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A seller can produce multiple units of a single good. The buyer has constant marginal 
value for each unit she receives up to a demand, and zero marginal value for units beyond 
the demand. The marginal value and the demand are drawn from a distribution and are 
privately known to the buyer. We show that under natural regularity conditions on the 
distribution, the optimal (revenue-maximizing) selling mechanism is deterministic. It is a 
price schedule that specifies the payment based on the number of units purchased. Further, 
under the same conditions, the revenue as a function of the price schedule is concave, 
which in turn implies that the optimal price schedule can be found in polynomial time. 
We give a more detailed characterization of the optimal prices when there are only two 
possible demands.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

What is the optimal selling strategy for a monopolist who can produce multiple units of a good or service? For instance, 
how should a cloud computing platform such as Amazon EC2 sell units of virtual machines, a cloud storage provider such 
as Dropbox sell units of storage, and a cellphone service providers like AT&T sell units of cellular data? We study this 
problem in a mechanism design setting with multiple dimensions of private information and provide simple conditions 
on the distribution of buyers’ preferences with two implications. First, optimal mechanisms are deterministic. Second, the 
optimal price schedule can be computed efficiently. These results add a natural instance to the few multi-dimensional 
settings where optimal mechanisms are known to be structurally and computationally simple.

We consider the following mechanism design problem. There is a single good that can be produced in any number of 
units. There is a single buyer who has a linear valuation for consuming any number of units of the good up to a demand, 
but does not value consuming units beyond the demand.1 The type of the buyer, consisting of her value per unit and her 
demand, is drawn at random from a distribution, and is known privately to the buyer. The buyer’s utility is her value for 
the units received minus payment to the seller.

✩ A one-page abstract based on an earlier version of this paper appeared in the proceedings of the ACM Conference on Economics and Computation, 
2017.
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1 In the examples mentioned above, it is perhaps more realistic to assume that a buyer has decreasing marginal values for units of the product. For 
example, the first minute of phone calls will be used for most urgent calls, the second unit for less urgent ones, and so on. The literature on multi-
unit mechanisms usually assumes decreasing marginal values (Maskin et al. (1989); Ausubel et al. (2014)). Our model is a first approximation where the 
marginal value is fixed until the buyer is saturated, at which point the marginal value becomes zero. The assumption is made for tractability.
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A mechanism is a menu of lotteries. A lottery consists of a price and a distribution over the number of units. That is, 
once the buyer purchases the lottery by paying its price, she receives a random number of units from the distribution. The 
buyer purchases a lottery from the menu to maximize her expected utility (or purchases no lotteries and gets utility of 
zero). A mechanism is deterministic if each lottery in the menu gives the buyer a deterministic number of units. Below is 
a simple example that shows that a mechanism that uses randomization can obtain higher revenue than any deterministic 
mechanism. We represent the type of a buyer with a pair (v, d), where v is the per unit valuation and d is the demand.

Example 1 (Deterministic mechanisms are not optimal). Suppose that there are three uniformly distributed types t1 = (1,3), 
t2 = (1,2) and t3 = (6,1). That is, for instance, type t1 has a marginal value of 1 per unit for the first 3 units it receives (and 
has marginal value of zero beyond that). Consider the mechanism (which indeed is optimal for this instance) that offers the 
buyer to choose among the following lotteries:

(a) Pay 3. Receive 3 units. Or,
(b) Pay 1.5. Receive 2 units with probability 3

4 and 0 units otherwise.

Types t1 and t3 buy 3 units, whereas type t2 buys the lottery. Expected revenue is 7.5
3 .2 We argue in Appendix A.1 that the 

highest revenue from deterministic mechanisms is 7
3 , obtained by offering 2 units for a price of 2 or 3 units for a price of 3.

It appears that the optimal mechanism is usually randomized for small examples with discrete support. This phenomenon 
is quite common. While Myerson (1981) and Riley and Zeckhauser (1983) show that the optimal mechanism is determin-
istic if all types have the same demand, randomized mechanisms become optimal even for slight generalizations. Optimal 
mechanisms are often structurally and computationally complex and may not even have a finite description (Daskalakis et 
al. (2017); Hart and Nisan (2013); Pavlov (2011); Hart and Reny (2015)). On the other hand, deterministic mechanisms are 
simple and commonly used in practice. Hence it is important to understand conditions that lead to optimality of determin-
istic mechanisms, and their implications on the computation of optimal mechanisms. In this paper we offer two insights in 
this regard.

Our contributions Our first contribution is to identify two conditions that collectively guarantees that there exists an optimal 
mechanism that is deterministic. The first condition, decreasing marginal revenue (DMR), requires that the revenue function 
associated with each demand is concave. The revenue function of a demand d maps each price p to the expected revenue 
of offering one unit of the good at price p only to types with demand d. That is, the revenue function of demand d is 
p · (1 − Fd(p)), where Fd denotes the distribution of the values v conditioned on demand d. Requiring the revenue function 
to be concave is equivalent to requiring marginal revenue to be decreasing, hence the choice of name for the condition. The 
second condition requires that the supports of all distributions Fd have the same highest value. We show with examples that 
both conditions are indeed needed in the sense that either of them alone does not guarantee the optimality of deterministic 
mechanisms.

Our approach to showing optimality of deterministic mechanisms is as follows. In two steps, we show that any mech-
anism can be converted to a deterministic one with higher revenue. First, we convert a mechanism so that a type with 
highest valuation and demand d receives a deterministic allocation of d units. The first step uses the assumption that the 
supports of all conditional distributions have the same highest value. Second, we argue that a mechanism resulting from the 
first step can be converted to a deterministic mechanism. In particular, we remove all non-deterministic allocations from the 
mechanism, and allow types to choose only among the remaining deterministic allocations. This conversion weakly decrease 
the utility function of the mechanism, while keeping the utility of the highest types fixed. The DMR condition implies that 
such a conversion increases revenue.

Our second contribution is to show that assuming DMR, the optimal deterministic mechanisms can be found in poly-
nomial time. To optimize over deterministic mechanisms, a first question is how a mechanism is to be represented. Direct 
representations can be conveniently used to formulate the problem of optimizing over randomized mechanisms as a linear 
program. The trouble with deterministic allocation constraints is that they turn the problem into an integer program. On the 
other hand, a deterministic mechanism does have a natural representation as a vector of prices. The difficulty is now that to 
express revenue of a given price vector, one needs to keep track of the decisions of all types. For example, if all types have 
a demand of either 1 or 2, then given a price of 3 for one unit and 4 for two units, all types with demand 2 buy either 
two or zero units, whereas given a price of 1 for one unit and 4 for two units, some such type, e.g. a type (v, d) = (2, 2), 
buys one unit. A naive approach to optimizing over deterministic mechanisms would then be to partition the space of 
all price vectors based on the induced choices of all types, optimize prices within each region, and then compare prices 
between regions. This approach is quite computationally demanding since the number of possible regions is prohibitively 
large.

2 The utilities of the two options are 0 and 0 respectively for type t1, −1 and 0 for t2, and 3 and 3 for t2. We assume that ties are broken to maximize 
revenue.
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We show that assuming DMR, revenue as a function of the price vector is concave. This implies that optimal prices 
can be found efficiently using standard convex optimization approaches such as gradient descent, ellipsoid, or other cutting 
plane methods (Khachiyan (1980); Vaidya (1989); Tat Lee et al. (2015)). Note that the definition of DMR requires concavity 
as a function of a single price, and does not immediately imply concavity as a function of the vector of prices. The same 
instance as in Example 1 can be used to show that, without imposing DMR, revenue as a function of the price vector need 
not be concave.

Example 2 (Revenue function may not be concave). Consider the instance from Example 1. Let us denote a vector of prices 
by p = (p1, p2, p3), where pi is the price of i units. Consider price vectors p1 = (2, 2, 3), p2 = (3, 3, 3), and their convex 
combination p3 = 1

2 p1 + 1
2 p2 = (2.5, 2.5, 3). The revenue of p1 is 7

3 , the revenue of p2 is 2, and the revenue of p3 is 5.5
3 .3

This violates concavity since the convex combination of revenues of p1 and p2 with weights 1
2 each is 6.5

3 , strictly greater 
than the revenue of p3. Hence revenue as a function of the price vector is not concave.

We use our analysis of the revenue function to obtain two additional results. First, we characterize the optimal prices (of 
deterministic mechanisms) for the case of two demands 1 and 2, assuming DMR. In particular, we show that the optimal 
monopoly prices can be used as a guide to calculate the optimal prices. An optimal monopoly price for a distribution Fd is 
a price p̂d that maximizes p · (1 − Fd(p)). We show that optimal prices and optimal monopoly prices lie within the same 
region, as discussed above, in the space of all prices. For instance, if p̂1 > p̂2, then the same will hold for the optimal prices. 
Therefore, in this case, all types buy two units and the optimal prices can be calculated using simple first order conditions.

As another corollary of our analysis, we design approximately optimal pricing schemes for a dynamic version of our 
problem with demand uncertainty. In particular, we consider a seller who is facing a sequence of T buyers. The type of 
each buyer is drawn identically and independently from a distribution, but the distribution is unknown to the seller. If the 
distribution satisfies the DMR assumption, then we construct a dynamic pricing scheme such that the average revenue per 
round converges to the optimal revenue (i.e., if the seller knew the distribution) at the rate of k9.5√

T
, where k is the highest 

demand in the support of the distribution. We prove this result by using the concavity of revenue to convert our problem 
into a “convex bandits” problem (Agarwal et al. (2011); Bubeck et al. (2017)).

1.1. Related work

Preston McAfee and McMillan (1988) were the first to study optimality of deterministic mechanisms for selling multiple 
products. Among other results, they claimed that a condition similar to our DMR condition implies optimality of deter-
ministic mechanisms. (Thanassoulis (2004) and Manelli and Vincent (2006) show via examples that the claim is incorrect.) 
Manelli and Vincent (2006) identify conditions (different than DMR) for optimality of deterministic mechanisms for selling 
two or three non-identical products. On the other hand, numerous papers show that deterministic mechanisms are not 
generally optimal or even approximately optimal (Hart and Nisan (2017), Thanassoulis (2004), Manelli and Vincent (2006), 
Briest et al. (2015)). We contribute to this literature by finding optimality conditions of deterministic mechanisms for a 
different generalization of the single product problem, namely selling multiple units instead of multiple products.

Malakhov and Vohra (2009) consider an auction design setting with multiple buyers with multi unit demands, but make 
two assumptions: (1) that the buyers cannot report a higher demand, and (2) that the Myerson virtual value is monotone 
in both the value and the demand.4 They formulate the problem as a linear program and interpret it as a shortest path 
problem on a lattice.

Fiat et al. (2016) solve a problem related to ours with an assumption similar to the first assumption above, that buyers 
cannot report a higher demand. They consider what they call the “FedEx” problem, which too has a 2 dimensional type 
space, where one of them is a value v , and the other is a “deadline” d. In their model, all times earlier than d have the 
same valuation and times later than d have a zero valuation, whereas in our model, the valuation stays the same for higher 
d but degrades as d decreases. Fiat et al. (2016) characterize optimal mechanisms using duality and are not concerned with 
optimality of deterministic mechanisms.

