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We study the design of revenue-maximizing mechanisms for selling nonexcludable public goods. In particular,
we study revenue-maximizing mechanisms in Bayesian settings for facility location problems on graphs
where no agent can be excluded from using a facility that has been constructed. We show that the pointwise
optimization problem involved in implementing the revenue optimal mechanism, namely, optimizing over
arbitrary profiles of virtual values, is hard to approximate within a factor of �(n2−ε ) (assuming P �= NP)
even in star graphs. Furthermore, we show that optimizing the expected revenue is APX-hard. However, in
a relevant special case, rooted version with identical distributions, we construct polynomial time truthful
mechanisms that approximate the optimal expected revenue within a constant factor. We also study the effect
of partially mitigating nonexcludability by collecting tolls for using the facilities. We show that such “posted-
price” mechanisms obtain significantly higher revenue and often approach the optimal revenue obtainable
with full excludability.
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1. INTRODUCTION

How should a seller maximize his revenue while selling nonexcludable services? As a
representative example, consider the following facility location problem: firms in an
industrial town want to connect their respective warehouses to their outlets with good
road links. But the seller (in this case the construction company that lays the roads)
cannot enforce exclusivity on the roads it lays: once a firm buys a connection between its
warehouse and outlet, the seller cannot exclude others from using those road links. We
study the following two questions in this work. Which potential sites should the seller
choose for laying roads to maximize his own revenue in such nonexcludable settings?
If the seller could enforce partial excludability by collecting tolls for roads, where only
those firms that pay the toll for a road could use it, how much more revenue could he
earn (collecting tolls only enforces partial excludability because every firm that pays
the toll is allowed to use the road)?
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Mechanism Design for Connectivity. We model the problem with a graph where every
unordered pair of vertices denotes an agent and every edge denotes the possibility of a
road to be laid between two vertices. We assume that each agent/firm has a nonnegative
private value for getting her pair of vertices connected, drawn independently from a
known distribution. We aim for the design of the optimal mechanism which, given the
value reports of all the agents, selects a set of edges to build roads on and computes
payments to be made by agents so that the expected revenue is maximized (expec-
tation over the distribution of private values) in equilibrium. We invoke Myerson’s
[1981] characterization which states that the expected revenue of any mechanism in
a Bayesian Nash Equilibrium (BNE) is equal to the expected virtual surplus of the
agents served, that is, the sum of virtual values1 of those agents whose warehouse
and outlet are connected in the solution.2 This reduces the problem of computing the
expected revenue maximizing mechanism to a pointwise optimization problem: given
a profile of values of all agents, compute the set of edges to build roads on so that the
sum of the virtual values of the agents served is maximized.

The pointwise optimization problem to maximize virtual values is an interesting
graph-theoretic problem, which to our knowledge has not been studied before. Given
a graph with a weight on every pair of vertices (the weights represent virtual values,
and thus, could be negative), design an algorithm that selects a subset of edges that
maximizes the sum of the weights of every vertex pair whose endpoints are connected
by the edges selected. If the weights were all positive, clearly the optimal choice for the
seller would be to pick all the edges in the graph. However, weights could be negative.
In particular, while aiming to connect some subset of agents (i.e., vertex pairs), another
subset of agents with negative weights automatically get connected, and these negative
weighted pairs cannot be excluded due to nonexcludability. Deciding on the the set of
edges to select for maximizing the sum of weights of the vertex pairs whose endpoints
are connected is the nontrivial underlying graph theoretic problem.

The Rooted and Unrestricted Versions. We study two versions of the graph theoretic
problem just described. In the unrestricted version, every (unordered) pair of vertices in
the graph is an agent. In the rooted version (which is a special case of the unrestricted
version), a single vertex is designated as root, and only those unordered pairs having
root as one of their vertices are agents. This corresponds to the root being a central
location where all warehouses are located, and other nodes being outlet locations.

1.1. Results

The Unrestricted Version (Section 3). The natural place to start is to solve the point-
wise optimization problem in graphs presented. Clearly, any α-approximate mono-
tone3 solution to the pointwise optimization problem implies an α-approximate truthful
mechanism to the problem of expected revenue maximization. However, we show that
except for very special cases, pointwise optimization is not possible unless P = NP. In
particular, we show that the pointwise problem is NP-hard to approximate to within a
factor �(n2−ε), even on star graphs. For the special case where the underlying graph is

1The virtual value of an agent is a function of her value and the distribution from which her value is drawn; it
can be negative. When the virtual value function is not monotone, Myerson [1981] applies a fix by considering
the ironed virtual value function (see Section 2 for more details), and all our results go through with virtual
values replaced by ironed virtual values.
2Note that Myerson’s mechanism remains revenue optimal in all single-parameter settings regardless of
whether or not the good is excludable.
3In single-parameter settings, a mechanism’s allocation is monotone if fixing the values of other agents
and agent i alone reporting a higher value results in agent i getting served with no smaller probability.
Monotone allocation is necessary and sufficient for truthfulness, that is, they alone lend themselves to
truthful payments.
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a path, we give a dynamic program to solve the pointwise optimization. Thus, for paths,
we get the expected optimal revenue with nonexcludability for any product distribution
over agents’ values.

The Rooted Version (Section 4). Our results for the rooted version are threefold.

(1) First, we give a simple polynomial time algorithm for pointwise optimization in
trees—this contrasts with our result that for the unrestricted version the pointwise
problem is hard to approximate beyond a factor of �(n2−ε), even for star graphs.

(2) Second, as our main result, we give a polynomial-time algorithm for optimization
in expectation (over the distribution of values, and hence virtual values) for arbi-
trary graphs, when the agents’ valuations are drawn independently and identically
distributed.

(3) Third, we establish APX-hardness of optimization in expectation for arbitrary
graphs, when the valuations of all agents are independent but not necessarily
identical.

