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Buying from a Group†

By Nima Haghpanah, Aditya Kuvalekar, and Elliot Lipnowski*

A buyer procures a good owned by a group of sellers whose hetero-
geneous cost of trade is private information. The buyer must either 
buy the whole good or nothing, and sellers share the transfer in pro-
portion to their share of the good. We characterize the optimal mech-
anism: trade occurs if and only if the buyer’s benefit of trade exceeds 
a weighted average of sellers’ virtual costs. These weights are endog-
enous, with sellers who are ex ante less inclined to trade receiving 
higher weight. This mechanism always outperforms posted-price 
mechanisms. An extension characterizes the entire Pareto frontier. 
(JEL D44, D63, D82, Q15, Q24)

For developing countries, a key challenge in transitioning from an agricultural 
economy to a manufacturing economy is land acquisition. Manufacturers often 
require large parcels of land whose ownership is dispersed among a group of indi-
viduals. Acquiring such land from a group of sellers is a challenging problem in 
the presence of property rights: no individual can be forced to part with his land.1 
In describing the puzzle of empty storefronts in prime areas in Moscow in the 
post-Soviet era, Heller (1998) terms such a situation “the tragedy of the anticom-
mons,” whereby strong property rights lead to underuse of a resource. Several proj-
ects in India, for example, have sparked protests around issues of land acquisition 
largely because of unfair terms offered to the sellers or because they are coerced 
into selling against their wishes, resulting in those projects’ relocation or complete 
abandonment.2

In a similar vein, one can think of redevelopment projects in cities. Redevelopment 
of apartment complexes typically involves a construction company building a larger 

1 Sood (2020) argues that frictions associated with land fragmentation have hindered manufacturing growth 
in India. The effect of land fragmentation has also been studied in agriculture (Chand, Prasanna, and Singh 2011; 
Manjunatha et al. 2013) and urban development (Gandhi et al. 2021).

2 One famous such case is that of protests in Singur in the state of West Bengal, India. The then govern-
ment of West Bengal used eminent domain provisions to acquire 997 acres of land from farmers to allow Tata 
Motors to build a factory. The use of eminent domain for an arguably nonpublic project was met with massive 
protests that, eventually, led to the factory’s being shifted out of West Bengal. See https://en.wikipedia.org/wiki/
Tata_Nano_Singur_controversy. 
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apartment complex in place of an old one. The developer usually compensates 
the existing residents through apartments in the newly built building, where the 
apartment size is commensurate with the apartment size in the old building. Until 
recently, some Indian states, such as Gujarat, required the consent of all the resi-
dents of an apartment complex.

Or consider buying an indivisible asset, such as a business, from a group of sib-
lings who have inherited it. The business has just one price, and owners typically 
receive a proportional share of the price. And as in the previous two examples, no 
person can be forced to agree to the offered terms of trade.3

While each of the above settings has its own idiosyncratic features, three com-
mon features stand out. First, a buyer wishes to purchase an indivisible good col-
lectively owned by a group of sellers (agents). Each agent owns a fraction of the 
good, and while an agent’s share is public information, his valuation of that share is 
private information. Second, strong property rights give any group member a refusal 
right—the right not to participate in trading. And third, the buyer can offer only one 
price for the entire good, and each seller receives a fraction of that price proportional 
to their ownership share.4

Motivated by such settings, we study the problem of acquiring a commonly 
owned good in a mechanism design setting with private information, voluntary par-
ticipation, and ex post transfers that are proportional to agents’ shares. We assume 
that the buyer’s valuation of the good is public information, but each seller’s type is 
drawn independently from a publicly known distribution. In a (direct) mechanism, 
agents first report their types, and then the mechanism specifies the probability of 
trade and the price of trade (to be divided in proportion to agents’ shares) as a 
function of the entire profile of reported types. Our main goal is to understand the 
buyer’s profit-maximizing mechanism among all Bayesian incentive-compatible, 
interim individually rational mechanisms—henceforth the optimal mechanism.5

