(ti) − z(ti′ , ti) i> i′
z(ti, ti′) i< i′
0 otherwise.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (RC)

Because of dynamic capacity constraints, it is not possible to augment a flow along a path with positive residual capacity
by simply changing the amount of the flow along the edges of the path, because reducing the total flow entering a node
also decreases the capacity of the diagonal edges leaving that node, which could potentially violate their capacity
constraints. Therefore, we introduce an operator R(ti′ , ti, ρ) (Algorithm B.1 and Figure B.5), which modifies an

Figure B.1. SSA mechanism that implements x̂1.

Table B.1. SSA can implement ex post allocation x̂1.

H2 L2

H1 (1, 0) (1, 0)
L1 (0, 1) (0, 0)

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
1080 Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS

existing (y, z) ∈ S, while maintaining its feasibility, to transfer a ρ-fraction of y(ti, n) to y(ti′ , n). The algorithm
R(ti′ , ti, ρ) takes out ρ-fraction of the flow on the horizontal edge to 〈ti′ ,max(i′, i)〉 and reroutes this flow through
〈ti,max(i′, i)〉, while keeping the flow feasible.

Without loss of generality assume i′ < i. Algorithm R(ti′ , ti, ρ) keeps only (1 − ρ) fraction of the flow on each edge of
the subtree consisting of the path 〈ti′ , i〉, . . . , 〈ti′ , n〉, 〈S〉 and all the diagonal edges leaving this path, and reassigns the
remaining ρ fraction of the flow to the subtree rooted at 〈ti, i〉. The reassignment first sends the subtracted ρ fraction of
incoming flow via the horizontal edge of 〈ti′ , i〉 toward 〈ti, i〉 via the diagonal edge. Then, each 〈ti, t〉 redistributes this extra
fraction of flow on the diagonal edge toward 〈ti′′ , t〉, and the amount of this additional flow is exactly equal to the
subtracted amount on the diagonal edge from 〈ti′ , t〉 toward 〈ti′′ , t〉 (see Figure B.5).

Algorithm B.1 (R(ti′ , ti, ρ))
Input: An existing (y, z) ∈ S given implicitly, a source type ti′ ∈ TN , a destination type ti ∈ TN where i′ �� i, and a fraction

ρ ∈ [0, 1].
Output: Modify (y, z) to transfer a ρ-fraction of y(ti′ , n) to y(ti,n) while ensuring that the modified assignment is still in S.
1: if i′ < i then
2: Increase z(ti′ , ti) by ρ · y(ti′ , i).
3: else
4: Decrease z(ti, ti′) by ρ · y(ti′ , i′).
5: end if
6: for i′′ � max(i′, i) to n do
7: Increase y(ti, i′′) by ρ · y(ti′ , i′′).
8: Decrease y(ti′ , i′′) by ρ · y(ti′ , i′′).
9: end for
10: for ti′′ ∈ T{max(i′ ,i)+1,...,n} do
11: Increase z(ti, ti′′) by ρ · z(ti′ , ti′′).
12: Decrease z(ti′ , ti′′) by ρ · z(ti′ , ti′′).
13: end for

We next show that by applying R(ti′ , ti, ρ) to a feasible flow (y, z) ∈ S, the modified flow is still feasible. Without
loss of generality assume i< i′ and let (Y,Z) denote the obtained flow from applying R(ti′ , ti, ρ) on (y, z). Following
the steps of the algorithm, we obtain

Z(ti′ , ti) � ρy(ti′ , i) + z(ti′ , ti),
Y(ti′ , i′′) � (1 − ρ)y(ti′ , i′′), for i′′ ≥ i,
Z(ti′ , ti′′) � (1 − ρ)z(ti′ , ti′′), for i′′ > i,
Y(ti, i′′) � y(ti, i′′) + ρy(ti′ , i′′), for i′′ ≥ i,
Z(ti, ti′′) � z(ti, ti′′) + ρz(ti′ , ti′′), for i′′ > i.

Figure B.2. SSA cannot implement x̂2.

Note. Either agent 1 goes first (top), which implies that with probability 1 the tokenmoves from t0 toH1, contradicting x̂2(H1,L2) � (0, 0); or agent 2
goes first (bottom), which implies that with probability 1 the token should be passed to L2 by dummy, contradicting x̂2(H1,L2) � (0, 0).

Table B.2. SSA cannot implement ex post allocation x̂2.