2. The model and main results

We study a multi-unit mechanism design setting with a single buyer with private demand. There is a single item, 
any number of units of which can be produced at zero cost. The type (v, d) of the buyer specifies her (per unit) value 

3 Given prices p1, t1 chooses 3 units and pays 3, t2 chooses 2 units and pays 2, and t3 chooses 2 units and pays 2, giving an expected revenue of 7/3. 
Given prices p2, t1 chooses 3 units and pays 3, t2 takes the outside option and pays 0, and t3 chooses 3 units (or 1 or 2) and pays 3, giving an expected 
revenue of 2. Given prices p3, t1 chooses 3 units and pays 3, t2 takes the outside option and pays 0, and t3 chooses 1 units (or 2) and pays 2.5, giving an 
expected revenue of 5.5

3 .
4 The Myerson virtual value given a distribution with CDF F and PDF f is φ(v) = v − 1−F (v)

f (v)
. In our case, we define the virtual value of a type (v, d) by 

applying the same definition using the marginal distribution on v , conditioned on d, and denoted by Fd and fd . φ(v, d) = v − 1−Fd(v)
f (v)

.

d
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v ∈ [vd, ̄vd] and her demand d ∈ {1, 2, · · · , k}.5 The utility of type (v, d) for receiving i ∈ Z+ units of the item and paying 
p ∈R is v · min {i,d} − p. That is, the type has marginal utility of v per unit for the first d units it receives, and after that 
it becomes satiated. Let T denote the set of all types. The type of the buyer is randomly drawn and is privately known to 
the buyer. Let qd denote the probability that a type has demand d. Let fd and Fd denote the probability density and the 
cumulative density functions of the distribution of values conditioned on demand d. Assume fd is differentiable and that 
fd(v) > 0 for all v ∈ [vd, ̄vd].

By the revelation principle, we restrict attention to direct mechanisms. A (direct) mechanism (A, p) is a pair of functions, 
an allocation rule A : T → �(Z+) and a payment rule p : T → R.6 Note that the mechanism may be randomized, that is, 
the allocation A(v, d) is a random variable.7

A mechanism is incentive compatible (IC) if each type maximizes its utility by honestly reporting its true type. Formally, 
a mechanism (A, p) is IC if for all types (v, d) and (v ′, d′),

E [v min {A(v,d),d} − p(v,d)] ≥E
[
v min

{
A(v ′,d′),d

}− p(v ′,d′)
]
,

where the expectation is taken over the randomization of the mechanism. The mechanism is individually rational (IR) if 
each type gets a non-negative utility from truthtelling.8 That is, for all (v, d),

E [v min {A(v,d),d} − p(v,d)] ≥ 0.

An IC and IR mechanism is optimal if it maximizes the expected revenue

E [p(v,d)]

over all IC and IR mechanisms, where the expectation is taken over the randomization of types.
Our main theorems use the following assumptions on the distribution of types.

Definition 1. The conditional distributions have decreasing marginal revenue (DMR) if v · (1 − Fd(v)) is concave in v ∈ [vd, ̄vd]
for all d, and have identical highest values if there exists v̄ such that v̄d = v̄ for all d.

To explain the DMR condition, consider the distribution of types conditioned on demand d. The revenue of making a 
take-it-or-leave-it offer of one unit of the item at price v such types is

Rd(v) := v · (1 − Fd(v)). (1)

This is because any type (v ′, d) with v ′ ≥ v would take the offer, and any type (v ′, d) with v ′ < v would leave the offer, 
resulting in payment v with probability 1 − Fd(v). Thus DMR, which requires concavity of the revenue function v · (1 −
Fd(v)), is equivalent to the fact that the marginal revenue, 1 − Fd(v) − v fd(v), is non-increasing in v , hence the choice 
of name. Monotonicity of marginal revenue is in turn closely related to the usual definition of regularity of Fd , which 
requires that marginal revenue divided by fd(v), i.e., 1−Fd(v)

fd(v)
− v , is monotone non-increasing. We provide a more detailed 

comparison between DMR and regularity in Section 6.1.
Our first theorem shows that if the conditional distributions have DMR and identical highest values, then the optimal 

mechanism is deterministic. A mechanism (A, p) is deterministic if for all (v, d), A(v, d) is supported on {i} for some 
i ∈ {1, . . . , k}. We say that the optimal mechanism is deterministic if there exists an optimal mechanism that is deterministic.

Theorem 1. If the conditional distributions have DMR and identical highest values, then the optimal mechanism is deterministic.

By the taxation principle, a mechanism can be represented as a menu of lotteries. A lottery is a pair of a probability 
distribution over Z+ and a price, corresponding to a randomized allocation and payment. The buyer chooses the lottery 
that maximizes her expected utility from the menu. The menu may be of infinite size.

A deterministic mechanism can be represented as a menu of deterministic lotteries (i, pi) for i ∈ {1, . . . , k}, in which 
the buyer can get i units by paying pi . Given the menu, a type (v, d) chooses i to maximize her utility v min{i, d} − pi . 
Let p denote the vector of prices (p1, . . . , pk). We assume without loss of generality that p1 ≤ p2 ≤ · · · ≤ pk .9 We denote 
by Rev(p) the (expected) revenue of this mechanism. Our second main theorem states that if the distribution of types has 
DMR, then revenue is concave as a function of p.

5 The assumption that d ∈ {1, 2, · · · , k} can be relaxed to d ∈ {d1, d2, · · · , dk} for arbitrary di .
6 �(Z+) is the set of probability distributions over Z+ .
7 By linearity of expectation, we may assume without loss of generality that the payment rule is deterministic.
8 A stronger notion of individual rationality is to require the utility of every type to be non-negative for any realization of the random choices of the 

mechanism. In Appendix A.2, we show that any IR mechanism can be converted to one that satisfies this stronger individual rationality requirement.
9 If pi > pi+1, then no type would choose to receive i units. Consider an alternative mechanism with prices p′ such that p′

j = p j for all j 	= i, and 
p′

i = pi+1. The new mechanism satisfies the property that p′
i ≤ p′

i+1, and the two mechanisms have the same revenue.
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Theorem 2. If the conditional distributions have DMR, then Rev(p) is concave.

We use concavity of the revenue function to obtain two additional results. First, we identify optimal deterministic mech-
anisms with two demands in Section 4.2. Second, we show in Section 4.3 that optimal deterministic mechanisms can be 
calculated efficiently using standard tools from convex optimization.

2.1. Both conditions of Theorem 1 are needed

We show with examples that both conditions of Theorem 1 are needed, in the sense that each one of them alone does 
not guarantee that deterministic mechanisms are optimal. In the first example, the conditional distributions do not have 
DMR. In the second example, the conditional distributions have non-identical highest values. Both examples are obtained by 
approximating the distribution in Example 1. Since there is a gap between the optimal revenue and the optimal determin-
istic revenue in Example 1, then by a continuity argument such a gap will also exist for distributions that approximate the 
distribution in Example 1 closely enough. We defer the detailed calculations to Appendix A.3. In our proof of Theorem 1, 
we will point out the exact place where either of the two conditions is used.

Example 3 (No DMR; identical highest values). The conditional distributions of Example 1 for d = 1, 2 and 3 are point masses 
at 1, 1 and 6 respectively. Replace them with normal distributions N (1, σ), N (1, σ) and N (6, σ), truncated at 0 and V , for 
some V > 6. Note that as σ goes to zero, the distributions approach those in Example 1. We show that for σ small enough, 
the optimal mechanism is not deterministic.

The example above does not imply that DMR cannot be weakened. The example does, however, show that DMR cannot 
be replaced with regularity, or even monotone hazard rate. The truncated normal distributions satisfy the monotone hazard 
rate condition. The monotone hazard rate condition requires the function 1−F (v)

f (v)
to be monotone non-increasing, and is a 

stronger condition than regularity. Note that in the special case where k = 1, it is known from Myerson (1981) and Riley 
and Zeckhauser (1983) that deterministic mechanisms are optimal without any restrictions on the distribution.

The second example shows that the DMR condition alone does not guarantee the optimality of deterministic mechanisms.

Example 4 (DMR; non-identical highest values). Replace the conditional distributions of Example 1 for d = 1, 2 and 3 with 
uniform distributions over [1 − ε, 1 + ε], [1 − ε, 1 + ε], and [6 − ε, 6 + ε]. The conditional distributions have DMR but non-
identical highest values. Note that as ε goes to zero, the distributions approach those in Example 1. For small enough ε , the 
optimal mechanism is not deterministic.

3. Optimal mechanisms

We start by exploring some structural properties of optimal mechanisms. We then use these properties to simplify the 
optimization problem and prove the first main theorem regarding optimality of deterministic mechanisms.

3.1. Structural properties

Allocating only the demanded number of units We first argue that it is without loss of generality to assume that any mecha-
nism (A, p) allocates only the demanded number of units. In such a mechanism, a type who reports a demand of d either 
receives d units with some probability, or none at all. That is, for each (v, d), the random variable A(v, d) is supported on 
{0, d}.

Lemma 1. For any IC and IR mechanism ( Â, p), there exists a mechanism (A, p) that allocates only the demanded number of units, is 
IC and IR, and has the same expected revenue as ( Â, p).

Proof. Define A(v, d) = d with probability E
[

min
{

Â(v,d),d
}]

/d, and A(v, d) = 0 otherwise. The two mechanisms (A, p)

and ( Â, p) have the same expected revenue since they have the same payment rule.
Note for future reference that for any a, d, d′ ∈Z+ ,

min
{

d,d′} min
{

a,d′}
d′ = min

{
min

{
d,d′}

d′ × a,
min

{
d,d′}

d′ × d′
}

≤ min
{

a,min
{

d,d′}}
≤ min {a,d} , (2)

with equality if d = d′ (if d = d′ , both sides are equal to min {a,d}).
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We now argue that the mechanism (A, p) is IC and IR. If a type (v, d) reports (v ′, d′), it receives d′ units with probability 
Pr[A(v ′, d′) = d′], and zero units otherwise. Thus its utility is

v × min
{

d,d′}× Pr[A(v ′,d′) = d′] − p(v ′,d′)

= v × min
{

d,d′}×
E
[

min
{

Â(v ′,d′),d′
}]

d′ − p(v ′,d′)

= v ×E

⎡
⎣min

{
d,d′} min

{
Â(v ′,d′),d′

}
d′

⎤
⎦− p(v ′,d′).

By (2), the utility of type (v, d) from reporting (v ′, d′) in mechanism (A, p) is

≤ v ×E
[

min
{

Â(v ′,d′),d
}]

− p(v ′,d′),

with equality if d′ = d. Note that the above expression is the utility of type (v, d) from reporting (v ′, d′) in mechanism 
( Â, p). Thus, the utility of (v, d) from reporting (v ′, d′) in mechanism (A, p) is no larger than reporting (v ′, d′) in mechanism 
( Â, p), and the utility of truthtelling is equal in the two mechanisms. As a result, the mechanism (A, p) is IC and IR. �

Note that Lemma 1 does not imply that every optimal mechanism must allocate only the demanded number of units. 
We use Lemma 1 to simplify the optimization problem, and then argue that there exists a deterministic mechanism that 
obtains the same revenue as the optimal mechanism that allocates only the demanded number of units. The deterministic 
mechanism may indeed give d′ < d units to type (v, d).

We represent a mechanism that allocates only the demanded number of units by a pair (w, p) in which (v, d) receives 
d units with probability wd(v), receives 0 units otherwise, and pays p(v, d). The utility of type (v, d) from reporting (v ′, d′)
can be written as v min

{
d,d′}wd′ (v ′) − p(v ′, d′).

Local IC constraints are sufficient We now simplify the IC constraints. In particular, we show that it is sufficient to consider 
only a subset of “local” IC constraints that imply all other constraints. The first set of local constraints are “horizontal” 
constraints, in which a type (v, d) reports (v ′, d). The standard analysis from the theory of mechanism design states that 
a mechanism (w, p) satisfies the horizontal constraints if and only if wd is monotone non-decreasing for all d, and the 
payment rule satisfies the payment identity à la Myerson (see, for example, Section 3 in Börgers (2015)). Formally, let U
denote the indirect utility function of a mechanism (w, p) that specifies the utility of truthtelling for each type,

Ud(v) := vdwd(v) − p(v,d). (3)

Then the payment rule must satisfy

p (v,d) = vdwd(v) − d

v∫
vd

wd (z)dz − Ud(vd). (4)

The second set of local constraints are the “diagonal” constraints, in which a type either increases or decreases its 
demand by one unit, and in each case, misreports its value to a certain value. In particular, it is sufficient to consider 
deviations of (v, d) to (v, d − 1) or (vd/(d + 1), d + 1). To state our claim regarding simplification of IC constraints formally, 
let u 

(
v,d → v ′,d′) denote the utility of type (v, d) from reporting (v ′, d′).