The first step toward understanding optimal mechanisms is to understand the 
class of implementable allocation rules in our setting. If the buyer could use trans-
fers that need not be proportional to shares, standard arguments à la Myerson 
(1981) teach us that a given allocation rule would be implementable if and only 
if its associated interim allocations are nonincreasing. But in our setting, interim 
transfers are constrained because ex post transfers must be proportional to shares, 
and it is a priori unclear what additional constraints this restriction places on the 
type of implementable mechanisms the buyer can offer. Even with this additional 
constraint, Lemma 1 shows that the same condition characterizes implementability 
in our setting. However, because of the proportional-transfers constraint, the agents’ 

3 Kuran (2004) argues that Islamic inheritance laws have hindered the growth of Middle Eastern countries 
because they lead to fragmentation of enterprises and therefore prevent the creation of large-scale firms. Kuran 
documents that, by the nineteenth century, Western enterprises grew in size, but Middle Eastern enterprises did not. 
He suggests that Islamic inheritance laws played a role.

4 For example, a recently proposed “Right to Fair Compensation and Transparency in Land Acquisition, 
Rehabilitation and Resettlement Act, 2013” in India stipulates that the landowners whose land has been acquired 
for private projects should be paid a specified fraction of the deemed market value of the land parcel. See https://
lddashboard.legislative.gov.in/sites/default/files/A2013-30.pdf for details.

5 The individual-rationality requirement, imposed for each agent, is meant to capture the strong property rights 
in the above examples. Our model imposes interim incentive constraints—that any agent must find it worthwhile 
in expectation (being uncertain of others’ valuations) to participate in the mechanism and to report his valuation 
truthfully. In Section VI we discuss ex post versions of both constraints.

https://lddashboard.legislative.gov.in/sites/default/files/A2013-30.pdf
https://lddashboard.legislative.gov.in/sites/default/files/A2013-30.pdf
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average per-share payments must coincide. Hence, the minimal average purchase 
price that can be attained for a given implementable allocation rule is pinned down 
by the condition that one agent’s individual-rationality constraint is binding (and the 
others’ are satisfied). Consequently, we can recast the buyer’s problem as a maximin 
problem in which the maximum is over interim-monotone allocation rules and the 
minimum is over agents whose individual-rationality constraint is binding.

We solve the buyer’s reformulated problem via an analogy to zero-sum games. 
We view the problem as a two-player zero-sum game in which one player (the 
Maximizer) chooses an allocation rule and the other player (the Minimizer) chooses 
an agent but may use a mixed strategy. We characterize the equilibria of this game 
to establish that the optimal allocation rule is unique and is a weighted allocation 
rule: the good is sold if and only if the buyer’s benefit is larger than the weighted 
sum of agents’ virtual valuations. These weights are endogenously determined, and 
are characterized by a simple program. These results are summarized in Theorem 1.

Given that the optimal mechanism assigns a weight to each agent, we study which 
agents are assigned higher weights. At a high level, agents with higher weights have 
more influence over the outcomes of the mechanism since trade is more sensitive to 
their reports. Theorem 2 answers this question by giving a condition under which 
we can rank agents’ weights. In short, the optimal mechanism assigns higher weight 
to agents that have a higher valuation of the good in per-unit terms. More precisely, 
agent ​i​ has a higher valuation than agent ​j​ if ​i​’s virtual cost is higher in the reversed 
hazard-rate order than ​j​’s virtual cost.

The question of which agents have higher weights seems especially relevant to 
our land acquisition application. Might the optimal mechanism discriminate against 
certain agents based on their characteristics? Our ranking result says that in this 
application, the optimal mechanism assigns more weight to agents with more pro-
ductive land as measured in per-unit terms. Which agents are more productive 
depends on the context. Suppose first that there are two sellers who differ in how 
they use their land. Say agent ​1​ has a larger plot of land on which he can install a 
factory, while agent ​2​ has a smaller plot of land that he can use only for farming. 
Then it is conceivable that (per square foot of land) agent ​1​ typically has higher 
productivity than agent ​2​. In this case, the optimal mechanism puts more weight on 
agent ​1​. In contrast, suppose that both the agents are small-scale farmers who differ 
only in their plot sizes. A literature in development economics has documented an 
inverse relationship between plot size and productivity (e.g., Banerjee 2000). If this 
relationship were to hold for our two agents, then agent ​1​ (the agent with a larger 
parcel of land) would have lower productivity (per square foot of land) than agent ​2​ 
and so would be granted a smaller weight.