Our main result, which is the second point, is that we design an algorithm that guar-
antees a constant factor approximation to the optimal virtual surplus in expectation.
To this end, we extensively use the key (yet simple) property that even though virtual
values can be negative, the expected virtual value of an agent is nonnegative. This sug-
gests the following high-level approach to the problem. Partition agents into a constant
number of sets. Pick a target set at random, and run an algorithm that is a constant
factor approximation for the agents of that set (ignoring other agents). The nonneg-
ativity of the expected virtual value implies that the contribution from nontargeted
sets is nonnegative. Since each set is targeted with constant probability, this implies a
constant factor approximation.

We reduce the problem to an abstract edge-weighted problem (in which edges, rather
than vertices, are agents who derive value from being connected to the root), and then
use the partitioning approach previously mentioned to solve the problem. In particular,
we present an algorithm that partitions the edges of any graph into two sets that,
loosely speaking, correspond to edges in well-connected parts of the graph and edges
in sparse cuts of the graph. We show that once we contract the edges in a set (which
corresponds to ignoring their value in the high-level approach), the remaining graph
has a nice structure that allows for constant approximations: in a well-connected graph,
the negative effect of nonexcludability is minimal, since we can select paths to avoid
low-valued edges, and a sparse graph can be solved optimally via a bottom-up approach.

Partial Excludability via Pricing (Section 5). If the seller were allowed to set prices
on edges (i.e., collect tolls), could he get close to the optimal revenue when excludability
is allowed? Typically the optimal revenue with full excludability is much higher than
the optimal revenue with nonexcludability. In fact, we show that the optimum revenue,
if full excludability were allowed, could be a factor of

√
n larger than the optimum rev-

enue with nonexcludability. We therefore explore the performance of collecting tolls,
as a simple mechanism with partial excludability. In this problem, the seller first has
to decide which edges to pick to lay roads on and decide how to price roads to max-
imize revenue. We construct a pricing scheme so that when the value distributions
are independent and identically distributed, the seller obtains (for the rooted version)
the optimal revenue possible when full excludability is allowed. Further, if the dis-
tributions are independent but not identical and satisfy a technical MHR condition4,

4Roughly speaking, this means that the tail of the distribution is no heavier than the exponential distribution.
Many natural classes of distributions like the uniform, exponential, Gaussian (Normal) distributions satisfy
the MHR condition. See Section 2 for a formal definition.
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we show how to price edges to obtain a 1
log n fraction of the optimal revenue possible

when full excludability is allowed (again for the rooted version). This is a big jump in
revenue, and an implication of these results is that mitigating externalities via tolls is
much more remunerative than aiming for the optimal solution with nonexcludability.

1.2. Related Work

Reducing mechanism design to algorithm design is one of the main focuses of algorith-
mic game theory. Myerson [1981] reduces revenue maximization in single parameter
settings to virtual surplus maximization subject to the global constraint of mono-
tonicity. Hartline and Lucier [2010] show that the monotonicity requirement can be,
in general, removed for welfare and revenue maximization problems. This in effect
reduces revenue maximization, which is inherently Bayesian, to the pointwise prob-
lem of virtual surplus maximization. Cai et al. [2013a, 2013b] show that this reduction
is possible in general multiparameter settings.

Approximating the expected version of a problem that is hard to approximate in the
worst case, via exploiting the fact that the expected virtual value for any distribution
is nonnegative, is a relatively new idea. To our knowledge, it has been used only in
Haghpanah et al. [2013]. Common between this work and Haghpanah et al. [2013] is
the observation that by applying the standard Bayesian-to-pointwise reduction, we are
reducing the problem to one that is “too hard” to approximate. Instead, we can solve
the problem by reducing it to the average-case problem of maximizing virtual surplus
given the fact that virtual values are positive in expectation. Given this observation,
Haghpanah et al. [2013] showed that we can approximate revenue within a constant
factor with a simple influence-and-exploit approach. In contrast, in our setting we
heavily use the structural properties of the problem, for example, the decomposition
techniques in Section 4.3. This could motivate studying other combinatorial problems
in the positive-in-expectation settings, that could otherwise be inapproximable in a
worst-case analysis.

Auctions with externality (a notion related to nonexcludability where an agent’s
utility does not just depend on the services he received but also on the outcomes for
the other agents) have been studied in multiple flavors before. Settings with positive
externality include increased value for having a telephone or a music player or a new
technology if more of your neighbors have them [Rohlfs 1974; Hartline et al. 2008].
A prime and well-studied example for a setting with negative externality is the sale
of contiguous ad slots to two competing businesses [Aggarwal et al. 2008; Athey and
Ellison 2011; Giotis and Karlin 2008; Gomes et al. 2009; Jeziorski and Segal 2009;
Kempe and Mahdian 2008]. Equilibria which are surprising at first sight, like no allo-
cation equilibria, can result in large revenue for the auctioneer in settings with negative
externality [Deng and Pekec 2011]. Posted pricings have often been a mechanism of
choice for settings with externalities [AhmadiPourAnari et al. 2013; Akhlaghpour et al.
2010; Candogan et al. 2010; Hartline et al. 2008]. The main difference between these
and the posted prices studied in our work (apart from the presence of nonexcludability
in our settings) is that these works allow agent-specific prices, whereas our setting is
more constrained: we place prices on edges that are common for all agents.

2. MODEL AND NOTATION

Unrestricted Version. We consider a universe of n potential sites, located on the
vertices of a graph, G = (V, E), with m undirected edges. An undirected edge (i, j) ∈ E
means that a link/road connecting sites i and j is allowed (but need not necessarily be
constructed). An agent is an unordered pair of sites (i, j), interested in having some
path constructed between i and j. Thus, there could be up to

(n
2

)
agents in a mechanism.
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An instance I = (G, A, F) of the problem consists of an undirected graph G, a set A of
agents (represented by a set of pairs of vertices), and a distribution Fi associated with
agent i (distributions are explained below). Sometimes we use i to denote a single site
and sometimes to denote an agent, who is actually a pair of vertices. The context will
make it clear whether i is a single site or a pair of sites.