H2 L2

H1 (1, 0) (0, 0)
L1 (0, 1) (0, 0)

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS 1081

We next show that (Y,Z) ∈ S. We first verify (S.2). For any j< i, the incoming and outgoing edges from 〈tj, j〉 stay un-
changed. For j> i we have

Y(tj, j) � y(tj, j) �
∑

tj′ ∈{0,···,j−1}
z(tj′ , tj),

� ∑
tj′ ∈{0,···,j−1},j′ ��{i,i′}

Z(tj′ , tj) + z(ti′ , tj) + z(ti, tj) �
∑

tj′ ∈{0,···,j−1}
Z(tj′ , tj).

Similarly for i (or i′) we have

Y(ti, i) � y(ti, i) + ρy(tj′ , i) �
∑

tj′ ∈{0,···,i−1}
z(tj′ , ti) + ρy(tj′ , i) �

∑
tj′ ∈{0,···,i−1}

Z(tj′ , ti).

We next show (S.3), that is,

Y(tj′ , j) � Y(tj′ , j − 1) −∑
tj∈tj

Z(tj′ , tj).
If j′ �� i, i′ then the equation trivially holds. For j′ � i and i< j − 1, we have

Y(ti, j) � y(ti, j) + ρy(ti′ , j) � y(ti, j − 1) −∑
tj∈tj

z(ti, tj) + ρy(ti′ , j)

� Y(ti, j − 1) − ρy(ti′ , j − 1) −∑
tj∈tj

Z(ti, tj) − ρz(ti′ , tj)() + ρy(ti′ , j)

� Y(ti, j − 1) −∑
tj∈tj

Z(ti, tj).

Figure B.4. (Color online) The flow network corresponding to the SSA Definition 3.

Notes. In this instance, there are three agents with type spaces T1 � {a, b}, T2 � {c, d}, and T3 � {e, g}. All nodes in the same row correspond to the
same type. The diagonal edges have dynamic capacity constraints, whereas all other edges have no capacity constraints. The flow going from
〈ti′ , i〉 to 〈ti, i〉 corresponds to the ex ante probability of ti taking the token away from ti′ . The flow going from 〈ti′ , i〉 to 〈ti′ , i + 1〉 corresponds to the
ex ante probability of ti′ still holding the token after agent i is visited.

Figure B.3. Even though SSA cannot implement x̂2, SSA can implement the corresponding interim allocation.

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
1082 Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS

The proof for the case j′ � i′ is also similar. Finally, we show that (S.4) also holds, that is, Z(tj′ , tj) ≤ Y(tj′ , j − 1) fj(tj). If
j′ �� i, i′, then the inequality trivially holds. For j′ � i, j> i − 1 we have

Z(ti, tj) � z(ti, tj) + ρz(ti′ , tj) ≤ y(ti, j − 1) fj(tj) + ρy(ti′ , j − 1) fj(tj) � Y(ti, j − 1) fj(tj).
For j′ � i′, we have

Z(ti′ , tj) � (1 − ρ)z(ti′ , tj) ≤ (1 − ρ)y(ti′ , j − 1) fj(tj) � Y(ti′ , j − 1) fj(tj),
completing the proof. □

Proof of Lemma 1. For any given (y, z) ∈ S we show that it is always possible to modify y and z to obtain a nondegenerate
feasible assignment with the same induced interim allocation probabilities (i.e., the same y(·, n)). Let d denote the number of
degenerate types with respect to (y, z), that is, define

d � #
{
ti ∈ T{1,...,n}

∣∣∣y(ti, n) � 0, y(ti, i)> 0
}
.

The proof is by induction on d. The base case is d � 0, which is trivial. We prove the claim for d> 0 by modifying y and z,
reducing the number of degenerate types to d − 1 and then applying the induction hypothesis. Let ti be a degenerate type.
For each ti′ ∈ T{0,...,i−1}, we apply the operator R(ti, ti′ , z(ti′ ,ti)y(ti ,i)) unless y(ti, i) has already reached 0. Applying this
operator to each type ti′ eliminates the flow from 〈ti′ , i〉 to 〈ti, i〉, so eventually y(ti, i) reaches 0 and ti is no longer degenerate.
Note that after applying these operations no new degenerate type is introduced, therefore the number of degenerate types
is reduced to d − 1. Furthermore, for all ti′ ∈ TN , y(ti′ , n) stays unchanged after applying these operations because y(ti, n) � 0,
which completes the proof. □

Proof of Lemma 2. To prove the lemma it is enough to show that for any augmentable type ti′ and any nonaugmentable type ti,
RCy,z(ti′ , ti) � 0, which is equivalent to the statement of the lemma (the equivalence follows from the definition of RC and
equation (π)). The proof is by contradiction. Suppose ti′ is augmentable and RCy,z(ti′ , ti) � δ for some positive δ; we show
that ti is also augmentable. Because ti′ is augmentable, there exists a (y′, z′) ∈ S such that y′(τ, n) � y(τ, n) for all τ ∈ TN \ {t0, ti′ }
and y′(ti′ , n) − y(ti′ , n) � ε>0. Define

(y′′, z′′) � (1 − α) · (y, z) + α · (y′, z′),

Figure B.5. (Color online) Changes made by applying reroute(t0, b, ρ).