Even though any mechanism in our setting offers all agents a uniform price per 
share, this price might depend on the entire profile of agents’ types. But one might 
wonder whether the optimal mechanism could nonetheless be a posted-price mech-
anism in which the price is fixed. Such mechanisms are known to be optimal when 
there is one seller. However, with two or more sellers in the group, posted-price 
mechanisms are strictly suboptimal (Proposition 2). This result is derived from 
Theorem 1, which says that the price, even conditional on trade, must be respon-
sive to the profile of reported types by the group members, a property evidently not 
shared by posted-price mechanisms.



2599HAGHPANAH ET AL.: BUYING FROM A GROUPVOL. 114 NO. 8

In Section  V, we apply our analysis to shed light on the differences between 
mechanism design for a group versus an individual. To do so, we compare opti-
mal mechanisms in our setting with optimal mechanisms in a benchmark setting in 
which a single agent owns the entire good. We first observe that optimal allocations 
in both settings have the familiar downward distortion to reduce information rent to 
the high types. However, trade outcomes are additionally distorted in the group set-
ting in two novel ways. One distortion rotates the trade region in the type space, and 
the other affects its curvature. The overall effect depends on how the three types of 
distortions interact, and these distortions might even lead to a form of over-trading 
in which trade occurs when doing so is inefficient. We then compare the efficiency 
of optimal mechanisms in these two settings. We show that the ranking depends cru-
cially on how large a benefit the good generates to the buyer. If this benefit is low, 
then the single-agent setting generates greater surplus; and if this benefit is high, 
then our group setting generates greater surplus.

While most of our analysis focuses on buyer-optimal mechanisms, one might 
consider alternative bargaining arrangements that give more power to the sellers. A 
more general notion of efficiency can be especially compelling when the buyer is a 
government or similar entity that might have a significant concern for nonmonetary 
welfare outcomes. With this in mind in Theorem 3 in the online Appendix, we fully 
characterize the set of all the Pareto-optimal mechanisms. This characterization is 
facilitated by techniques similar to those we develop en route to Theorem 1. As we 
show, any Pareto-optimal mechanism allocates the good if and only if the weighted 
sum of agents’ actual and virtual costs is lower than the benefit to the buyer.

We impose the assumption that the buyer must pay agents the same price per 
share as a fairness or institutional requirement that is natural in our main applica-
tions. We show additionally that this restriction reduces the agents’ incentives to col-
lude in a certain sense. In particular, we study a larger game in which the agents may 
trade their shares before interacting with the mechanism. We assume the sellers have 
identical distributions of value (i.e., their cost of trade) per unit but may possibly be 
endowed with nonidentical shares. We show that the sellers optimally choose not 
to trade shares if they are paid the same price per share, but they may benefit from 
trading if they are paid different prices per share. The literature on uniform- versus 
discriminatory-price auctions also argues that uniform-price auctions might reduce 
agents’ incentives to collude (Friedman 1960). Further, this literature points out that 
agents might be more likely to participate in uniform-price auctions (Malvey and 
Archibald 1998; Ausubel et al. 2014).

Related Work.—Because the buyer procures the good from all sellers or none, 
our work is closely related to the literature on designing mechanisms for the pro-
vision of public goods. The canonical model (e.g., d’Aspremont and Gérard-Varet 
1979) allows for arbitrary monetary transfers between agents. Rob (1989) shows 
that with a large number of agents, profit-maximizing mechanisms are very inef-
ficient, and Mailath and Postlewaite (1990) extend this inefficiency result to all 
incentive-feasible mechanisms. In a setting in which agents’ values for a good 
are symmetric, and each is initially endowed with a share, Cramton, Gibbons, 
and  Klemperer (1987) show efficient and individually rational trading mecha-
nisms exist if and only if agents’ shares are sufficiently symmetric. Ekmekci, Kos, 
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and Vohra (2016) identify profit-maximizing mechanisms for selling some fraction 
of a firm owned by a single agent to a single buyer. Sarkar (2017, 2022) general-
izes the bilateral trade setting from Myerson and Satterthwaite (1983) by replacing 
the seller with a set of landholders; they impose a rich combinatorial constraint 
on the allocation rule and allow for seller-specific transfers from the buyer. Güth 
and Hellwig (1986) identify profit-maximizing mechanisms for public good provi-
sion subject to incentive-compatibility and individual-rationality constraints. Hence, 
our buyer’s problem is equivalent (up to a sign change) to that of Güth and Hellwig 
(1986), with the added restriction that transfers must be proportional to shares. 
Virtual costs (or values) often appear in the literature that studies profit-maximizing 
mechanisms, but a special feature of profit-maximizing mechanisms in our setting 
is that virtual costs are multiplied by endogenous weights that arise because of the 
proportional-transfers constraint.6 These weights are interpretable as the degree of 
influence that the optimal mechanism gives to different agent, and we study how this 
influence is affected by seller heterogeneity.