The Rooted Version. The rooted version is a special case of the setting just described.
A special vertex r is designated as the root. Only vertex pairs of the form (i, r) are
agents, that is, the root r is one of the end points of the path desired for every agent.

Mechanisms. An outcome o ∈ � = {0, 1}m is the set of edges constructed. Agent i
has a valuation function vi : � → R+ ∪ {0}, which maps outcomes to nonnegative real
numbers. We study mechanisms in the single-parameter setting, where the function
vi(·) takes only two values: vi ≥ 0 and zero. An agent i has a nonnegative value vi if and
only if the set of edges selected contains a path between the two sites she represents,
and in this case, we say that agent i was served. Let S denote the set of all feasible sets
of agents, that is, the set of all sets of agents that can be simultaneously served. Note
that this set system S is not downward closed: S ∈ S does not necessarily mean that
S′ ∈ S for all S′ ⊂ S. Clearly, the non-downward closedness stems from the inability to
exclude agents from using the roads.

We study mechanisms for this problem in a Bayesian setting, that is, for every i,
the single parameter vi is assumed to be drawn independently from a publicly known
distribution function Fi. Thus F = F1 × F2 × . . . Fn denotes the product distribution
from which the vector of types v is drawn. The mechanisms in this article assume the
availability of any expectation defined with respect to F.

A direct revelation mechanism or auction solicits sealed bids (b1, b2, . . . , bn) from
all the agents and determines the outcome x = (x1, x2, . . . , xn) and payments p =
(p1, p2, . . . , pn). Each agent i is risk neutral and has a linear utility ui(b) = vi · xi(b) −
pi(b).

Let (x(·), p(·)) denote a mechanism. When agent i is bidding in the auction, she
knows only her own value vi. A mechanism (x(·), p(·)) is incentive compatible (IC) if
vixi(vi, v−i) − pi(vi, v−i) ≥ vixi(z, v−i) − pi(z, v−i) for all i, z. A necessary and sufficient
condition on x(·) for IC payments to exist is monotonicity: for all i, vi, vi

′ ≥ vi, v−i, we
have xi(vi, v−i) ≤ xi(vi

′, v−i). Since we focus on the class of IC mechanisms, we have
b = v.

Optimal Auctions. To solve for optimal auctions, Myerson [1981] defines virtual val-
uations for agents as φi(vi) = vi − 1−Fi (vi )

fi (vi )
and proves that the expected payment of

an agent, Evi[pi(vi)], in any truthful mechanism, is equal to her expected virtual value
Evi[φi(vi)xi(vi)].5 The distribution Fi is said to be regular if the virtual valuation function
is monotone. For regular distributions, maximizing virtual values pointwise results
in an incentive-compatible allocation rule and therefore the corresponding revenue-
optimal auction serves that feasible set of agents who maximize virtual value. For
irregular distributions, where maximizing virtual values may result in non-IC alloca-
tion rules, Myerson applies a fix by describing a general ironing technique. The ironing
procedure converts any virtual valuation function φi(·) to an ironed virtual value func-
tion φ̄i(·) such that maximizing φ̄i(·) pointwise results in an IC allocation rule.

THEOREM 2.1 [MYERSON 1981]. The revenue optimal auction in single-parameter
Bayesian settings serves the set S of agents, where S = argmaxS∈S

∑
i∈S φ̄i(vi). Further,

for all values vi for which φ̄i(vi) remains the same, agent i’s allocation remains the same.

5In fact the equality holds even for a specific v−i , that is, Evi[pi(v)] = Evi[φi(vi)xi(v)].
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As a corollary, when S contains all possible 2n sets, the revenue optimal auction puts
a price of φ̄−1

i (0) for agent i and makes a take-it-or-leave-it offer to each of them.

Monotone Hazard Rate. A class of distributions that always satisfy the regularity
condition previously described are the ones which satisfy the monotone hazard rate
(MHR) condition. A distribution with cdf F satisfies the MHR condition if f (x)

1−F(x) is
nondecreasing in x. The MHR condition holds for many natural classes of distributions
like the uniform, exponential, and normal distributions.

Nonnegative Virtual Valuations. An important property of virtual valuations (and
ironed too) is that when the support of the distribution is nonnegative (which is true
in our case since values are nonnegative), the virtual valuation in expectation over an
agent’s distribution is always nonnegative, even though certain realization of values
can be mapped to negative virtual values. For example, if the distribution of values
is uniformly distributed on the interval [0, v] for some v, the mapped virtual value
will be uniformly distributed on the interval [−v, v], with expectation 0. As another
example, it is impossible for virtual value to be deterministically mapped to a certain
negative number, since if an agent’s value is deterministic, virtual value will be equal
to the value, which is by assumption non-negative. This property crucially helps us
in providing approximations in expectation, as the hard instances of the problem of
virtual value optimization are the ones that include negative virtual values. The fact
that virtual values are nonnegative in expectation implies that, roughly speaking, hard
instances of the problem are not very likely.

3. THE UNRESTRICTED VERSION

In this section, we obtain the following results for the unrestricted version of our
problem.

(1) A simple polynomial-time dynamic program that solves the pointwise problem in
paths optimally.

(2) A hardness result showing that the pointwise problem is hard to approximate
within a factor of �(n2−ε) for any ε > 0 (assuming P �= NP), even in stars, that is,
we cannot generalize the result for paths even to stars.

(3) While the pointwise optimization problem involved in implementing the revenue
optimal mechanism is hard to approximate within �(n2−ε) for any ε > 0, this still
doesn’t rule out the possibility of designing a PTAS for optimizing expected rev-
enue. This is because while an arbitrary profile of virtual values can contain both
negative and positive numbers, virtual values are always nonnegative in expecta-
tion. However, even with nonnegativity in expectation, we show that a PTAS is still
not possible. We establish the APX-hardness of this problem in arbitrary graphs.
The reduction resembles the one given by Haghpanah et al. [2013]. In fact, our
hardness result holds even for the rooted version, and hence the proof is presented
in Section 4.4 along with other results for the rooted version.