Proposition 1. A mechanism (w, p) is IC if and only if for all d and v,

1. wd is monotone non-decreasing and p(v, d) satisfies Equation (4), and
2. Ud(v) ≥ u (v,d → v,d − 1), and

3. Ud(v) ≥ u 
(

v,d → v d
d+1 ,d + 1

)
.

Furthermore, an IC mechanism is IR if Ud(vd) ≥ 0 for all d.

Proof. We start by proving the first statement regarding incentive compatibility. The equivalence of property 1 with hori-
zontal IC constraints is standard and is omitted. Properties 2 and 3 are a subset of IC constraints and must be satisfied by 
any IC mechanism.
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We next argue that the three properties imply incentive compatibility. Note that property 2 implies that

Ud(v) ≥ u(v,d → v,d − 1)

= v(d − 1)wd−1(v) − p(v,d − 1)

= Ud−1(v).

Applying this inequality inductively, we have that

Ud(v) ≥ Ud′(v) (5)

for all d′ ≤ d. Horizontal incentive compatibility implies that for d′ ≤ d,

Ud′(v) ≥ u(v,d′ → v ′,d′) = vd′wd′(v ′) − p(v ′,d′) = u(v,d → v ′,d′) (6)

Note that (5) and (6) together imply that Ud(v) ≥ u(v, d → v ′, d′) for all d′ ≤ d and v, v ′ . That is, a type does not benefit 
from reporting a lower demand.

To show that a type (v, d) does not benefit from reporting (v ′, d′) for d′ ≥ d, note that property 3 implies that

Ud(v) ≥ u(v,d → v
d

d + 1
,d + 1)

= vdwd+1(v
d

d + 1
) − p(v

d

d + 1
,d + 1)

multiplying and dividing the first term by d + 1,

= v
d

d + 1
(d + 1)wd+1(v

d

d + 1
) − p(v

d

d + 1
,d + 1)

= Ud+1(v
d

d + 1
).

Applying this inequality inductively, we have that for all d′ ≥ d,

Ud(v) ≥ Ud′(v
d

d′ ). (7)

From horizontal incentive compatibility we have

Ud′(v
d

d′ ) ≥ u(v
d

d′ ,d′ → v ′,d′)

= v
d

d′ d′wd′(v ′) − p(v ′,d′)

= u(v,d → v ′,d′). (8)

Putting (7) and (8) together, we conclude that Ud(v) ≥ u(v, d → v ′, d′) for all d′ ≥ d and v, v ′ , which completes the proof of 
incentive compatibility.

We now prove the second statement regarding individual rationality. Note from the payment identity (4) that the utility 
of type (v, d) from truthtelling is

d

v∫
vd

wd (z)dz + Ud(vd) ≥ Ud(vd).

We conclude that if the IR constraint is satisfied for the type (vd, d), then it is also satisfied for all types (v, d). �
The global-to-local reduction of Theorem 1 is related to use in the FedEx problem. Syntactically, for the FedEx problem 

just the first 2 constraints above are sufficient, but the semantics are different.10

10 In the FedEx problem the d’s are the deadlines, and a larger d signifies an inferior product, whereas in our problem a larger d is a superior product. 
That the IC constraints still look the same for misreporting a lower d is due to the other difference between the problems: utility scales linearly with d in 
our problem, but remains constant in the FedEx problem. Thus in both problems, the valuation for an item of type d′ < d is the same for types (v, d) and 
(v, d′).
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3.2. The mathematical program

We now write a mathematical program that uses the properties discussed above to capture the optimal mechanism 
design problem. We write the program in terms of the indirect utility functions. The following lemma is a reformulation of 
Theorem 1 in terms of the indirect utility function U . Define U ′

d(v) = d
dv Ud(v).

Lemma 2. A mechanism (w, p) with indirect utility U defined in (3) is IC if and only if

1. Ud is convex and U ′
d(v) = dwd(v) if U ′

d exists, and
2. Ud(v) ≥ Ud−1(v), and
3. Ud(v) ≥ Ud+1(v d

d+1 ).

The following lemma expresses expected revenue in terms of the indirect utility function using integration by parts à 
la Myerson. Let qd denote the probability that demand is equal to d. Recall that the revenue function is defined as follows 
Rd(v) = v · (1 − Fd(v)). Let R ′′(v) = d2

dv2 R(v) be the second derivative of the revenue function.

Lemma 3. If a mechanism (w, p) is IC, then the expected revenue is

E [p(v,d)] =
∑

d

(
v fd(v)Ud(v)|v̄d

vd
+

v̄d∫
vd

Ud(v)R ′′
d(v)dv

)
qd.

Using Lemma 2 and Lemma 3, we now restate the optimal mechanism design problem.

maxU
∑

d

(
v fd(v)Ud(v)|v̄d

vd
+ ∫ v̄d

vd
Ud(v)R ′′

d(v)dv
)

qd (9)

subject to :
Ud(v) is convex ∀d ∈ {1, . . . ,k}
d ≥ U ′

d(v) ≥ 0 ∀d ∈ {1, . . . ,k},∀v

Ud(v) ≥ 0 ∀d ∈ {1, . . . ,k}
Ud(v) ≥ Ud−1 (v) ∀d ∈ {2, . . . ,k}
Ud(v) ≥ Ud+1

(
v

d

d + 1

)
∀d ∈ {1, . . . ,k − 1}

The objective of the mathematical program, the expected revenue, is written in terms of the indirect utility function using 
Lemma 3. Let us discuss the constraints. The first two constraints represent horizontal IC constraints and feasibility of the 
mechanism and follow from Lemma 2. In particular, the second constraint combines the requirement that U ′

d(v) = dwd(v)

with the feasibility constraint 0 ≤ wd(v) ≤ 1. The third constraint is the IR constraint. The last two constraints represent the 
diagonal constraints and follow from Lemma 2.

3.3. Optimality of deterministic mechanisms

We now turn to the proof of the main theorem, Theorem 1, that a deterministic mechanism is the optimal solution to the 
above revenue maximization program. To prove our main result, we utilize the DMR property through the following lemma. 
The lemma allows us to compare the revenue of mechanisms by comparing their indirect utilities pointwise. In particular, 
the lemma states that by lowering the utilities of all types while keeping the utility of types with the highest value fixed, 
we can improve the revenue of a mechanism. The observation is standard and is frequently made in the mechanism design 
literature (e.g., Preston McAfee and McMillan (1988)).

Lemma 4. Consider two IC mechanisms with indirect utilities U and Û , such that Ud(v) ≥ Ûd(v) for all types, with equality for v = vd

for all d. If the distribution of types has DMR, then the revenue of the mechanism with indirect utility Û is at least as high as the revenue 
of the mechanism with indirect utility U .

Proof. The proof follows directly from the expression of revenue in Lemma 3. Since Ud(v) ≥ Ûd(v) for all types, with 
equality for v = vd , we have

v fd(v)Ud(v)|v̄d
vd

≤ v fd(v)Ûd(v)|v̄d
vd
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The DMR property, which requires concavity of Rd , is equivalent to R ′′
d(v) ≤ 0. Together with the assumption that Ud(v) ≥

Ûd(v), we have Ud(v)R ′′
d(v) ≤ Ûd(v)R ′′

d(v). Thus revenue of the mechanism with indirect utility U is

∑
d

(
v fd(v)Ud(v)|v̄d

vd
+

v̄d∫
vd

Ud(v)R ′′
d(v)dv

)
qd

≤
∑

d

(
v fd(v)Ûd(v)|v̄d

vd
+

v̄d∫
vd

Ûd(v)R ′′
d(v)dv

)
qd,

which is the revenue of the mechanism with indirect utility Û . �
The main theorem, Theorem 1, follows immediately from the following two lemmas. The first lemma uses the property 

that the conditional distributions have identical highest values, whereas the second lemma uses the fact that they have 
DMR.

The first lemma states that we can improve the revenue of any mechanism by assigning deterministic allocations to 
types with highest values, assuming that conditional distributions have identical highest values. More precisely, if v̄ = v̄d
for all d, then type (v̄, d) is deterministically assigned d units. The intuition is as follows. Consider any IC mechanism and 
a type (v̄, d). Construct a new mechanism in which the type (v̄, d) receives d units deterministically, and set the payment 
of (v̄, d) in the new mechanism such that (v̄, d) is indifferent between its assignments in the old and the new mechanism. 
Let the allocation and payment of each other type be identical in the two mechanisms. We make two claims. First, this 
modification increases revenue. This is because the new mechanism gives type (v̄, d) its most desirable allocation, and 
therefore can charge it more while giving it the same utility. Second, the modified mechanism is incentive compatible. This 
is because the type (v̄, d), among all other types, is willing to pay the highest amount to switch from its old allocation to a 
deterministic allocation of d units. If the price for this change (the difference in payments) is such that (v̄, d) is indifferent, 
no other type would be willing to take the new allocation. Note that the lemma below does not require the DMR condition.

Lemma 5. Assume that v̄ = v̄d for all d. For any IC and IR mechanism, there exists an IC and IR mechanism, with revenue at least as 
large, in which type (v̄, d) deterministically receives d units for all d.

Proof. Fix any IC and IR mechanism (ŵ, p̂) with induced utility Û . Construct a mechanism (w, p) as follows. For each 
demand d, define wd(v̄) = 1 and pd(v̄) = v̄d − Ûd(v̄). For all types (v, d) with v < v̄ , let the allocation and payment be 
identical to that of (ŵ, p̂), that is wd(v) = ŵd(v) and pd(v) = p̂d(v).

First, notice that the revenue of the mechanism (w, p) is no lower than the revenue of (ŵ, p̂). Indeed, note that

pd(v̄) = v̄d − Ûd(v̄)

= v̄d − (v̄dŵd(v̄) − p̂d(v̄))

= v̄d(1 − ŵd(v̄)) + p̂d(v̄)). (10)

Thus pd(v̄) ≥ p̂d(v̄) while payments of all other types remain the same.
Second, we argue that the mechanism (w, p) is IR by showing that the utility of truthtelling in the two mechanisms is 

the same, that is

Ud(v) = Ûd(v). (11)

Indeed, for any type (v̄, d) we have Ud(v̄) = v̄d − (v̄d − Ûd(v̄)) = Ûd(v̄). And for any type (v, d) where v < v̄ , the allocation 
and the payment remains the same and thus Ud(v) = Ûd(v) trivially.

Third, we argue that the mechanism (w, p) is incentive compatible. Notice that the utility of (v̄, d) from reporting (v ′, d′)
is the same in the two mechanisms. Thus we only need to show that a type (v, d) has no incentive to misreport to (v̄, d′). 
The utility from misreporting is

u(v,d → v̄,d′) = v min(d,d′) − pd′(v̄)

= v min(d,d′) − v̄d′(1 − ŵd′(v̄)) − p̂d′(v̄), (12)

where the second equality followed from (10). We now use the assumption that v̄ = v̄d for all d. This assumption, together 
with the facts that 1 − ŵd′ (v̄) ≥ 0 and d′ ≥ min(d, d′), implies that

v̄d′(1 − ŵd′(v̄)) ≥ v min(d,d′)(1 − ŵd′(v̄)).
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Substituting the above inequality into (12), we have

u(v,d → v̄,d′) ≤ v min(d,d′) − v min(d,d′)(1 − ŵd′(v̄)) − p̂d′(v̄)

= v min(d,d′)ŵd′(v̄) − p̂d′(v̄).