Notes. A ρ-fraction of the subtree rooted at Æt0, 2æ (red online) is taken out and reassigned to the subtree rooted at Æb, 1æ (green online). The exact
amount of change is indicated for each green and each red edge. The flow along all other edges stays intact. The operator has the effect of
reassigning ρ-fraction of ex ante probability of allocation for type t0 to type b.

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS 1083

where α ∈ [0, 1] is a parameter that we specify later. Note that in (y′′, z′′), ti′ is augmented by αε, and
RCy′′,z′′ (ti′ , ti) ≥ (1 − α)δ, and (y′′, z′′) ∈ S because it is a convex combination of (y, z) and (y′, z′). Consider applying
R(ti′ , ti, ρ) to (y′′, z′′) for some parameter ρ ∈ [0, 1]. The idea is to choose α and ρ such that the exact amount, by which
ti′ was augmented, gets reassigned to ti, by applying R(ti′ , ti, ρ); so that eventually ti is augmented, whereas every
other type (except t0) has the same allocation probabilities as they originally had in (y, z). In fact, by choosing

α � y(ti′ , n)δ
2

and

ρ � εδ

2 + εδ
,

we get a feasible assignment in which the allocation probability of ti is augmented by αε, whereas every other type (except
t0) has the same allocation probabilities as in (y, z). We still need to show that α> 0. The proof is again by contradiction.
Suppose α � 0, so it must be y(ti′ , n) � 0, which would imply that ti′ is a degenerate type because y(ti′ , i′)> 0 (because
RCy,z(ti′ , ti)> 0); however, (y, z) is a nondegenerate assignment by the hypothesis of the lemma, which is a contra-
diction. That completes the proof. □

Appendix C. Proofs from Section 5.3

Rest of the Proof of Theorem 3. We give a proof of P(gk) ⊆ X based on the min-cut/max-flow theorem. We start by con-
structing a directed bipartite graph as illustrated in Figure C.1. On one side we put a node 〈t〉, for each type profile t ∈ T. On the
other side we put a node 〈ti〉, for each type ti ∈ T{1,...,n}. We also add a source node 〈S〉 and a sink node 〈S〉. We add a directed
edge from 〈S〉 to the node 〈t〉 for each t ∈ T and set the capacity of this edge to k · f(t). We also add n outgoing edges for every
node 〈t〉, each one going to one of the nodes 〈t1〉, . . . , 〈tn〉 andwith a capacity of f(t). Finally we add a directed edge from the node
〈ti〉, for each ti ∈ T{1,...,n}, to 〈S〉with capacity of x(ti). Consider a maximum flow from 〈S〉 to 〈S〉. For an interim allocation
x, there exists a feasible ex post implementation if and only if all the edges to the sink node 〈S〉 are saturated. In particular, if
ρ(t, ti) denotes the amount of flow from 〈t〉 to 〈ti〉, a feasible ex post implementation can be obtained by allocating to each type ti
with probability ρ(t, ti)/f(t) when the type profile t is reported by the agents.

We show that if a feasible ex post implementation does not exist, then x �∈ P(gk). Observe that if a feasible ex post
implementation does not exist, then some of the incoming edges of 〈S〉 are not saturated by the max-flow. Let (A,B) be
a minimum cut such that 〈S〉 ∈ A and 〈S〉 ∈ B. Let B′ � B ∩ TN . We show that the polymatroid inequality

x(B′) ≤ gk(B′) (C.1)

must have been violated. The size of the cut between A and B is given by the following equation:

C(A,B) � ∑
t∈T∩A

i|ti ∈ B{ }f(t) + ∑
t∈T∩B

k · f(t) + ∑
τ∈TN∩A

x(τ).

Figure C.1. (Color online) The bipartite graph used in the max-flow/min-cut argument of the Proof of Theorem 3.

Note. The capacities are indicated on the edges.