3.1. Pointwise Optimization in Paths

Consider a path with vertices 1 to n. For 1 ≤ i ≤ j ≤ n, let S(i, j) be the sum of virtual
values of the set of all agents (i.e., vertex pairs) whose both endpoints are in the interval
[i, j]. We set S(i, i) = 0 for all i—assuming that there is no trivial agent whose vertex
pairs are the same. Define OPT(i) to be the optimal solution when we are restricted
to choose only among edges connecting vertices 1 through i. The unrestricted optimal
solution OPT is therefore OPT(n). We set OPT(0) = 0. The following recursive formula
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can be used in the dynamic program to solve for OPT.

∀i ≤ n, OPT(i) = max
0≤k<i

OPT(k) + S(k + 1, i).

The idea is that the solution to OPT(i) can be decomposed into two parts: a (poten-
tially empty) maximal contiguous set of vertices selected from some k + 1 to i; and
a subset of vertices from 1 to k. That is, all vertices k + 1, . . . , i are connected, and
S(k+ 1, i) is by definition their contribution to the objective. Since the edge connecting
k to k + 1 is not included, the set of edges chosen among the first k vertices must be
equal to OPT(k).

3.2. O(n2−ε) Hardness of Pointwise Optimization in Stars

Consider a star graph with vertices {0, 1, . . . , n} and edges (i, 0) for all i, and agents be-
ing (i, j) for i, j �= 0. We show that there exists an assignment of virtual values to agents
for which the virtual value maximizing subset cannot be found. To demonstrate this,
it is enough to show that there is some set of

(n
2

)
virtual values (positive or negative),

one for each agent, for which finding the optimal set of agents is inapproximable.

THEOREM 3.1. Given an arbitrary set of virtual values, the problem of finding the
virtual value maximizing set of agents in a star graph is O(n2−ε)-hard to approximate,
unless P = NP.

PROOF. The reduction is from the O(n1−ε)-hardness of approximation of independent
set [Håstad 1996]. Given an arbitrary graph G = (V, E), assign virtual values on the st-
ar graph G′ with n spokes and a center 0 as follows. For every edge (i, j) ∈ E, let the
virtual value of agent (i, j) in the star graph be −n2. For every pair (i, j) /∈ E, let the
virtual value of agent (i, j) in the star graph be 1. It is easy to see that the optimal
solution in the star graph will pick an independent set of vertices from G and connect
them to the center. Thus if the independent set is of size k, the value of the optimal
solution is

(k
2

)
. We know that independent set is inapproximable to a factor of O(n1−ε)

in general graphs. Thus, the value of the optimal set in star graphs is inapproximable
to a factor of O(n2−ε).

4. THE ROOTED VERSION FOR I.I.D. AGENTS

Given the hardness results in Section 3 even for undirected graphs, we consider an
important special case of our problem in this section: there is a designated root node
in an undirected graph, and each nonroot vertex is an agent wishing to connect to
the root. We start by studying the pointwise version of this problem and prove that
it is NP-hard to achieve any constant approximation algorithm in general graphs. We
then show how to solve it optimally on trees. Finally, we present our main result for
general graphs with the assumption that agents values are i.i.d. We note that in all
these settings, an agent derives value only if there is a path constructed from his node
to the root node. As before, construction of an edge e can happen only if e ∈ G.

4.1. Hardness of Pointwise Optimization in General Graphs

We prove that it is NP-hard to achieve any constant pointwise approximation in the
rooted version of the problem for general graphs. We use a reduction from the Set
Buying problem introduced in Feige et al. [2013] which is a prize collecting version of
the set cover problem.

Definition 4.1 (Set Buying (SB)). The input to SB consists of a set J of n items,
where each item j ∈ J has revenue uj ≥ 0, and a family F of m sets of items,
where each set Si ∈ F has cost ci ≥ 0. The value of a subfamily W ⊆ F of sets is
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V (W) = ∑
j∈∪Si∈W Si

uj − ∑
Sj∈W c j . The goal is to find a collection W with the maximum

value V (W).

Feige et al. [2013] prove that for any constant 0 < α < 1, there exists an instance
Iα of the set buying problem (by setting uj = 1 for each item j, and ci = α|Si| for
each set Si) which cannot be approximated to within a factor better than better than

f (α) = 1−α−α ln( 1
α

)
1−α

unless P = NP. We show an approximation preserving reduction
from this instance Iα of the set buying problem to a rooted instance of the revenue
maximization problem. Since f (α) approaches zero as α approaches 1, the pointwise
optimization of rooted instances of the revenue maximization problem do not admit
any constant approximation unless P = NP. To prove the following theorem, we con-
struct an approximation preserving reduction from set buying to revenue maximization
problem.

THEOREM 4.2. Given an arbitrary set of virtual values, the problem of finding the
virtual value maximizing set of agents for the rooted version does not admit any constant
approximation, unless P = NP.

PROOF. We show an approximation preserving reduction from an arbitrary instance
of the Set Buying problem to our problem as follows. For each item j ∈ J , add a vertex
and set its virtual value to 1. For each set Si ∈ F , add a vertex and set its virtual value
to −α|Si|. For each set Si and each item j, put an edge between them if j ∈ Si. Add a
root r and put an edge between r and each of the sets Si. It is clear that any solution
to the revenue maximization problem connects a subfamily W to the root and also all
the items in sets of W. The revenue of this solution is equal to value V (W), which
is the objective of the set buying problem. Therefore revenue maximization in this
instance is equivalent to finding the subfamily W∗ with maximum value. Since this set
buying instance Iα does not admit any approximation factor better than f (α), by letting
α approach 1 arbitrarily, we exclude the possibility of any constant approximation
algorithm for revenue maximization problem, unless P = NP.