Another strand of the literature on public goods studies voting mechanisms with-
out monetary transfers. Starting with Rae (1969), many papers in this literature 
study mechanisms that maximize utilitarian efficiency. Schmitz and Tröger (2012) 
and Krishna and Morgan (2015) identify conditions under which a (weighted) 
majority does or does not maximize efficiency. Azrieli and Kim (2014) show any 
incentive-compatible mechanism must be a weighted-majority rule, and they char-
acterize the weights that maximize efficiency.7 The (weighted) majority structure of 
mechanisms in this literature is typically either assumed or is a property of all incen-
tive compatible mechanisms. In our setting, on the other hand, the weights arise only 
as a feature of optimal mechanisms and are not necessarily a feature of all incentive 
compatible mechanisms.

Whereas we take a mechanism design approach to our problem, several papers 
study collective-decision problems in specific bargaining situations. Bergstrom 
(1978) studies a setting in which each seller of a commonly owned good names 
a price to sell their share, and he shows that the likelihood of the good being sold 
approaches zero. Che (2002) studies how the ability to bargain jointly affects a 
group’s bargaining position. The model takes a hybrid approach in which a group 
cannot commit to which offers to accept but can commit to a mechanism that speci-
fies how the surplus is divided once an offer is accepted. Grossman and Hart (1980) 
show that a takeover of a firm by a buyer might not be profitable when the buyer 
offers shareholders a uniform price per share even if the takeover increases efficiency. 
Oliveros and Iaryczower (2023) study coalition formation when a principal bargains 
sequentially with a group of agents. Naturally, in many of these collective-decision 
bargaining games, some form of the holdout problem appears. Instead, in our set-
ting, holdout is implicit and is reflected in the constraint that all sellers must be 
willing to participate in the mechanism.

6 Cai, Daskalakis, and Weinberg (2013) show that virtual values can be constructed to describe optimal mech-
anisms even in settings with multidimensional types, if agent-specific transfers can be used. Our analysis shows 
that the appropriate notion of a virtual value/cost is substantially simpler in the context of multidimensional IR 
constraints than in their setting with multidimensional IC constraints.

7 Also see Gershkov, Moldovanu, and Shi (2017), who further study optimal voting mechanisms for a class of 
environments with more than two social outcomes.
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I.  Model

We study the problem of a buyer who wishes to buy one good, such as a plot of 
land, from a group of sellers who each own some share of the good. We denote the 
finite set of agents (the sellers) ​N = ​{1,  … , N}​​ and assume ​N  ≥  2​. Each agent ​i​ 
owns a fraction ​​σ​i​​  ∈ ​ (0, 1)​​ of the good, where ​​∑ i∈N​   ​​​ σ​i​​  =  1​. The buyer receives a 
benefit ​b​ from purchasing the good. Each agent ​i​’s cost of selling his own share of 
the good (or, equivalently, his valuation for keeping it) is ​​σ​i​​ ​θ​i​​​, where ​​θ​i​​​ denotes the 
agent’s cost per unit of the good.

An outcome of our contracting environment consists of (i) the probability ​𝚡  ∈ ​
[0, 1]​​ with which the good is sold to the buyer and (ii) the (signed) transfer ​𝚖  ∈  ℝ​ 
paid by the buyer to the group of sellers. This transfer is divided among the agents 
proportionally to their shares, so each agent ​i​ receives a payment of ​​σ​i​​ 𝚖​. The 
assumption that each agent is paid proportionally to his share is motivated by our 
application to land acquisition, in which a buyer is often required to offer identical 
terms to sellers ex post. The buyer must treat the agents identically and cannot offer 
different prices (per unit) to different agents.