The last expression is the utility that type (v, d) would obtain from misreporting type (v̄, d′) in the mechanism (ŵ, p̂). By 
incentive compatibility of (ŵ, p̂), the above expression is at most the utility that type (v, d) gets from truthtelling, Ûd(v). 
Therefore, we conclude that

u(v,d → v̄,d′) ≤ Ûd(v) = Ud(v),

where the last equation followed from (11). Thus the mechanism is incentive compatible, and the lemma follows. �
Notice that Lemma 5 does not hold with non-identical highest values. Indeed, in Example 1, each of the three types has 

the highest value among all types with that demand. However, deterministic mechanisms are not optimal.
The next lemma shows that for any mechanism in which all types (v̄d, d) deterministically receive d units, there exists 

a deterministic mechanism with revenue at least as large. The lemma requires DMR, but not identical highest values. The 
intuition is that by removing all non-deterministic allocations from the mechanism, the utility of every type would weakly 
decrease, while the utility of a type (v̄d, d) stays the same since it still has access to its most desirable assignment (the 
deterministic assignment). Lemma 4 can then be used to argue that the revenue of a deterministic mechanism is weakly 
higher.

Lemma 6. Consider any IC and IR mechanism where a type (v̄d, d) deterministically receives d units, for all d. If the distribution of 
types has DMR, then there exists a deterministic IC and IR mechanism with revenue at least as large.

Proof. Fix any type with highest value (v̄d, d) that deterministically receives d units. Consider the menu representation of 
the mechanism: it offers, among other lotteries, deterministic allocations of d units, for all d. Now construct an alternative 
menu that only offers such deterministic allocations, in addition to the choice of zero units at price zero. The alternative 
menu contains k choices of deterministic allocations of 1 to k units, plus the choice of zero units. Note that the utility 
function of the alternative mechanism is pointwise (weakly) smaller than the utility function of the original mechanism, 
since each type faces a smaller menu of choices. Furthermore, the utility of type (v̄d, d) remains the same for all d, since 
the deterministic allocations that they chose in the original mechanism are still available in the alternative mechanism. By 
Lemma 4, the revenue of the alternative mechanism is no lower than the revenue of the original mechanism. �

We are now ready to complete the proof of Theorem 1.

Proof of Theorem 1. Consider any IC and IR mechanism. By Lemma 5, there exists a mechanism with revenue at least as 
large, where any type (v̄, d) deterministically receives d units. By Lemma 6, there exists a deterministic mechanism with 
revenue at least as large. Notice that an optimal deterministic mechanism, that is a vector of prices p that maximizes Rev(p), 
exists. The optimal deterministic mechanism is IC and IR, and has no less revenue than any other mechanism, and is thus 
optimal. �
4. The optimal (deterministic) prices

Equipped with Theorem 1, we now turn to the problem of identifying optimal prices in deterministic mechanisms. In 
Section 4.1, we study revenue as a function of prices of deterministic allocations (henceforth simply referred to as “the 
prices”), and prove Theorem 2. We use the properties of the revenue function in the subsequent subsections. In Section 4.2, 
we identify optimal prices for the case of two demands. In Section 4.3, we argue that concavity of revenue can be used to 
compute optimal prices efficiently. The next section also uses concavity to develop approximately optimal dynamic pricing 
schemes with demand uncertainty.

4.1. Structure of the revenue function

In this section study the structure of revenue as a function of prices of deterministic allocations, culminating with the 
proof that revenue is concave (Theorem 2). Recall that the demands in the support of the distribution are 1, . . . , k, and that 
for all i ∈ {1, . . . , k}, pi denotes the price for the bundle of i units, and p = (p1, . . . , pk) denotes the vector of all prices. 
Without loss of generality, we may assume that the domain of p is such that

0 ≤ p1 ≤ p2 ≤ · · · ≤ pk.

With this, we may assume that a type (v, i) only buys a bundle of j units for j ≤ i, and gets utility v j − p j . We restate 
Theorem 2 for convenience.
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D j,l Di, j

i units are better than jj units are better than l

Di,l must be in this interval

Fig. 1. The threshold Di,l is in the interval [D j,l, Di, j].

5 units(v,5) buys:

D5,4 D5,3 = 3D5,2D5,1D3,2 = 1D3,1D2,1 = 1/20

3 units2 units1 unit

Fig. 2. An example where p5 = 8, p4 = 6, p3 = 2, p2 = 1 and p1 = 1/2. The Di, j s define the intervals in which a buyer (v, i) purchases different number of 
units.

Theorem 2. If the conditional distributions have DMR, then Rev(p) is concave.

Characterizing optimal bundles Given a price vector p, the revenue is determined by what the utility maximizing bundle 
is for each type. To analyze this, we first consider when a given type prefers a bundle of j units to one of l units, for 
j 	= l ∈ {1, . . . , k}. The following quantity turns out to be the threshold at which the preference changes.

∀ j, l ∈ {1, . . . ,k} : j > l, D j,l
�= p j − pl

j − l
. (13)

For convenience, we also define D j,0
�= p j/ j for all j ∈ {1, . . . , k}. The next lemma states precisely what it means for D j,l

to be a threshold: if v > D j,l then a buyer with type (v, i) strictly prefers a bundle of j units to a bundle of l units, where 
i ≥ j > l. If v = D j,l the buyer is indifferent between the two options.

Lemma 7. For all i ≥ j > l ∈ {1, . . . , k}, a buyer of type (v, i) prefers a bundle of j units to a bundle of l units if and only if v > D j,l . 
Both bundles are equally preferable precisely when v = D j,l .

Proof. The buyer prefers j units over l units if and only if v j − p j > vl − pl . Rearranging, we get the lemma. �
Before we proceed further, we note the following property for future reference. The threshold Di,l where a buyer switches 

between preferring i units to l units is between thresholds Di, j and D j,l , for all i ≥ j ≥ l ∈ {1, . . . , k}. Intuitively, if Di, j > D j,l , 
then the buyer prefers j units to l units when v > D j,l , and i to j units when v > Di, j . Therefore, for the buyer to be 
indifferent between i and l, her value must be in the interval [D j,l, Di, j]. See Fig. 1.

Lemma 8. For all i ≥ j ≥ l ∈ [k], Di,l is a convex combination of (and hence is always in between) Di, j and D j,l .

Proof. The lemma follows directly from the identity Di,l = 1
i−l

(
(i − j)Di, j + ( j − l)D j,l

)
. �

We next consider how the optimum bundle changes for a given demand i, as v decreases from V̄ to 0. For high enough 
v , the optimum bundle for type (v, i) is i units. As v decreases, the optimal bundle is going to switch at the threshold 
max j<i{Di, j} to some j in the arg max. Similarly, as v decreases further, by Lemma 7 the optimal bundle is going to switch 
at maxl< j{D j,l} and so on. These sequences for different i are not independent, and we can capture each such sequence of 
optimum bundles by a single vector σ ∈ Zk such that the ith coordinate σ(i) ∈ arg max j<i{Di, j}. Given such a σ , for each 
i, the sequence of optimal bundles for types with demand i is given by the directed path Pσ (i), defined as the (unique) 
longest path starting from i in the directed graph on {1, . . . , k} with edges (i, σ(i)). (The path ends when σ(i) = 0 for some 
i.)

For example, consider the case that p5 = 8, p4 = 6, p3 = 2, p2 = 1 and p1 = 1/2. Then, the maximum of the D5,i s is 
D5,3 = 3, the maximum of the D3,i s is D3,2, and D2,1 > 0. Therefore, Pσ (5) is the directed path 5 → 3 → 2 → 1 → 0. See 
Fig. 2.

Given a price vector p, there is a closed form formula for the revenue function that depends on the resulting σ . It is going 
to be more useful, however, to consider the inverse of this map from σ to p: given any σ ∈Zk such that σ(i) ∈ {1, . . . , i −1}, 
we define �σ to be all the price vectors where the sequence of optimal bundles (as described above) is given by Pσ (i). 
Formally,
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�σ
�=
{

p : ∀i,σ (i) ∈ arg max
j<i

{Di, j}
}

. (14)

Revenue function formula We are now ready to give a closed form formula for the revenue function within each �σ . Recall 
that Fi denotes the distribution of values conditioned on demand i, and that qi is the probability that the demand is i. We 
also use σ 2(i) to denote σ(σ (i)). The following function Revσ (p), corresponding to some σ , captures the revenue of a price 
vector p in �σ .

Revσ (p)
�=∑

i qi

(
pi
(
1 − Fi(Di,σ (i))

)+∑
j∈Pσ (i) pσ ( j)

(
Fi(D j,σ ( j)) − Fi(Dσ ( j),σ 2( j))

))
(15)

The following lemma states that if p ∈ �σ , then Revσ (p) is indeed the revenue of the price vector p.

Lemma 9. Rev(p) = Revσ (p) for all p ∈ �σ .

Proof. Suppose p ∈ �σ . Consider all buyer types with demand i. Among these, all types with value v > Di,σ (i) prefer to 
buy the bundle of i units over any other bundle, by Lemma 7, and because p ∈ �σ . These contribute qi pi

(
1 − Fi(Di,σ (i))

)
to the revenue.

Now consider all types with value v ∈ [D j,σ ( j), Dσ( j),σ 2( j)] for some j ∈Pσ (i). We need to prove that these prefer a bun-
dle of σ( j) units over any other bundle l, so that they contribute to the revenue exactly qi pσ( j)

(
Fi(D j,σ ( j)) − Fi(Dσ( j),σ 2( j))

)
, 

and the lemma follows. As characterized by Lemma 7, this is implied by the following.

• If l < σ( j), then v ≥ Dσ( j),σ 2( j) ≥ Dσ( j),l . This holds because p ∈ �σ .
• If i ≥ l > σ( j), then v ≤ D j,σ ( j) ≤ Dl,σ ( j) . We show this in the rest of the proof.

We first prove that ∀ j ∈ Pσ (i), D j,σ ( j) ≥ Dσ( j),σ 2( j) . This follows from the fact that D j,σ 2( j) is between D j,σ ( j) and 
Dσ( j),σ 2( j) (Lemma 8), and that D j,σ 2( j) ≤ D j,σ ( j) (since p ∈ �σ ). We now prove the following: ∀ j ∈ Pσ (i), and l ∈ (σ ( j), j], 
we have that Dl,σ ( j) ≥ D j,σ ( j) . This follows from the fact that if l ∈ (σ ( j), j], then D j,σ ( j) is in between D j,l and Dl,σ ( j) (from 
Lemma 8), and D j,l ≤ D j,σ ( j) . Now by a repeated application of the fact D j,σ ( j) ≥ Dσ( j),σ 2( j) , we get the same conclusion 
for all j and l such that i ≥ l > σ( j). �
Concavity of Revσ Given a closed form for the revenue of a price vector, we next show that each Revσ is a concave function. 
We do this by showing that Revσ can be written as a positive linear combination of linear functions, and compositions of 
v(1 − Fd(v)) with linear functions. The v(1 − Fd(v)) functions are concave by the DMR assumption, and such compositions 
and positive linear combinations preserve concavity, so Revσ is concave as well. Note that Revσ (p) being concave, does not 
imply that Rev(p) is concave.

Lemma 10. For all σ , Revσ (p) is a concave function.

Proof. Notice that using summation by parts we can write

pi Fi(Di,σ (i)) −
∑

j∈Pσ (i)

pσ ( j)
(

Fi(D j,σ ( j)) − Fi(Dσ ( j),σ 2( j))
)=

∑
j∈Pσ (i)

Fi(D j,σ ( j))
(

p j − pσ ( j)
)

Therefore we can rewrite Revσ (defined in (15)) as follows,

Revσ =
∑

i

qi

⎛
⎝pi −

∑
j∈Pσ (i)

Fi(D j,σ ( j))
(

p j − pσ ( j)
)⎞⎠

=
∑

i

qi

⎛
⎝pi −

∑
j∈Pσ (i)

Fi(D j,σ ( j))D j,σ ( j) ( j − σ( j))

⎞
⎠ ,

where the second equality followed from the definition of the thresholds D , Equation (13). We assumed that v(1 − Fi(v))

is concave, which implies that −v Fi(v) is concave. D j,σ ( j) is a linear function of p for all j. Since composition of linear 
functions with concave functions is concave, it follows that −D j,σ ( j) Fi(D j,σ ( j)) is concave. Now Revσ is a positive linear 
combination of concave functions, which makes it concave too. �
Stitching the Revσ s together Lemma 9 and Lemma 10 imply that Rev is piecewise concave, i.e., inside each �σ it is con-
cave. In general this does not imply that such a function is concave everywhere. One property that would imply that 
Rev is concave everywhere would be if Rev was equal to minσ Revσ , since the minimum of concave functions is con-
cave. Unfortunately, this is not true. In fact, for any σ 	= σ ′ , there exist prices p and p such that Revσ (p) > Revσ ′ (p) and 
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Revσ (p′) < Revσ ′ (p′). We show a different, and somewhat surprising, property of the Revσ that also implies that Rev is 
concave. We show that at the boundaries between two regions not only do the corresponding Revσ s agree (which they 
should, for Rev to be even continuous), but also their gradients agree.