4.2. Pointwise Optimization in Trees

In contrast to the unrestricted version where we show that the pointwise problem in
hard to approximate within a factor of �(n2−ε) (assuming P �= NP) even in stars, we
show that for the rooted version, we can solve the pointwise problem in polynomial time
in trees. As a subroutine for optimization in trees, we first show how to perform point-
wise optimization in paths (much easier and faster than the pointwise optimization for
paths in the general version).

Pointwise Optimization in Paths. Consider an undirected path of length n + 1 with
one end of the path, namely, node 0, as the root. If the root is not one of the end vertices,
such a path can be broken into two at the root, and each path will have a root at one of
its ends. (These problems can be solved independently.) Thus, without loss of generality,
root is at the end of the path. Once the agents submit their values, the auction has to
decide on the set of edges to pick. In the path case, this task reduces to picking the
best among paths of the form 0 − i for i = 1 . . . n. For every i, the mechanism computes
the sum of the virtual values of agents from 1 to i and picks the i with the maximum
virtual value.

Pointwise Optimization in Trees. Consider an undirected tree with a designated root.
The revenue optimal mechanism in trees is constructed using the optimal mechanism
in paths as a subroutine. The mechanism proceeds from the bottom up. It chooses the
bottom-most node, say b, in the tree which has branches below. By definition, each
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such branch must be a path. The mechanism computes the optimal solution and the
corresponding optimal virtual value for each path and adds them up and assigns them
to b. All the descendants of b are now deleted, with the virtual value of b now adjusted to
the new value. This procedure is now repeated in the new tree till we exhaust all nodes.
By induction on the depth of the tree, it is easy to establish the revenue optimality of
this mechanism.

4.3. Main Result: Optimization in Expectation in Arbitrary Graphs

Next we present a constant-factor approximation algorithm for optimizing the expected
revenue for the rooted, node-weighted version of the problem in arbitrary graphs (the
virtual value of an agent is the weight of the nonroot node of that agent). We first
explain how the problem can be solved on edge-weighted graphs, that is, agents are
edges, and they get a value when they are connected to the root. This is later used as
a subroutine to tackle the vertex-weighted problem.

Edge-Connectivity for the Rooted Version. Given a connected undirected graph, we
show how to partition its edges into two parts such that (a) contracting the former
edge set yields a 3-edge connected subgraph6; (b) contracting the latter edge set results
in a roulette subgraph—a special series-parallel graph to be defined next. We then
demonstrate that it is possible to solve the problem (approximately) on each of the two
subgraphs, and finally argue that this suffices to obtain a constant-factor approxima-
tion for the general rooted edge-weighted case.

To define roulette graphs, we need the following notation. For a set S of edges in a
graph G, subgraph G/S is obtained from G after contracting all edges S one at a time,
where contracting an edge simply refers to removing the edge and merging its endpoint
vertices. We call an edge in a connected graph a bridge if removing it makes the graph
disconnected.

A 2-edge connected roulette graph is defined recursively as follows.

—Base. A simple cycle is a 2-edge connected roulette.
—Recursion. A graph G is a 2-edge connected roulette if there exists a subset of vertices

V such that the subgraph induced by V is a 2-edge connected roulette, and the
subgraph obtained by contracting all the edges inside V is also a 2-edge connected
roulette.

In other words, a cycle of roulette graphs is itself a 2-edge connected roulette (see
Figure 1). For example, we can construct a 2-edge connected roulette by replacing
vertices of a simple cycle with roulettes (with one or two vertices of the inner roulette
taking the place of an original vertex of the cycle).

A general graph G (not necessarily 2-edge connected) is a roulette graph if the graph
G′ derived from G by contracting all its bridge edges is a 2-edge connected roulette
graph. In other words, we can connect two 2-edge connected roulette graphs by a
bridge edge, and the result will be a roulette graph (see Figure 2).

Now we can present the main structural lemma that reduces our general problem
into two tractable subproblems.

LEMMA 4.3. Given a graph G(V, E), there exists a polynomial-time algorithm that
partitions the edge set E into two sets S1 and S2 such that graphs G1 = G/S1 and
G2 = G/S2 are, respectively, 3-edge connected and roulette.

6A k-edge connected graph is a graph that remains connected whenever fewer than k edges are removed.
Equivalently, any cut in such a graph has size at least k.
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Fig. 1. This graph is a 2-edge connected roulette since it is a cycle of 2-edge connected roulette graphs.
Contracting subgraphs induced by V1 and V2, which are simple cycles themselves (and therefore 2-edge
connected roulettes), results in a simple cycle.

Fig. 2. Connecting two 2-edge connected roulette graphs by a bridge edge yields a roulette graph.

PROOF. Define SB to be the set of all bridge edges in G. Let S1 be the union of SB and
all edges that belong to a cut of size 2 in graph G/SB. We note that all cuts of size 2 in
G/SB can be found in polynomial time, for example, using a naı̈ve brute-force search.
Since G1 = G/S1 is obtained by a series of edge contractions, every cut in G1 represents
a cut in G as well. Therefore, since all edges of S1 are contracted in G1, no cut of size
at most 2 is present in G1, hence G1 is 3-edge connected.

On the other hand, every edge in G2 is either in SB (the set of bridge edges in both
G and G2) or belongs to a cut of size 2 in G/SB, hence in G2/SB (recall that G2 is the
graph resulting from contracting all the edges but S1). To prove G2 is a roulette graph,
it suffices to prove that G2/SB is a 2-edge connected roulette graph. We claim that if
each of {e1, e2} and {e1, e3} is a cut in G2/SB, then so is {e2, e3}. Therefore, the edges of
G2/SB form an equivalence class. To see this equivalence relation, it suffices to focus on
the following alternative definition of edge cuts of size 2. In a 2-edge connected graph,
two edges e and e′ form a cut of size 2 if and only if the set of cycles in the graph that
contain e is the same as the set of cycles in the graph that contain e′. Based on this
new definition, the two sets of cycles containing e2 and e3, respectively, are both equal
to the set of cycles containing e1, and therefore they are equal to each other as well,
which means that e2 and e3 form a cut of size 2.