The buyer’s payoff for outcome ​​(𝚡, 𝚖)​​ is ​b𝚡 − 𝚖​. The payoff of each agent ​i​ for this 
outcome is the amount of money he receives minus his cost for his share if the good 
is sold, ​​σ​i​​ 𝚖 − ​σ​i​​ ​θ​i​​ 𝚡​. Since ​​σ​i​​​ is a positive constant for each ​i​, we can rescale each 
agent’s payoff to be ​m − x ​θ​i​​​. Such rescaling leaves the agents’ incentives unchanged. 
We henceforth write agent ​i​’s payoff as ​𝚖 − 𝚡 ​θ​i​​​ and refer to ​​θ​i​​​ as agent ​i​’s cost.

Let us now describe our informational assumptions. The benefit ​b​ is publicly 
known. Each agent privately knows his own valuation. We assume that the ​N​ ran-
dom variables ​​​{​θ​i​​}​​i∈N​​​ are independent and each takes values in the compact interval ​​
Θ​i​​  = ​ [​​θ 

¯
 ​​i​​, ​​θ 

– ​​i​​]​  ⊂  ℝ​; denote the cumulative distribution function of ​​θ​i​​​ by ​​F​i​​​.8 All 
parties know these distributions.

We make the following regularity assumption for each ​i  ∈  N​: the cumulative 
distribution function ​​F​i​​​ admits a density ​​f​i​​​ which is continuous and strictly positive, 

and the virtual cost ​​φ​i​​ : ​Θ​i​​  →  ℝ​ given by ​​φ​i​​​(​θ​i​​)​  ≔ ​ θ​i​​ + ​ ​F​i​​​(​θ​i​​)​ _ 
​f​i​​​(​θ​i​​)​

 ​​ is strictly increasing. 

Working directly with an agent’s virtual cost ​​φ​i​​  ≔ ​ φ​i​​​(​θ​i​​)​​, an atomlessly distributed 
random variable with convex support, is often convenient. To avoid trivialities, we 
assume every agent ​i​ has ​​​θ 

¯
 ​​i​​  <  b  < ​ φ​i​​​(​​θ 

– ​​i​​)​​.9

A. Mechanisms

An allocation rule is a measurable function ​x : Θ  → ​ [0, 1]​​; let ​​ denote the set 
of all allocation rules. A (collective) transfer rule is a bounded measurable function ​
m : Θ  →  ℝ​. A (direct) mechanism is a pair ​​(x, m)​​ consisting of an allocation rule 

8 We use the following standard notation throughout. The set of type profiles is ​Θ ≔ ​∏ j∈N​   ​​ ​Θ​j​​​, and  
​​Θ​−i​​ ≔ ​∏ j∈N\​{i}​​   ​​ ​Θ​j​​​ for ​i  ∈  N​. We also sometimes use a measure and its cumulative distribution function inter-
changeably, and we use ​F​ and ​​F​−i​​​ to refer to associated product measures on ​Θ​ and ​​Θ​−i​​​, respectively. Throughout 
the paper, we use the boldface notation ​θ, ​θ​i​​​, etc. to refer to these random variables, and use the notation ​​θ​i​​​ to refer 
to an element of ​​Θ​i​​​ (that is, a potential realization of ​​θ​i​​​).

9 This assumption reduces casework but is not important for analyzing our model. For example, without it, 
Theorem 1 would still hold as stated, except that when the essentially unique allocation rule specifies never trading 
or always trading, the weights can be nonunique.
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and a transfer rule. For any reported type profile ​θ​, the buyer transfers ​m​(θ)​​ to the 
group, and ​x​(θ)​​ is the probability with which she acquires the good.10

Say a mechanism ​​(x, m)​​ is incentive compatible (IC) if

(IC)	​ ​θ​i​​  ∈ ​ arg max​​​θ ˆ ​​i​​∈​Θ​i​​​​ E​[m​(​​θ ˆ ​​i​​, ​θ​−i​​)​ − ​θ​i​​ x​(​​θ ˆ ​​i​​, ​θ​−i​​)​]​, ∀ i  ∈  N, ∀ ​θ​i​​  ∈ ​ Θ​i​​,​

that is, report ​​​θ ˆ ​​i​​  = ​ θ​i​​​ maximizes the expected payoff of type ​​θ​i​​​ of agent ​i​ over all 
possible reports in ​​Θ​i​​​, taking the expectation over other agents’ types ​​θ​−i​​​. Say the 
mechanism is individually rational (IR) if