Lemma 11. For all σ , σ ′ , p such that p ∈ �σ ∩ �σ ′ , we have that

Revσ (p) = Revσ ′(p) and ∇ Revσ (p) = ∇ Revσ ′(p).

Proof. We first argue that it is sufficient to prove Lemma 11 for the case where σ and σ ′ disagree in exactly one coordinate, 
i.e., there is some i∗ such that σ(i∗) 	= σ ′(i∗), and ∀ j 	= i∗ , σ( j) = σ ′( j). Suppose we have done that. Now consider any two 
σ and σ ′ , and a sequence σ = σ1, σ2, . . . , σn = σ ′ such that for any i, σi and σi+1 differ in exactly one coordinate, where 
σi agrees with σ in that coordinate and σi+1 agrees with σ ′ . The fact that p ∈ �σ ∩ �σ ′ implies that for all coordinates j
such that σ( j) 	= σ ′( j), we have σ( j), σ ′( j) ∈ arg max j′< j{D j, j′ }. Similarly, p ∈ �σi ∩ �σi+1 requires the same condition, but 
only for the coordinate that they differ in, and therefore p ∈ ∩n

i=1�σi . Since we know Lemma 11 holds when the two σ s 
differ in at most one coordinate, it now follows that Rev and ∇ Rev at p are the same for all σi and hence for σ and σ ′ as 
well.

Now we prove Lemma 11 when σ and σ ′ differ at exactly one coordinate, i∗ . We consider the portions of the paths 
Pσ (i) and Pσ ′ (i) that are disjoint, and refer to these disjoint portions as simply P ⊆ Pσ (i) and P ′ ⊆ Pσ ′ (i). Both of these 
paths start at i∗ and end at î. Note that once the two paths merge, they remain the same for the rest of the way. If the 
paths do not merge, then we let î = 0. The critical fact we use is that along these paths the Ds are all the same, which is 
stated as the following lemma.

Lemma 12. All j, j′ ∈P ∪P ′ s.t. j > j′ have the same D j, j′ .

Proof. We prove the lemma by induction, where we add one node at a time in the following order. We start the base 
case with i∗, σ(i∗) and σ ′(i∗). At any point let j and j′ be the last points on P and P ′ that we have added so far. In the 
inductive step, if j > j′ , we add σ( j) and otherwise we add σ ′( j′). We stop when all nodes in P ∪P ′ have been added.

For the base case, let j = σ(i∗) and j′ = σ ′(i∗). Without loss of generality, assume that j > j′ . By Lemma 8, we get that 
Di∗, j′ is between Di∗, j and D j, j′ . Since Di∗, j = Di∗, j′ , from the definition of i∗ , we get Di∗, j = D j, j′ = Di∗, j′ .

For the inductive step, let j ∈ P and j′ ∈ P ′ be the last points that we have added so far, and again without loss of 
generality j > j′ . Let v = σ( j). If v = j′ we are done. There are two cases: v > j′ and v < j′ . In the former case, we have 
D j,v ≥ D j, j′ from the definition of v . From Lemma 8, D j, j′ must be in between D j,v and D v, j′ , therefore D j, j′ ≥ D v, j′ . Let 
i′ ∈ P ′ be the predecessor of j′ , i.e., σ ′(i′) = j′ . Due to the order in which we added the nodes, it must be that i′ > j. By 
definition, Di′, j′ ≥ Di′,v , and by Lemma 8, Di′, j′ must be in between Di′,v and D v, j′ , therefore D v, j′ ≥ Di′, j′ . By the inductive 
hypothesis, we have that Di′, j′ = D j, j′ and hence they both must be equal to D v, j′ .

Now consider any i 	= j′ that we have already added. It must be that i < v , and hence Di, j′ must be in between Di,v and 
D v, j′ , but from the argument in the previous paragraph and the inductive hypothesis, we have that Di, j′ = D v, j′ , and hence 
they must be equal to Di,v . This completes the induction for this case. The latter case of v < j′ is identical. �
Continuing the proof of Lemma 11 To show that Revσ s agree on the boundary, consider the difference Revσ (p) − Revσ ′ (p). 
For all i ≤ i∗ , or i such that i∗ /∈Pσ (i), nothing changes, therefore all those terms cancel out. Moreover, even for i such that 
i∗ ∈Pσ (i), the only terms that don’t cancel out are j ∈P ∪P ′ . Therefore, we get:

Revσ (p) − Revσ ′(p) =∑
i≥i∗:i∗∈Pσ (i) qi

(∑
j∈P pσ ( j)

(
Fi(D j,σ ( j)) − Fi(Dσ ( j),σ 2( j))

)
−∑ j∈P ′ pσ ′( j)

(
Fi(D j,σ ′( j)) − Fi(Dσ ′( j),(σ ′)2( j))

))
,

which is zero by Lemma 12.
For the second part of the proof, we’ll show that the gradient of Revσ − Revσ ′ is zero. We only need to consider the 

partial derivatives w.r.t. p j for j ∈P ∪P ′ . Fix a j ∈P , and consider the terms in ∂(Revσ −Revσ ′ )
∂ p j

corresponding to some i ≥ i∗

such that i∗ ∈ Pσ (i), in the outer summation. Let the path Pσ (i) be such that a ∈ Pσ (i), b = σ(a), j = σ(b), c = σ( j) and 
d = σ(c).

i → . . . → i∗ → . . . → a → b → j → c → d → . . .

Then the terms under consideration are

∂

∂ p j
qi
(

pb
(

Fi(Da,b) − Fi(Db, j)
)+ p j

(
Fi(Db, j) − Fi(D j,c)

)+ pc
(

Fi(D j,c) − Fi(Dc,d)
))=

= qi

(
pb fi(Db, j) − p j

f i(Db, j) + Fi(Db, j) − Fi(D j,c) − p j
f i(D j,c) + pc

fi(D j,c)

)

b − j b − j j − c j − c
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= qi
(

Db, j f i(Db, j) − D j,c f i(D j,c) + Fi(Db, j) − Fi(D j,c)
)
.

By Lemma 12, Db, j = D j,c , and therefore these terms are zero. The cases when i = i∗ , or i∗ = a, b, j, or c, d = 0, or j ∈Pσ ′ (i)
are identical. �

We are now ready to prove the main theorem of this section, which is simply arguing how this agreement of gradients 
implies that Rev is concave everywhere.

Proof of Theorem 2. Consider any two prices p1 and p2, and the line segment joining the two. We will argue that Rev is 
concave along this line segment, which then implies the Theorem. From Lemma 9 and Lemma 10, we have that this line 
segment is itself divided into many intervals (corresponding to the different �σ ), and within each interval, Rev is a concave 
function. Further, from Lemma 11, we have that these concave functions agree at the intersections of the intervals, and the 
gradients agree too. Thus Rev is smooth, and the derivative along this line is monotone. This implies that Rev is concave 
along the line. �
4.2. Optimal prices with two demands

In this section we identify optimal prices with two demands d ∈ {1, 2}, assuming that the conditional distributions have 
DMR and identical highest values.11 By Theorem 1, optimal mechanisms are identified by the optimal prices p∗ = (p∗

1, p
∗
2)

where p∗
i is the price of i units, for i ∈ {1, 2}.

The proposition below relates optimal prices p∗ to the optimal monopoly prices p̂ = (p̂1, p̂2), where p̂1 ∈ arg max R1(p1)

and p̂2 ∈ arg max R2(p2/2). The optimal monopoly prices are the solution to a relaxed problem of

max
p1,p2

q1 p1(1 − F1(p1)) + q2 p2(1 − F2(p2/2)), (16)

in which the incentive constraints between types with different demands are removed. That is, price p1 is offered for 
buying 1 unit exclusively to all types (v, 1), and price p2 is offered for buying 2 units exclusively to all types (v, 2) (a 
type (v, 1) cannot buy 2 units, and a type (v, 2) cannot buy 1 unit). Notice that a type (v, 2) buys 2 units at price p2 if 
2v ≥ p2, or v ≥ p2/2. The optimal monopoly prices can be calculated straightforwardly given the first order conditions of 
optimality, R ′

1(p̂1) = 0 and R ′
2(p̂2/2) = 0. For simplicity we assume that the distributions F1 and F2 are strictly regular, that 

is, v − 1−F1(v)
f1(v)

and v − 1−F2(v)
f2(v)

are increasing in v . This assumption implies that p̂ is unique.
The proposition relates the optimal prices to the optimal monopoly prices by considering three cases, shown in Fig. 3. If 

p̂1 ≤ p̂2 ≤ 2p̂1, that is p̂ belongs to the middle region in Fig. 3, then we show that the revenue Rev(p̂) of posting prices p̂
is equal to the optimal revenue of the relaxed problem, (16). In this case, prices p̂1 and p̂2 are optimal, p∗ = p̂. In the other 
two cases, p̂ 	= p∗ . Nevertheless, p̂ can be used as a guide to identify p∗ . If 2p̂1 < p̂2, that is p̂ belongs to the top region 
in Fig. 3, then so does p∗ . In this case, it is optimal to offer a price p∗

1 ∈ [p̂1, p̂2/2] for one unit, and p∗
2 = p∗

1 + p̂2/2 for 
two units. If p̂2 < p̂1, that is p̂ belongs to the bottom region in Fig. 3, then so does p∗ . In this case, it is optimal to offer a 
uniform “all you can eat” price which is between the two optimal monopoly prices, that is, p∗

1 = p∗
2 ∈ [p̂2, p̂1]. In each case, 

the optimal prices are identified uniquely given the appropriate first order conditions. The three cases are summarized in 
the proposition below.

Proposition 2. Assume that there are two demands d ∈ {1, 2} and that the conditional distributions are strictly regular and have DMR. 
Consider prices p∗ defined given the three possible cases for p̂. A mechanism that posts prices p∗ is optimal.

1. If p̂1 ≤ p̂2 ≤ 2p̂1 , then p∗ = p̂.
2. If 2p̂1 < p̂2 , then p∗

1 is identified by q1 R ′
1(p∗

1) + q2 R ′
2(p∗

1) = 0 and p∗
2 = p∗

1 + p̂2/2. The price p∗
1 is in the interval [p̂1, p̂2/2].

3. If p̂2 < p̂1 , then p∗
1 is identified by q1 R ′

1(p∗
1) + 2q2 R ′

2(p∗
1/2) = 0 and p∗

2 = p∗
1 . The prices p∗

1 = p∗
2 are in the interval [p̂2, p̂1].

As an application, consider the following three cases. First, suppose that F1 = F2. Then 2p̂1 = p̂2 and thus we are in case 
(1) of the proposition. The price of two units is twice as much as the price of one unit. In other words, the buyer can buy 
any number of units at a constant per-unit rate p̂1 = p̂2/2. Second, suppose that the hazard rate of F1 is dominated by the 
hazard rate of F2, that is,

1 − F1(v)

f1(v)
<

1 − F2(v)

f2(v)
,

for all v . Then, 2p̂1 < p̂2 and thus we are in case (2).12 Third, suppose that the hazard rates satisfy

11 The analysis extends straightforwardly to the case of any two demands D = {d1, d2}.
12 This is because p̂1 = 1−F1(p̂1)

<
1−F2(p̂1) and p̂2/2 = 1−F2(p̂2/2) . Since F2 is strictly regular, p̂1 < p̂2/2.
f1(p̂1) f2(p̂1) f2(p̂2/2)
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p1

p2

p1 = p2

2p1 = p2

2p1 < p2 p1 ≤ p2 ≤ 2p1

p2 < p1

Fig. 3. Three possible cases for prices p.