Therefore, the graph looks like a cycle of this equivalence class (the equivalence
class of e1), where some vertices are replaced by another subgraph; the same argument
applies to each of these smaller structures, giving rise to the inductive definition of
2-edge connected roulette graphs. We should note that two edges from two of these
smaller structures do not belong to the same equivalence class (they cannot form a cut
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of size 2), and therefore each of the other equivalence classes belong to one smaller
structure and is not split between different structures. Thus we can inductively claim
each smaller structure is a 2-edge connected roulette graph.

The following decomposition lemma serves as the starting point for our 3-
approximation algorithm of the 3-edge connected graph G1.

LEMMA 4.4. There exists a polynomial-time algorithm that finds three spanning trees
T1, T2, and T3 in a 3-edge connected graph G such that every edge of G is missing in at
least one of these spanning trees.

PROOF. We replace each edge of G by two parallel edges to get the 6-edge connected
graph G2 with the same vertex set. Catlin et al. [2009] show, among other things, that
any 2k-edge connected graph has k edge-disjoint spanning trees, while Roskind and
Tarjan [1985] show how to find k edge-disjoint spanning trees in a graph (if they exist)
in quadratic time. Therefore, we can find three edge-disjoint spanning trees T1, T2, and
T3 in G2. Edge-disjointness guarantees that each edge of G can belong to at most two
of these spanning trees.

On the other hand, the problem can be solved optimally for roulette graphs. The
intuition behind the algorithm is that we can recursively solve the problem on cycles
via dynamic-programming and then remove them by contracting them.

LEMMA 4.5. There exists a polynomial-time algorithm that finds the optimal solution
for roulette graphs.

PROOF. Let us say we have a cycle decomposition of our roulette graph, which de-
scribes the recursive structure of its 2-edge connected components. Each cycle repre-
senting one equivalence class is called an essential cycle of the graph. Instead of solving
the rooted problem, we consider a slightly more general problem where up to two ver-
tices s, t on an essential cycle are specified, and these vertices should both appear in
the connected subgraph of the output. At the beginning we are going to have only one
vertex s = t, which is the root vertex.

Let us ignore the bridges at this point and assume the graph is 2-edge connected.
Focus on the essential cycle and imagine that all the recursive structures are contracted
for now. In the resulting graph, the optimal solution looks like a path or it is the entire
cycle. There are polynomially many cases to consider, and we will output the best
solution among them. In each case, we have a subproblem for each contracted piece if
we decide that the optimal solution passes through or ends at the contracted vertex.
Since the base cases of the induction (i.e., vertices or cycles) are easily solvable, we
can argue inductively that our slightly more general problem can be solved using a
dynamic program.

For each bridge connected to the essential cycle, we compute the best solution for the
rooted problem on the other side of the bridge (whose root is the endpoint of the bridge)
and add that to the main solution if its weight plus the weight of the bridge turns out
positive.

We conclude this section by putting together these ideas to obtain a 4-approximation
algorithm for the rooted edge-weighted problem.

LEMMA 4.6. There exists a polynomial-time monotone algorithm that achieves an
approximation factor of 4 for any graph G.

PROOF. If the graph is not connected, we can focus on the connected component that
contains the root and disregard the rest of the connected components. Using Lemma 4.3,
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we partition the edges of G into two parts S1 and S2. We also use Lemma 4.4 to find
three spanning trees T1, T2, and T3 in graph G1.

We consider four candidate solutions. One solution is the union of S1 and the edges
in tree T1. Since T1 is a spanning tree in G1 = G/S1, the union of T1 and S1 is a
connected spanning subgraph of G. Serving this connected spanning subgraph allows
us to choose any subset of the remaining edges to serve. Among the remaining edges
(edges not in S1 ∪ T1), we serve those with positive realized virtual values. In a
similar fashion, we construct two other candidate solutions based on T2 and T3. The
fourth and last candidate solution is to contract set S2 of edges and solve the problem
optimally in the roulette graph G2 using Lemma 4.5. The optimal solution we find in
G2 is a connected subgraph of G2, however, it might not be a connected subgraph of
G that includes the root. Nonetheless, it is always possible to serve a subset of edges
S′

2 ⊆ S2 to make the whole solution not only a connected subgraph of G but also one
that includes the root vertex as well. Our fourth candidate solution consists of the
edges in S′

2 and the optimal solution for G2.
We now show that for every instance (i.e., a graph with a designated root and a

distribution), the sum of the revenues of these four solutions is at least the optimum
revenue. Thus picking one at random will guarantee a 4-approximation. For 1 ≤ i ≤ 3,
if we stick to solution i all the time, our gain from edges in S1 and Ti is nonnegative
(i.e., the sum of their expected virtual values), and in addition we get all edges with
positive virtual value outside S1 ∪ Ti. Since each edge of S2 is missing in at least one
S1 ∪ Ti, the total value we get from the first three solutions is at least the projection
of the optimal solution on set S2 of edges. On the other hand, in the fourth solution,
our expected revenue from edges added from S2 is nonnegative (once again since the
expectation of the virtual values are positive), and our expected revenue from S1 is
at least the amount that the optimal solution gains from them. Therefore, these four
solutions together achieve no less than the optimal revenue. Thus, one candidate
solution has expected revenue at least a quarter of the optimum.

The algorithm is monotone because it first decides which of the four candidate
solutions to use independently of the realized values. Further each candidate solution
is monotone. The first three solutions are monotone because the edge selection criteria
(for the edges they consider) is just non-negative virtual value. The fourth solution is
monotone because it is an optimal algorithm for the edges it focuses on.