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
1084 Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS

Observe that for each t ∈ T ∩ A, it must be that #{i|ti ∈ B} ≤ k, otherwise moving 〈t〉 to B would decrease the size of the cut.
So the size of the minimum cut can be in simply written as

C(A,B) � ∑
t∈T

min # i|ti ∈ B{ }, k() f(t) + ∑
τ∈TN∩A

x(τ).

On the other hand, because some of the incoming edges of 〈S〉 are not saturated by the max-flow, it must be that∑
τ∈TN

x(τ) � C(A ∪ B − 〈S〉, 〈S〉)>Cut(A,B),

so ∑
τ∈TN∩B

x(τ)>∑
t∈T

min # i|ti ∈ B{ }, k() f(t).

The right-hand side of the above inequality is the same as Et∼ f[min(#{i|ti ∈ B}, k)], which shows that polymatroid inequality
(C.1) of P(gk) is violated so x �∈ P(gk). That completes the proof. □

Proof of Lemma 4. Assuming that agents are independent (i.e., assuming f(·) is a product distribution), gk(S) can be computed
in time O((n + |S|) · k) using the following dynamic program in which Gi

j denotes the probability of the event that min(|t∩
S ∩ T{1,...,i}|, k) � j.

gk(S) �
∑k
j�1

j · Gn
j

Gi
j �

Gi−1
k + (∑ti∈S∩Ti fi(ti)) · Gi−1

k−1 1 ≤ i ≤ n, j � k

Gi−1
j + (∑ti∈S∩Ti fi(ti)) · (Gi−1

j−1 − Gi−1
j) 1 ≤ i ≤ n, 0 ≤ j< k

1 i � 0, j � 0

0 otherwise. □

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
References
[1] Alaei S (2012) Mechanism design with general utilities. PhD thesis, University of Maryland, College Park.
[2] Alaei S (2014) Bayesian combinatorial auctions: Expanding single buyer mechanisms to many buyers. SIAM J. Comput. 43(2):930–972.
[3] Alaei S, Fu H, Haghpanah N, Hartline J (2013) The simple economics of approximately optimal auctions. Proc. 2013 IEEE 54th Annual

Sympos. Foundations Comput. Sci. (IEEE, New York), 628–637.
[4] Armstrong M (1996) Multiproduct nonlinear pricing. Econometrica 64(1):51–75.
[5] Bakos Y, Brynjolfsson E (1999) Bundling information goods: Pricing, profits, and efficiency. Management Sci. 45(12):1613–1630.
[6] Beil DR, Wein LM (2003) An inverse-optimization-based auction mechanism to support a multiattribute RFQ process. Management Sci.

49(11):1529–1545.
[7] Belloni A, Lopomo G, Wang S (2010) Multidimensional mechanism design: Finite-dimensional approximations and efficient computation.

Oper. Res. 58(4-part-2):1079–1089.
[8] Border K (2007) Reduced form auctions revisited. Econom. Theory 31(1):167–181.
[9] Border KC (1991) Implementation of reduced form auctions: A geometric approach. Econometrica 59(4):1175–1187.
[10] Briest P, Chawla S, Kleinberg R, Weinberg SM (2010) Pricing randomized allocations. Proc. ACM-SIAM Sympos. Discrete Algorithms (SIAM,

Phildelphia), 585–597.
[11] Bulow J, Roberts J (1989) The simple economics of optimal auctions. J. Political Econom. 97(5):1060–1090.
[12] Cai Y, Daskalakis C, Weinberg SM (2012) An algorithmic characterization of multi-dimensional mechanisms. Proc. 44th Sympos. Theory

Comput. Conf. (ACM, New York), 459–478.
[13] Cai Y, Daskalakis C,Weinberg SM (2012) Optimal multi-dimensional mechanism design: Reducing revenue to welfare maximization. Proc.

53rd Annual IEEE Sympos. Foundations Comput. Sci., FOCS 2012 (IEEE, New York), 130–139.
[14] Cai Y, Daskalakis C, Weinberg SM (2013) Understanding incentives: Mechanism design becomes algorithm design. Proc. 54th Annual IEEE