1 − F1(v)

2 f1(v)
>

1 − F2(v/2)

f2(v/2)
,

for all v . Then, p̂2 < p̂1 and thus we are in case (3).13 In case (3), it is optimal to offer a uniform “all you can eat” price.
We defer the proof to Appendix A.6, and here provide an overview. The key step is to show that p̂ and p∗ belong to the 

same region in Fig. 3. Knowing the region to which p∗ belongs pins down the form of the revenue function at p∗ . This is 
because each region corresponds to a set of price in �σ for some σ , as defined in Equation (14), and thus Rev = Revσ . As 
a result, the optimal prices can be calculated by the first order conditions of optimality of Revσ .

To show that p̂ and p∗ belong to the same region, we use Lemma 11 and Theorem 2. By Lemma 11, ∇ Rev(p) = ∇ Revσ (p)

for all prices p such that 2p1 = p2. If 2p̂1 < p̂2, then the gradient of Rev at a price 2p1 = p2 is pointing to the top region. 
Since the gradients are equal, the gradient of Revσ points to the top region as well. Since Rev is concave, the prices p∗ that 
maximize Rev must be in the top region. A similar argument applies to the case where p̂2 < p̂1.

4.3. Computation of optimal prices

We have seen that the revenue as a function of prices of deterministic allocations is concave. In this subsection we 
discuss how to use this result to find optimal mechanisms in a computationally efficient manner. We do so by applying 
the Ellipsoid method for convex optimization. The Ellipsoid method can be used to maximize a concave objective function 
over a convex set, assuming access to two “oracles” that provide answers to certain queries. The first-order oracle gives the 
value of the objective function and its subgradient at a given point. The separation oracle verifies whether a given point is 
in the convex set. Further, if the point is not in the set, then the oracle returns a hyperplane that separates the convex set 
from the point. The running time of the Ellipsoid method depends on the running times of the oracles. See Grötschel et al. 
(1988) for background.

Theorem 3 (Ellipsoid for convex optimization. Grötschel et al. (1988)). There is an algorithm such that given (1) a first-order oracle for 
a concave function f :Rn →R, (2) a separation oracle for a convex set K ⊆Rn, (3) numbers r, R > 0 such that K ⊆ B(0, R) and K
contains a Euclidean ball of radius r, (4) bounds �0, u0 such that ∀x ∈ K , �0 ≤ f (x) ≤ u0 and (5) an ε > 0, outputs a point x̂ ∈ K such 
that f (x̂) ≥ f (x) − ε , for all x ∈ K . The running time of the algorithm is

O

(
(n2 + T K + T f ) · n2 · log

(
R

r
· u0 − �0

ε

)2
)

,

where T K and T f are the running times of the separation oracle for K and a first-order oracle for f , respectively.

We will apply this theorem with the obvious parameters: f = Rev, n = k, K = {p : 0 ≤ p1 ≤ · · · ≤ pk ≤ v̄}. R = √
kv̄ , 

r = v̄/2k, �0 = 0 and u0 = kv̄ .14 Designing a separation oracle for K is trivial: we can easily check if p ∈ K , and if p /∈ K
the separating hyperplane is given by the violating pair i < j such that pi > p j . The final piece is getting a first-order oracle
for Rev, a function that given p outputs Rev(p) and a subgradient of Rev at p. Towards this step, notice that our proof of 

13 This is because p̂2/2 = 1−F2(p̂2/2)

f2(p̂2/2)
<

1−F1(p̂2)

2 f1(p̂2)
and p̂1 = 1−F1(p̂1)

f1(p̂1)
. Since F1 is strictly regular, p̂2 < p̂1.

14 A ball centered at ( v̄
2k , 3v̄

2k , . . . , (2k−1)v̄
2k ) with radius v̄/2k is contained in K .
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Theorem 2 gives us a lot more than concavity. Given a price vector p we can easily find a closed form for the revenue of 
p, that is, find Revσ (p) as in Equation (15). This allows us to not only calculate the revenue of price vector p, but also the 
gradient of the revenue function at p. The following corollary is immediate.

Corollary 1. There is an algorithm such that given ε > 0 finds a feasible price vector p, such that Rev(p) ≥ Rev(p̂) − ε , for all feasible 
price vectors p̂, in time

O

(
(k2 + k + TRev) · k2 · log

(
kv̄

ε

)2
)

,

where TRev is the running time of the first-order oracle for Rev.

There is one finer point left to address. We have assumed that we can perform exact arithmetic on real numbers. 
Specifically, we assumed that our separating and first-order oracles give exact answers. Luckily, even if we got approximate 
answers, say up to � bits, which in turn translate to weak oracles, we can still find an approximately optimal price vector 
in polynomial time. For more details and precise statements we refer the reader to Grötschel et al. (1988).

5. Dynamic pricing

We have assumed so far that the seller knows the distribution of types. A learning theoretic approach to the problem is to 
make the same assumptions about the distributions as before, but do not assume that the seller knows these distributions. 
Instead, the buyers arrive one at a time, and the seller can adaptively change the prices he offers, as she observes more and 
more of the buyers respond, and converge to an optimal price. This is commonly called the dynamic pricing problem; see 
den Boer (2015) for a survey. We define the model formally below.

In each round τ ∈ 1,2, . . . , T , for some T ∈ Z+ , the following takes place. (We state this model and the results for the 
more general case where the demand d ∈ {d1, d2, · · · , dk} for arbitrary di .)

1. The seller posts a price vector pτ .
2. A buyer of type (vτ , dτ ) is drawn independently from the distribution f .
3. The buyer buys her utility maximizing bundle xτ ∈ arg max{i:di≤dτ } vτ di − pτ

i .
4. The seller observes only xτ .

Assume, for the sake of notational convenience, that d0 = 0 and pτ
0 = 0 for all τ , so xτ = 0 when the buyer does not buy 

anything. The goal of the seller is to maximize her expected average revenue

E

[
1

T

T∑
τ=1

pτ
xτ

]
.

We evaluate the performance of a dynamic pricing scheme by its regret, which is the difference between the optimal 
expected revenue, if the seller knew the type distribution, and the average expected revenue of the pricing scheme. We 
would like the regret to converge to zero, and evaluate an algorithm based on the rate of convergence.

Kleinberg and Leighton (2003) present an algorithm with a 1/
√

T regret for the case of a single item, assuming that 
the revenue function is concave (same assumption as ours).15 When there are multiple items, without any additional as-
sumptions, the regret scales as 

√
L/T where L is the number of different price vectors to be considered. This requires a 

discretization of the price space, and the resulting L is exponential in k, the number of different items sold. Besbes and 
Zeevi (2012) show that if the revenue function is concave, then there is an algorithm with regret 

√
log T /T k+3. The con-

cavity assumption on the revenue function is quite common in such revenue management problems (Talluri and Van Ryzin, 
2006). Theorem 2 shows that concavity of the revenue function is implied by the concavity of 1 dimensional revenue func-
tions for each d. The problem of convex bandits (defined formally below) has received much attention lately. The state of 
the art for this problem is a k9.5√

T
regret algorithm by Bubeck et al. (2017). This is a significant improvement over previous 

results since the dependence on k goes from exponential to polynomial.
The convex bandits problem is as follows: in each round τ ∈ 1,2, . . . , T , for some T ∈Z+ , the following takes place.

1. The algorithm picks a vector pτ from some convex domain K ⊆Rk .
2. An adversary picks an arbitrary convex loss function �τ on domain K and range [0, 1].
3. The algorithm observes only �τ (pτ ).

15 When we state regret bounds, we ignore the constants. All regret bounds should be interpreted with an O (1) in front.
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The goal of the algorithm is to minimize regret, defined as

T∑
τ=1

�τ (pτ ) − min
p∈K

�τ (p).

The reduction from the dynamic pricing problem to the convex bandits problem is quite standard. Let Rτ (p) denote the 
revenue obtained from the buyer of type (vτ , dτ ) when offered a price p. Define the loss function at time τ to be

�τ (p) = 1 − Rτ (p)

dk v̄
.

Recall that v̄ is the highest possible marginal value. The loss has been normalized appropriately so that the range is [0, 1]. 
The regret of the convex bandit problem is the same as that of the dynamic pricing problem, up to a factor of dk v̄ .

This is not quite a reduction to the convex bandits problem because this loss function is not convex. What we have 
from Theorem 2 is that the expectation of the loss function is convex. In personal communication with the authors of the 
convex bandits paper (Bubeck, 2017), we have confirmed that their result also holds for this case, where the loss function 
is randomized and is only convex in expectation. Thus we get the following as a corollary of Theorem 2 and Theorem 1 in 
Bubeck et al. (2017).

Corollary 2. There is a dynamic pricing scheme where the regret is

Õ (k9.5)dk v̄√
T

.

6. Conclusions and discussions

In this paper, we consider a mechanism design problem with multi unit demands, where the marginal value of each 
type of the buyer (v, d) is v for the first d units it receives, and 0 afterwards. We prove two main results. First, if the 
conditional distributions Fd have DMR and identical highest values, then the optimal mechanism is deterministic. Second, 
if the conditional distributions have DMR, then revenue as a function of vector of prices is concave, and therefore optimal 
deterministic prices can be computed efficiently. We use concavity to establish two further results. We identify optimal 
deterministic prices when there are two demands, and provide an approximately optimal dynamic pricing scheme with 
demand uncertainty. In the subsequent subsections we discuss the DMR condition and briefly discuss possible extensions 
and further directions.

6.1. The DMR condition

In this section we discuss the DMR condition and its connections with other commonly used regularity conditions.
A simple class of DMR distributions is Uniform [a, b] for any non-negative reals a and b. More generally, any distribu-

tion with bounded support and monotone non-decreasing probability density is DMR. The second derivative of the revenue 
function is −2 f (v) − v f ′(v), which is negative if f ′(v) ≥ 0. Another standard class of demand distributions that satisfies 
DMR is a constant elasticity distribution, defined in the example below. The DMR condition is closely related to but dif-
ferent from the regularity condition of Myerson (1981). Whereas regularity requires that the function φ(v) = v − 1−F (v)

f (v)
is 

monotone non-decreasing, DMR requires that φ(v) · f (v) is monotone non-decreasing. The example below shows that DMR 
and regularity are incomparable conditions.

Example 5 (DMR vs. regularity). Consider the class of constant elasticity distributions with cumulative density F (v) = 1 −
(v/a)1/ε for any a > 0 and ε < 0, supported on [a, ∞). A special case is when a = 1 and ε = −1, in which case F (v) = 1 −
1/v , known as the equal revenue distribution. The corresponding revenue function v(v/a)1/ε is concave if ε ≤ −1. However, 
the function φ(v) = v − 1−F (v)

f (v)
simplifies to v(1 + ε), which is monotone decreasing for ε < 1. Therefore such a distribution 

satisfies DMR, but not regular, for ε < −1. Notice that the truncation of the distribution on any support [a, v̄] also satisfies 
DMR. On the other hand, a truncated exponential distribution is regular but does not satisfy DMR. Calculations for this 
example are straightforward and deferred to Appendix A.