Vertex-Connectivity for the Rooted Version. In this section, we provide a constant-
factor monotone approximation algorithm for the vertex-connectivity problem using
the algorithm for the edge-connectivity version of the problem just described. Let V2 be
the set of degree-2 vertices in graph G. Similar to the edge-connectivity approach, we
describe two algorithms (one using a reduction to the edge-connectivity problem) that
achieve constant-factor approximations to the problems, where the values of V \ V2
and V2 are replaced by zero, respectively. Again, since the expected value of each
vertex is nonnegative, this implies a constant approximation for the vertex-connectivity
problem.

First consider the instance in which the values of vertices in V \ V2 are replaced by
zero. Notice that this results in an instance in which any vertex with nonzero value
has degree 2. Construct another instance in which each vertex of degree 2 is replaced
by an edge with the same value. We can solve this instance using our edge-connectivity
algorithm.

Next consider the instance in which the values of vertices in V2 are replaced by
zero. We can then remove any such vertex and connect its two neighbors directly, and
therefore assume that the graph does not contain any degree-2 vertex. The following
lemma shows that this graph has a spanning tree where at least 1

7 of its vertices are
leaves. The algorithm uses the internal nodes (i.e., nonleaves) of this tree to connect
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the leaves that are positive, to the root. Since the vertex values are drawn i.i.d., this
gives a 7-approximation to the problem.

Putting these two algorithms together, we obtain a constant-factor approximation
algorithm for the vertex-connectivity rooted revenue maximization in expectation. In
particular, a balancing argument puts a bound of 11 on its approximation ratio.

Monotonicity of the resulting algorithm follows from the monotonicity of the algo-
rithms used for the two subcases. When we use the algorithm for the edge-connected
version, the monotonicity of the edge-connected version implies the same here. For
the other case, note that a leaf is picked whenever its virtual value is positive thus
resulting in a monotone allocation.

LEMMA 4.7. Given a graph with no degree-2 vertices, a spanning tree can be con-
structed in polynomial time, where at least 1

7 of the vertices are leaves.

PROOF. Start from an arbitrary spanning tree T of G. Let T2 be the set of vertices of
degree 2 in T , and let T̂2 ⊆ T2 be those vertices in T2 both whose neighbors, too, are in
T2. Modify T as long as any of the following two rules apply.

(1) If there exists a vertex v ∈ T̂2 that has an edge in G to an internal vertex u of T ,
update T by adding the edge (v, u) to T , and removing the edge incident to v in the
unique cycle formed after adding (v, u). Since both neighbors of v in T had degree
2, this process generates a new leaf without removing any of the old leaves.

(2) If two vertices v, u ∈ T̂2 have edges in G to the same leaf l of T , add edges from v
and u to that leaf, and remove two edges from T as follows. The addition of edge
(u, l) to T produces a cycle that passes through exactly one of the two neighbors
of u; call it u′. Note that u′ has degree 2 in T by definition of T̂2; let u, u′′ be its
neighbors. Remove the edge (u′, u′′) from T , removing the cycle u and maintaining
the connectivity of T . We carry out a similar operation, mutatis mutandis, for v.
The result will be a tree T on the same set of vertices with one more leaf (increasing
the degree of l but turning two other internal vertices into leaves).

The process terminates in a linear number of iterations since the number of leaves
increases in each step. We end up with a tree T for which neither of the rules applies.
Let T1 and T≥3, respectively, denote the subsets of vertices of degrees one and at least
three in T . We argue next that |T1| is at least a constant fraction of |T2| + |T≥3|. As
no vertex of G has degree two, any vertex in T̂2 is bound to have degree at least three
in G, hence an edge not in T . This edge cannot be to an internal vertex of T because
Rule (1) no longer applies to T . Rule (2), on the other hand, implies that these leaves
are distinct for different vertices of T̂2. Therefore, we have

|T1| ≥ |T̂2|. (1)

As trees have average degree less than two, we know

|T1| > |T≥3|. (2)

To bound |T2| − |T̂2|, if this quantity is not zero, orient T from an arbitrary vertex in
T2 \ T̂2 towards the leaves. Assign each vertex v ∈ T2 \ T̂2 to its closest descendant in the
oriented tree that is in T1 ∪ T≥3. Such an assignment is always possible since no vertex
in the former group is a leaf of the (oriented) tree. Each vertex in the latter group is
assigned to at most twice; otherwise, there should be a path of vertices of degree two
with more than two vertices in T2 \ T̂2—a contradiction. As a result, we get

|T2| − |T̂2| ≤ 2(|T1| + |T≥3|) ≤ 4|T1|, (3)

where the last inequality is due to Eq. (2).
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Summing up Eqs. (1), (2), and (3) with |T1| ≥ |T1|, we obtain 7|T1| ≥ |T1|+|T2|+|T≥3|
as desired.

4.4. APX-Hardness in Expectation in Arbitrary Graphs

In this section, we prove the APX-hardness of the rooted version in arbitrary graphs
when the valuations of agents are independent but not necessarily identical.

Definition 4.8. The prize-collecting set cover problem (PCSCP) consists of a collec-
tion of sets S1, S2, . . . , Sn over a universe U . For a collection C of sets, let QC = ∪i∈C Si.
The goal is to find a collection C∗ that maximizes α|QC∗ |+n−|C∗| for some given α > 0.

We first show that there is an approximation-preserving reduction from PCSCP to
our problem, and then invoke the result from Haghpanah et al. [2013] that establishes
the APX-hardness of PCSCP, and that its approximation ratio is at least 530

529 = 1.002.

LEMMA 4.9. There is an approximation preserving reduction from PCSCP to the
revenue maximization problem in arbitrary graphs.

PROOF. Given an instance of the PCSCP, where the sets are denoted S1, S2, . . . Sn
and the elements are denoted e1, e2, . . . em, we construct an instance of our problem as
follows.

Vertices. We start with a root vertex r. For every element ei, we construct one vertex
with the same name ei. For every set Si, we construct one vertex denoted by Si as well.