Sympos. Foundations Comput. Sci. (IEEE, New York), 618–627.
[15] Che Y, Gale I (2000) The optimal mechanism for selling to budget-constrained consumers. J. Econom. Theory 92(2):198–233.
[16] Che YK, Kim J, Mierendorff K (2013) Generalized reduced-form auctions: A network-flow approach. Econometrica 81(6):2487–2520.
[17] Chen X, Diakonikolas I, Orfanou A, Paparas D, Sun X, Yannakakis M (2015) On the complexity of optimal lottery pricing and randomized

mechanisms. Proc. 2015 IEEE 56th Annual Sympos. Foundations Comput. Sci. (IEEE, New York), 1464–1479.
[18] Crawford GS (2008) The discriminatory incentives to bundle in the cable television industry. Quant. Marketing Econom. 6(1):41–78.
[19] Dewan S, Mendelson H (1990) User delay costs and internal pricing for a service facility. Management Sci. 36(12):1502–1517.
[20] Edith E (2007) Designing and learning optimal finite support auctions. Proc. 18th Annual ACM-SIAM Sympos. Discrete Algorithms (SIAM,

Philadelphia), 736–745.
[21] Edmonds J (1970) Submodular functions, matroids and certain polyhedra. GuyR, ed.Combinatorial Structures and Their Applications (Gordon

and Breach, New York), 69–87.
[22] Gopalan P, Nisan N, Roughgarden T (2015) Public projects, boolean functions and the borders of borders theorem. Proc. 16th ACM Conf.

Electronic Commerce, vol. 395 (ACM, New York), 395.

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS 1085

[23] Haghpanah N (2014) Optimal multi-parameter auction design. PhD thesis, Northwestern University, Chicago.
[24] Laffont JJ, Robert J (1996) Optimal auction with financially constrained buyers. Econom. Lett. 52(2):181–186.
[25] Manelli AM, Vincent DR (2010) Bayesian and dominant-strategy implementation in the independent private-values model. Econometrica

78(6):1905–1938.
[26] Maskin E, Riley J (1984) Optimal auctions with risk averse buyers. Econometrica 52(6):1473–1518.
[27] Maskin ES (2000) Auctions, development, and privatization: Efficient auctions with liquidity-constrained buyers. Eur. Econom. Rev. 44(4–6):

667–681.
[28] Matthews S (1983) Selling to risk averse buyers with unobservable tastes. J. Econom. Theory 30(2):370–400.
[29] Matthews SA (1984) On the implementability of reduced form auctions. Econometrica 52(6):1519–1522.
[30] McAfee RP, McMillan J (1988) Multidimensional incentive compatibility and mechanism design. J. Econom. Theory 46(2):335–354.
[31] Mendelson H, Whang S (1990) Optimal incentive-compatible priority pricing for the M/M/1 queue. Oper. Res. 38(5):870–883.
[32] Mierendorff K (2011) Asymmetric reduced form auctions. Econom. Lett. 110(1):41–44.
[33] Mirman LJ, Sibley D (1980) Optimal nonlinear prices for multiproduct monopolies. Bell J. Econom. 11(2):659–670.
[34] Myerson RB (1981) Optimal auction design. Math. Oper. Res. 6(1):58–73.
[35] Pai MM, Vohra R (2008) Optimal auctions with financially constrained bidders. Discussion papers, Center for Mathematical Studies in

Economics and Management Science, Northwestern University, Chicago.
[36] Parkes DC, Kalagnanam J (2005) Models for iterative multiattribute procurement auctions. Management Sci. 51(3):435–451.
[37] Roberts KWS (1979) Welfare considerations of nonlinear pricing. Econom. J. 89(353):66–83.
[38] Rochet JC, Chone P (1998) Ironing, sweeping, and multidimensional screening. Econometrica 66(4):783–826.
[39] Ronen A, Lehmann D (2005) Nearly optimal multi attribute auctions. Proc. 6th ACM Conf. Electronic Commerce (ACM, New York), 279–285.
[40] Schrijver A (2003) Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and Combinatorics (Springer, New York).
[41] Shapley LS (1971) Cores of convex games. Internat. J. Game Theory 1(1):11–26.
[42] Spence AM (1980) Multi-product quantity-dependent prices and profitability constraints. Rev. Econom. Stud. 47(5):821–41.
[43] Vohra RV (2011) Mechanism Design: A Linear Programming Approach, vol. 47 (Cambridge University Press, New York).
[44] Wilson R (1994) Nonlinear pricing. J. Political Econom. 102(6):1288–1291.

Alaei et al.: Computation of Optimal Auctions via Reduced Forms
1086 Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 1058–1086, © 2019 INFORMS

	Efficient Computation of Optimal Auctions via Reduced Forms
	Introduction
	Preliminaries
	The Single-Agent Problem
	Multi- to Single-Agent Reductions
	Optimization and Implementation of Interim Allocation Rules
	Conclusions and Extensions