The class of DMR distributions is well-behaved in the sense that it is closed under convex combinations. In particular, 
the distribution that results from drawing a sample from a DMR distribution with probability α, and from another DMR 
distribution with probability 1 − α, is a DMR distribution. The cumulative density of a distribution that samples from F1
with probability α, and from F2 otherwise, is F (v) = αF1(v) + (1 − α)F2(v). Therefore, the revenue function of the convex 
combination is the convex combination of the revenue functions of F1 and F2, and is concave if F1 and F2 are DMR. On the 
other hand, it is known that regular distributions are not closed under convex combinations (Sivan and Syrgkanis (2013)).
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The DMR condition has been extensively used in the mechanism design literature. Che and Gale (1998) use the same 
condition for a similar problem of selling a single item to a single buyer with budget constraints, rather than demand or 
capacity constraints. The optimal mechanism there could still be randomized. Fiat et al. (2016) too use the DMR condition. 
In particular, they show that to derive the optimal mechanism, one needs to iron in the value space, rather than the quantile 
space as in Myerson (1981).16 DMR is precisely when no ironing is needed in the value space. The same assumption was 
also made by Kleinberg and Leighton (2003) in the context of dynamic pricing. Generalizations of the DMR condition have 
been used in the literature on multidimensional mechanism design (e.g., Preston McAfee and McMillan (1988)).

6.2. Extensions and future directions

The focus of this paper is to identify when deterministic mechanisms are optimal, and the structure and computation of 
optimal deterministic mechanisms. There are many natural questions that arise that are beyond the scope of this paper. We 
briefly mention these questions and possible extensions, and leave a more detailed analysis for future work.

Approximation In this paper we focus on exact optimality of mechanisms (other than the dynamic pricing extension). It 
would be interesting to explore conditions under which deterministic mechanisms are approximately optimal. An immediate 
approach would to formulate approximate notions of our conditions that imply approximate optimality of deterministic 
mechanisms. Other papers, for instance Cole and Roughgarden (2014), have developed approximate notions of regularity 
(and monotone hazard rate) that can perhaps be used to define approximate DMR. Fiat et al. (2016) develop an ironing 
technique to characterize optimal mechanisms in their setting, which may be useful in our setting to identify optimal 
mechanisms, or to prove approximate optimality of deterministic mechanisms given approximate DMR.

We make two assumptions regarding the support of the distributions, that perhaps can be relaxed to get approximate 
optimality. First, that the distributions have bounded support. It would be perhaps possible to replace the assumption of 
identical highest values with a “diminishing tails” assumption, for instance if v f (v) goes to zero as v goes to infinity. The 
problem with directly extending our current approach is that it is not clear how Lemma 5 should be extended to allow for 
unbounded supports. Second, that the distributions have identical highest values. Example 4 show that it is not possible 
to remove this assumption. But it may be possible to develop an approximation guarantee based on how close the highest 
values are in the supports of the distributions.

Multi-unit multi-agent auctions There are two possible approaches that one can take in studying a multi-agent extension 
of our model. First, one can attempt to characterize optimal auctions. This is done by Malakhov and Vohra (2009) (with 
a regularity assumption and assuming that buyers cannot report a higher demand). A second approach, closer to the one 
taken in this paper, is to identify conditions under which a “simple” class of auctions is optimal. A natural extension of 
our work would be to identify conditions under which deterministic mechanisms are optimal, although there may be other 
possible generalization of deterministic mechanisms to multiple agents.

Appendix A. Deferred proofs

A.1. Calculations from Example 1

Lemma 13. In Example 1, the optimal profit from deterministic mechanisms is 7
3 .

Proof. A deterministic mechanism posts prices p1, p2 and p3 for buying 1, 2 or 3 units respectively; an agent picks her 
favorite option. Clearly, p1 ≤ p2 ≤ p3.

If p1 > 3 (which implies that p2, p3 > 3) t3 is the only agent who could purchase something. The optimal choice of p1
is then 6, which yields revenue 6

3 = 2.
If p1 ≤ 3, then p1 = p2. Assume otherwise that p1 < p2. If any of t1, t2 choose to buy 1 unit for a price of p1, then they 

would also buy 2 units for a price of 2p1 (which yields strictly larger revenue), and t3 would also have non-negative utility 
for this option. Therefore, increasing p1 to equal p2 will weakly increase revenue.

Assume therefore that p1 ≤ 3, then p1 = p2. Since p1 = p2, t3 will always purchase 2 units and contribute p2
3 to the 

expected revenue. If p1 = p2 > 2, then t2 does not purchase anything and t1 could only purchase 3 units (if p3 ≤ 3). The 
revenue in this case is p2

3 + p3
3 if p3 ≤ 3, for a maximum of 2 (by setting p2 = p3 = 3), or p2

3 if p3 > 3, for a maximum of 
2 (by setting p2 = p3 = 6). Finally, if p2 ≤ 2, then t2 buys 2 units for a price of p2. If p3 > p2 + 1, t3 prefers 2 units to 3
units and the expected revenue is p2 · 1 (maximized at p2 = 2). Otherwise, t3 buys 3 units for a price of p3; setting p2 = 2
and p3 = 3 gives expected revenue p2

2
3 + p3

3 = 7
3 . �

16 Ironing is a technique introduced by Myerson (1981) where the virtual value function is transformed so that it becomes monotone. This corresponds 
to transforming the corresponding revenue function into a concave function.
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A.2. Strong individual rationality

According to definition, a mechanism (A, p) is IR if

E [v min {A(v,d),d} − p(v,d)] ≥ 0.

A stronger individual rationality constraint would be to require the utility of each type to be non-negative for any 
random choice of the mechanism. We show that any IR mechanism can be converted to one that satisfies this stronger 
IR requirement. To define the IR notion, we make the random choices of the mechanism regarding payments explicit. A 
mechanism (A, P ) is identified by an allocation rule A and a payment rule P : V × D → �(R). A mechanism is strongly 
IR if v min {A(v,d),d} − P (v, d) ≥ 0 for all types (v, d) and all random choice of the mechanism. Incentive compatibility is 
defined as before.

Lemma 14. For every IC and IR mechanism (A, P ), there exists P̃ such that the mechanism (A, P̃) is IC and strongly IR and 
E [P (v,d)] =E[ P̃ (v, d)] for all (v, d), where the expectation is taken over the randomization of the mechanism.

Proof. Consider an IC and IR mechanism (A, P ), with expected payment p(v, d) =E [P (v,d)]. First note that we can assume 
that for each type (v, d), the randomized allocation A(v, d) does not assign a number of units more than d. If this is not 
true, replace any assignment of more than d units with the assignment of d units. Note that this change does not change 
the utility of truthful reporting, and cannot improve utility of non-truthful reporting. Therefore the resulting mechanism is 
IC and IR. Now consider a type (v, d). For each realization of allocation A(v, d), define a payment P̃ (v, d) as follows

P̃ (v,d) = p(v,d)A(v,d)

E [A(v,d)]
.

The payment rule P̃ is randomized since A is randomized. Note that the expected payment of the type stays the same,

E
[

P̃ (v,d)
]

= p(v,d)
E [A(v,d)]

E [A(v,d)]
= p(v,d).

As a result, the modified mechanism remains IC. In addition, the ex-post utility of the type from the realized allocation of 
A(v, d) units is

v A(v,d) − p(v,d)A(v,d)

E [A(v,d)]
,

which is non-negative if and only if

v E [A(v,d)] − p(v,d) ≥ 0,

which hold by IR. �
A.3. Calculations for Example 3 and Example 4

We here provide calculations for Example 3 and Example 4. The idea is straightforward. If a distribution is perturbed 
slightly, the optimal revenue from randomized mechanisms and the optimal revenue from deterministic mechanisms do not 
change by much. The distributions in Example 3 and Example 4 are small perturbations of Example 1. Since there is a gap 
between the optimal revenue and the optimal revenue from deterministic mechanisms Example 1, such a gap will persist 
for small enough perturbations.

Madarász and Prat (2017) prove the small perturbations argument. We here provide the calculations regardless since 
the arguments for deterministic mechanisms does not appear in Madarász and Prat (2017). Instead of attempting a general 
approach (which is probably possible), we argue each case individually.

Calculations for Example 3 Consider the randomized mechanism of Example 1 and discount the prices by 3ε and 2ε for 
options (a) and (b) respectively. That is, charge 3 − 3ε for 3 units, and charge 2 − 2ε for a probability of 3/4 to receive 
2 units. This results in all types (v, d) purchasing the option the unique type with demand d purchased in Example 1. By 
picking σ small enough, the revenue of this (randomized) mechanism on this new distribution is at least 7.5

3 − 4ε .
It remains to show that no deterministic mechanism for this distribution has revenue much larger than the optimal 

deterministic mechanism in Example 1. Suppose that there was a deterministic mechanism M that gave revenue at least 7.1
3

for the new distribution. We will construct a deterministic mechanism M̃ that gives revenue strictly larger than 7
3 for the 

distribution of Example 1, leading to a contradiction. First, note that we can safely ignore all types (v, d) with |v − μ| > δ

for any δ > 0, where μ is the mean of the normal distribution corresponding to d, by picking σ small enough; even if 
those types paid their value, the contribution to the overall revenue would be insignificant. Now, consider a mechanism M̂
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that assigns all types (v, d) the most expensive option purchased by any type (v ′, d), with |v ′ − μ| ≤ δ (this mechanism is 
not truthful). The revenue of M̂ is at least the revenue of M . Furthermore, the extra utility of any type in mechanism M̂
from deviating to another type is at most 2δ. Now, notice that mechanism M̂ has the same revenue in the distribution of 
Example 1 as in the distribution of Example 3.

To complete the proof, consider a mechanism M̃ that reduces all prices of M̂ by a factor of (1 − ε), for some ε > 0, and 
lets buyers choose whatever option they want. M̃ is truthful and deterministic by definition. We claim that its revenue is 
at least 7.1

3 − ε/(2δ), which is a contradiction, since there are choices of ε and δ to make this number strictly larger than 
7
3 . To see this most clearly, consider a type (v, d) that is gets allocation x for a price p in M̂ , but chooses some allocation 
x′ for a price (1 − ε)p′ in M̃ . As argued before, the utility of type (v, d) from allocation x and payment (1 − ε)p plus 2δ is 
at least the utility of type (v, d) for allocation x′ for price p′ . Since M̃ is truthful, we have that the utility of type (v, d) for 
allocation x′ and payment (1 − ε) is at least the utility of type (v, d) for allocation x and payment (1 − ε)p. Adding up the 
two equations gives p′ ≥ p − ε

2δ
, which gives the desired result when adding over all types.

Calculations for Example 4 The calculations for Example 4 are similar to those of Example 3. First, the optimal revenue 
is at least 7.5

3 − 4ε . Second, the revenue of any deterministic mechanism is at most 7.1
3 . Therefore, for ε small enough, 

deterministic mechanisms are not optimal.
Suppose that there was a deterministic mechanism M that gave revenue at least 7.1

3 for the new distribution. We will 
construct a deterministic mechanism M̃ that gives revenue strictly larger than 7

3 for the distribution of Example 1, leading 
to a contradiction. Now, consider a mechanism M̂ that assigns all types (v, d) the most expensive option purchased by any 
type (v ′, d) (this mechanism is not truthful). The revenue of M̂ is at least the revenue of M . Furthermore, the extra utility 
of any type in mechanism M̂ from deviating to another type is at most 2ε . Now, notice that mechanism M̂ has the same 
revenue in the distribution of Example 1 as in the distribution of Example 3.

To complete the proof, consider a mechanism M̃ that reduces all prices of M̂ by a factor of (1 − δ), for some δ > 0, and 
lets buyers choose whatever option they want. M̃ is truthful and deterministic by definition. We claim that its revenue is 
at least 7.1

3 − 2εδ, which is a contradiction, since there are choices of ε and δ to make this number strictly larger than 7
3 . 

To see this, consider a type (v, d) that is gets allocation x for a price p in M̂ , but chooses some allocation x′ for a price 
(1 − δ)p′ in M̃ . As argued before, the utility of type (v, d) from allocation x and payment (1 − δ)p plus 2ε is at least the 
utility of type (v, d) for allocation x′ for price p′ . Since M̃ is truthful, we have that the utility of type (v, d) for allocation x′
and payment (1 − δ) is at least the utility of type (v, d) for allocation x and payment (1 − δ)p. Adding up the two equations 
gives p′ ≥ p − 2εδ, which gives the desired result when adding over all types.