Edges. For each i, set vertex Si is connected by an edge to root r and all e j ∈ Si.

Agents. The agents (r, Si) are called set-agents, and (r, ei) are called element-agents.

Distribution. The value distribution of element agents is deterministic α. For set
agents, the value is drawn from the distribution Bernoulli(L − 1, 1/L) (i.e., the value
is equal to L − 1 with probability 1/L, and zero otherwise), where L � mnα. Thus, the
virtual value for these agents is −1 w.p. 1 − 1/L and L − 1 w.p. 1/L.

The optimal revenue in our problem, as L → ∞, can be analyzed in two cases.

(1) If at least one set-agent has positive virtual valuation (which happens w.p. ap-
proximately n/L → 0), the solution chooses all the edges incident on those set
agents (with positive virtual valuation) to obtain expected revenue n. The ex-
pected revenue from the remaining agents (set-agents with negative virtual val-
uation and element-agents) is at most αmn/L � 1. Therefore, the optimal solu-
tion has contribution n from this event as L → ∞, and this solution is trivial to
compute.

(2) If no set has positive virtual valuation (which happens w.p. 1 − n/L → 1), the value
of the solution is precisely α|QC∗ | − |C∗|. This is because once a set-agent is chosen,
clearly all the edge-agents contained by this set must be chosen, since they all have
deterministic positive virtual value α. We should also note that you can obtain the
α virtual value of an element agents only if you connect it to the root using one of
the set agents it belongs to, and for each set you pick, you have −1 virtual value in
this case.

Therefore the value of the optimal solution is α|QC∗ | + n − C∗.

5. POSTED-PRICING RESULTS

As mentioned in the introduction, one goal of this work is to compare two kinds of
mechanisms: (a) natural mechanisms for nonexcludable public goods, such as a di-
rect revelation mechanism, that have to deal with nonexcludabilities, and (b) posted
price mechanisms which mitigate nonexcludability to a certain extent by ensuring
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that only those who pay for an edge can use that edge. We show that for the rooted
version with i.i.d. agents, a posted price mechanism obtains the optimal revenue pos-
sible when full excludability is allowed (i.e., even partially mitigating nonexclud-
ability via tolls gets us the benefit of full excludability). When the agents values
are independent but not necessarily identical, we design a pricing scheme that ob-
tains a O( 1

log n) fraction of the optimal revenue possible when full excludability is
allowed.

5.1. Rooted Version with I.I.D. Agents

Consider a directed graph G with a designated root r. Without any external-
ity constraints, Myerson’s mechanism’s revenue is

∑
i �=r φ−1(0)(1 − F(φ−1(0)), where

1 − F(φ−1(0)) is the probability that agent i’s value is above φ−1(0). The posted price
mechanism places a price of φ−1(0) on every edge incident on the root (directed ei-
ther way). Every agent who can reach the root must use one such edge and thus
pays the price if his value is higher than his price. This gives a revenue of precisely∑

i �=r φ−1(0)(1 − F(φ−1(0)), which is the optimal revenue possible.
On the other hand, if we use a direct revelation mechanism, the optimal revenue

achievable, even for paths in i.i.d. settings, is a factor of
√

n away from the optimal
revenue obtainable with full excludability. Consider the simple example of a path
(0, 1, 2, . . . , n) on n + 1 vertices with vertex 0 as the root. The value of each nonroot
vertex is 1 with probability 1/2, and 0 otherwise. Thus, the virtual value for every
vertex is 1 with probability 1/2 and −1 with probability 1/2. If we are allowed to select
vertices regardless of nonexcludability, we will select each vertex when its virtual value
is 1, achieving the expected value of n/2. On the other hand, the optimal revenue with
nonexcludability is obtained by selecting the subpath (that is connected to the root)
with maximum sum of virtual values contained in it. The expectation of this number
can be seen to be at most the expected maximum position reached by a symmetric
random walk in one dimension after n steps.7 This is well known to be O(

√
n).

5.2. Rooted Version with Non-I.I.D. Agents

When the distributions are independent but not necessarily identical, we design a
pricing scheme which obtains a O(log n) approximation when the distributions satisfy
the MHR condition (i.e., the hazard function f (x)

1−F(x) is monotonically nondecreasing).
When the agents are non-i.i.d., the monopoly price of all agents are not necessarily
the same, so the previous mechanism clearly fails. We need two facts to give a O(log n)
approximation.

(1) When a distribution F follows MHR property, we have F(φ−1(0)) ≤ 1 − 1/e. This
follows from

F(x) = 1 − e− ∫ x
0 h(t) dt ≤ 1 − e− ∫ x

0 h(x) dt = 1 − e−xh(x),

where the inequality follows from the monotonicity of h(x). Since xh(x) = 1 at
x = φ−1(0), we have that F(φ−1(0)) ≤ 1 − 1/e.

(2) Given n numbers v1, v2, . . . , vn, we have maxi ivi ≥ 1
O(log n)

∑
i vi. Let t = argmaxi ivi.

So for all i, tvt ≥ ivi, and thus vi ≤ tvt/i for all i. Summing over this inequality for
all i, we get

∑
i vi ≤ tvt(O(log n)).

Without loss of generality, let φ−1
1 (0) ≥ φ−1

2 (0) ≥ · · · ≥ φ−1
n (0). Let t = argmaxi iφ−1

i (0).
Now suppose we post a price of φ−1

t (0). All agents with monopoly price above φ−1
t (0)

7After i steps, the location of the random walk is equal to the number of positive movements, minus the
number of negative movements. This is exactly equal to the sum of the numbers on edges on the subpath
from root to the ith vertex.
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will pay the toll with probability at least 1/e (by point 1 above). Thus we get a rev-
enue of 1

e maxi iφ−1
i (0) ≥ 1

e log n

∑
i φ−1

i (0) (by point 2 above). Thus we get a O(log n)
approximation to the optimal revenue with full excludability.
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