A.4. Proof of Lemma 2

Lemma 2. A mechanism (w, p) with indirect utility U defined in (3) is IC if and only if

1. Ud is convex and U ′
d(v) = dwd(v) if U ′

d exists, and
2. Ud(v) ≥ Ud−1(v), and
3. Ud(v) ≥ Ud+1(v d

d+1 ).

Proof. The equivalence of property 1 of the lemma with property 1 of Theorem 1 is standard and is omitted.
Property 2 of the lemma is equivalent to property 2 of Theorem 1. By definition, u(v, d → v, d) = Ud(v), and u(v, d →

v, d − 1) = v(d − 1)wd−1(v) − p(v, d − 1) = Ud−1(v). Thus, u(v, d → v, d) ≥ u(v, d → v, d − 1) is equivalent to Ud(v) ≥
Ud−1(v).

Property 3 of the lemma follows from properties 1 and 3 of Theorem 1. This is because by the payment identify (4),

u(v,d → v
d

d + 1
,d + 1) = vdwd+1(v

d

d + 1
) − p(v

d

d + 1
,d + 1)

= (d + 1)

v d
d+1∫

vd+1

wd+1(z)dz + Ud(vd)

= Ud+1(v
d

d + 1
).

Thus u(v, d → v, d) ≥ u(v, d → v d
d+1 , d + 1) is equivalent to Ud(v) ≥ Ud+1(v d

d+1 ).
The second statement of the lemma regarding IR is identical to the second statement of Proposition 1. �
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A.5. Proof of Lemma 3

Lemma 3. If a mechanism (w, p) is IC, then the expected revenue is

E [p(v,d)] =
∑

d

(
v fd(v)Ud(v)|v̄d

vd
+

v̄d∫
vd

Ud(v)R ′′
d(v)dv

)
qd.

Proof. Note for future reference that using integration by parts, we can write

v̄d∫
vd

v fd(v)U ′
d(v)dv = v fd(v)Ud(v)|v̄d

vd
−

v̄d∫
vd

d

dv
(v fd(v))Ud(v)dv

= v fd(v)Ud(v)|v̄d
vd

−
v̄d∫

vd

d

dv
(v fd(v))Ud(v)dv. (A.1)

The expected revenue is

∑
d

( v̄d∫
vd

p(v,d) fd(v)dv
)

qd =
∑

d

( v̄d∫
vd

(vdwd(v) − Ud(v)) fd(v)dv
)

qd,

substituting U ′
d(v) = dwd(v) from Lemma 2,

=
∑

d

( v̄d∫
vd

(vU ′
d(v) fd(v) − Ud(v) fd(v))dv

)
qd,

using integration by parts (A.1),

=
∑

d

(
v fd(v)Ud(v)|v̄d

vd
+

v̄d∫
vd

Ud(v)(− d

dv
(v fd(v)) − fd(v))dv

)
qd,

since Rd(v) = v(1 − Fd(v)), we have R ′′
d(v) = − d

dv (v fd(v)) − fd(v) and thus the expected revenue is

=
∑

d

(
v fd(v)Ud(v)|v̄d

vd
+

v̄d∫
vd

Ud(v)R ′′(v)dv
)

qd. �

A.6. Proof of Proposition 2

Proposition 2. Assume that there are two demands d ∈ {1, 2} and that the conditional distributions are strictly regular and have DMR. 
Consider prices p∗ defined given the three possible cases for p̂. A mechanism that posts prices p∗ is optimal.

1. If p̂1 ≤ p̂2 ≤ 2p̂1 , then p∗ = p̂.
2. If 2p̂1 < p̂2 , then p∗

1 is identified by q1 R ′
1(p∗

1) + q2 R ′
2(p∗

1) = 0 and p∗
2 = p∗

1 + p̂2/2. The price p∗
1 is in the interval [p̂1, p̂2/2].

3. If p̂2 < p̂1 , then p∗
1 is identified by q1 R ′

1(p∗
1) + 2q2 R ′

2(p∗
1/2) = 0 and p∗

2 = p∗
1 . The prices p∗

1 = p∗
2 are in the interval [p̂2, p̂1].

Proof. For future reference, consider prices p1 and p2 such that p1 ≤ p2 ≤ 2p1. Since the price of two units is weakly 
higher than one unit, a type (v, 1) buys one unit if v ≥ p1 and zero units otherwise. For a type (v, 2), consider two cases. 
If the utility of buying two units is non-negative, 2v − p2 ≥ 0, then 2v − p2 ≥ (v + p2/2) − p2 ≥ v − p1, and thus the type 
buys two units. If the utility of buying two units is negative, 2v − p2 < 0, then v < p2/2 ≤ p1, and therefore the type buys 
zero units. To summarize, if p1 ≤ p2 ≤ 2p1, then a type (v, 1) buys one unit if v ≥ p1 and zero units otherwise, and a type 
(v, 2) buys two units if v ≥ p2/2 and zero units otherwise.

Define σ(1) = σ(2) = 0. Using the notation of Section 4.1 (see (14)), we have

�σ = {p : p1 ≤ p2 ≤ 2p1}.
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p1

p2

p1 = p2

2p1 = p2

p̃

∇ Revσ (p̃)

p̂

(a)

p1

p2

p1 = p2

2p1 = p2

p̃

p∗

(b)

S

Fig. A.4. (a) The gradient ∇ Revσ (p̃) is orthogonal to the line 2p1 = p2 and points to the left. (b) The set S ′ of prices p such that Rev(p) ≥ Rev(p̃) + ε is 
non-empty, convex, and separated from the set of all points p′ such that 2p′

1 ≥ p′
2 via the line 2p1 = p2.

By Lemma 9, we have

Rev(p) = Revσ (p) = q1 R1(p1) + q22R2(p2/2)

for all p ∈ �σ . Notice that given DMR, Revσ is concave.
First consider the case where p̂1 ≤ p̂2 ≤ 2p̂1. Thus, Rev(p̂) = Revσ (p̂) is equal to the optimal revenue in the relaxed 

problem. Therefore, p∗ = p̂ is optimal.
Now consider the case where 2p̂1 < p̂2. We argue that the optimal prices p∗ satisfy 2p∗

1 < p∗
2. Consider prices p̃ that 

maximize Rev(p) among all prices p such that 2p1 = p2. Notice that Rev(p) = Revσ (p) for all such prices. As shown in 
Fig. A.4, (a), the first order condition implies that the gradient of Revσ at p̃ must be orthogonal to the line 2p1 = p2, that is, 
∇ Revσ (p̃) = (−2δ, δ) for some δ. Otherwise a point to the left or right of p̃ on the line 2p1 = p2 will have higher revenue. 
Further, the gradient must point to the left, δ > 0, since the global maximizer of Revσ , p̂, is to the left. By Lemma 11, 
∇ Rev(p̃) = ∇ Revσ (p̃), which implies that Rev(p) = Rev(p̃) + ε for some p that is to the left of the line and some ε > 0. 
Now consider the set S = {p| Rev(p) ≥ Rev(p̃) + ε}, shown in Fig. A.4, (b). The set S is non-empty and convex since Rev is 
concave. The set S does not include any point on the line 2p1 = p2 since all points in the set have higher revenue than the 
maximum revenue on the line. Thus, the line 2p1 = p2 is a hyperplane that separates the convex set S from all prices to 
the right of the hyperplane, and thus 2p1 < p2 for all p ∈ S . Finally, the set includes p∗ . We conclude that 2p∗

1 < p∗
2.

Given that 2p∗
1 < p∗

2, the optimal prices can be calculated using the first order conditions of optimality. Consider any 
price p such that 2p1 < p2. A type (v, 1) buys one unit if v ≥ p1 and zero units otherwise, and a type (v, 2) buys two units 
if v ≥ p2 − p1, one unit if p1 ≤ v ≤ p2 − p1, and zero units otherwise. Therefore, the revenue is

Rev(p) = q1 R1(p1) + q2

(
p1(F2(p2 − p1) − F2(p1)) + p2(1 − F2(p2 − p1))

)
.

The first order condition for optimality of p∗
2 is

1 − F2(p∗
2 − p∗

1) − (p∗
2 − p∗

1) f2(p∗
2 − p∗

1) = 0. (A.2)

That is, R ′
2(p∗

2 − p∗
1) = 0 and thus p∗

2 − p∗
1 = p̂2/2. The first order condition for optimality of p∗

1 is

q1 R ′
1(p∗

1) + q2

(
F2(p∗

2 − p∗
1) − F2(p∗

1) + p∗
1(− f2(p∗

2 − p∗
1) − f2(p∗

1)) + p∗
2 f2(p∗

2 − p∗
1)
)

= 0.

Using (A.2), the condition simplifies to

q1 R ′
1(p∗

1) + q2 R ′
2(p∗

1) = 0. (A.3)

Notice that by DMR, q1 R ′
1(p) + q2 R ′

2(p) is decreasing in p. In addition, since 2p̂1 < p̂2, we have q1 R ′
1(p̂1) + q2 R ′

2(p̂1) ≥ 0
and q1 R ′

1(p̂2/2) + q2 R ′
2(p̂2/2) ≤ 0. Therefore, p∗

1 ∈ [p̂1, p̂2/2].
To complete the proof, consider the case where p̂2 < p̂1. An argument similar to the one presented above implies that 

optimal prices p∗ satisfy p∗ ≤ p∗ . For any p such that p2 ≤ p1, revenue is
2 1



504 N.R. Devanur et al. / Games and Economic Behavior 121 (2020) 482–505
q1 R1(p2) + 2q2 R2(p2/2).

The first order condition for optimality of p∗ is

q1 R ′
1(p∗

2) + 2q2 R ′
2(p∗

2/2) = 0.

Notice that by DMR, q1 R ′
1(p) +2q2 R ′

2(p/2) is decreasing in p. In addition, since p̂2 < p̂1, we have q1 R ′
1(p̂2) +2q2 R ′

2(p̂2/2) ≥
0 and q1 R ′

1(p̂1) + 2q2 R ′
2(p̂1/2) ≤ 0. Therefore, p∗

1 = p∗
2 ∈ [p̂2, p̂1]. �

A.7. Calculations from Example 5

We first show that the constant elasticity distribution with cumulative density F (v) = 1 − (v/a)1/ε is DMR. Recall that 
DMR is equivalent to concavity of the revenue function. To verify concavity, we calculate the second derivate of the revenue 
function and show that it is negative.

R ′(v) = (
v

a
)1/ε + v

aε
(

v

a
)1/ε−1.

R ′′(v) = (
v

a
)1/ε−1 2

aε
+ (

v

a
)1/ε−2 v

a2ε
(1/ε − 1)

= (
v

a
)1/ε−2(

2v

a2ε
+ v

a2ε
(1/ε − 1))

= (
v

a
)1/ε−2 v

a2ε
(1 + 1/ε) ≤ 0.

Now consider regularity. Note that the probability density function f (v) = −1
εa (v/a)1/ε−1. Recall that a distribution is 

regular if the function φ(v) is monotone non-decreasing in v .

φ(v) = v − 1 − F (v)

f (v)

= v − (v/a)1/ε

−1
aε (v/a)1/ε−1

= v − v/a

−1/(aε)
= v(1 + ε),

which is monotone decreasing since by assumption ε < −1.
We finally argue that the exponential distribution, defined as F (v) = 1 − e−v is not DMR but is regular. The revenue 

function is R(v) = ve−v , its first derivative is R ′(v) = (1 − v)e−v , and its second derivative is (v − 2)e−v , which is positive 
for v ≥ 2, violating concavity. However, as commonly known, this distribution is regular since φ(v) = v − 1−F (v)

f (v)
= v − e−v

e−v =
v − 1 is monotone non-decreasing in v .
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