(IR)	​ E​[m​(​θ​i​​, ​θ​−i​​)​ − ​θ​i​​ x​(​θ​i​​, ​θ​−i​​)​]​  ≥  0, ∀ i  ∈  N, ∀ ​θ​i​​  ∈ ​ Θ​i​​,​

that is, the expected payoff of type ​​θ​i​​​ of agent ​i​ when reporting truthfully, taking the 
expectation over type profiles of other agents, is nonnegative. An IC and IR mecha-
nism ​​(x, m)​​ generates a buyer profit of

	​ Π​(x, m)​  ≔  E​[bx​(θ)​ − m​(θ)​]​.​

An optimal mechanism is an IC and IR mechanism that generates weakly higher 
buyer profit than any other IC and IR mechanism. An optimal allocation rule is any 
allocation rule ​x​ such that ​​(x, m)​​ is an optimal mechanism for some ​m​.

B. Alternative Interpretations of Our Model

Before moving on to our analysis, we discuss some alternative interpretations of 
our model.

Recall that after normalization, we have a setting in which the buyer’s payoff for 
outcome ​​(𝚡, 𝚖)​​ is ​b𝚡 − 𝚖​ and each agent ​i​’s payoff is ​𝚖 − ​θ​i​​ 𝚡​. We can interpret this 
setting as one in which the agents sell a good they collectively own in exchange for 
public funds (instead of some money that is divided between them). The money ​𝚖​ 
appears in every agent’s payoff function. For example, the agents might be a com-
mittee of decision-makers in an organization, such as the high-level executives at a 
firm, who decide whether they should sell an asset owned by the organization. In this 
interpretation, an agent’s type ​​θ​i​​​ specifies his marginal rate of substitution between 
the organization retaining the good and the organization’s use of additional funds.

We do not make assumptions about the signs of ​b​ or the values ​​θ​i​​​ might take. In 
particular, we allow them to be negative. In that case, after relabeling the variables 
appropriately, the problem becomes one of finding optimal mechanisms for a single 
seller who wants to sell a good to a group of buyers. If sold, the good is publicly 
available to all members of the group. Depending on whether the agents in the group 
pay for the good with private money or public funds, two interpretations are again 

10 Because the payoffs are linear in the transfer, we assume without loss that in a direct mechanism the transfer 
is a deterministic function of the reported type profile.
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available. The first interpretation entails private transfers with a fixed cost-sharing 
rule. Here, each agent ​i​ is responsible for paying a fixed fraction ​​σ​i​​​ of the transfer to 
the seller. So if the good is sold with probability ​𝚡​ and the group pays ​𝚖​ to the seller, 
then agent ​i​’s payoff is ​​v​i​​ 𝚡 − ​σ​i​​ 𝚖​, where ​​v​i​​​ denotes agent ​i​’s benefit if the good 
is acquired by the group. For example, the group might be a condo association in 
which each member pays for a public service proportionally to the size of their unit, 
or it might be a cartel in which each firm pays proportionally to its market share. 
Now define ​​θ​i​​  ≔ ​  1 _ ​σ​i​​ ​ ​v​i​​​, which allows us to write agent ​i​’s payoff as ​​σ​i​​ ​θ​i​​ 𝚡 − ​σ​i​​ 𝚖​, 
which can then be normalized to ​​θ​i​​ 𝚡 − 𝚖​. The second interpretation has the group 
paying for the product with public funds. Here, if the good is sold with probability ​
𝚡​ and the group pays ​𝚖​ to the seller from its collective funds, then agent ​i​’s payoff 
is ​​θ​i​​ 𝚡 − 𝚖​. Agent ​i​’s type ​​θ​i​​​ again denotes his marginal rate of substitution between 
the public good and the organization’s alternative use of its funds.

II.  Characterizing the Optimal Mechanism

In this section, we fully characterize optimal mechanisms. First, we describe 
which allocation rules are implementable and solve for the buyer’s optimal profit 
from implementing such an allocation rule; doing so requires a reduced-form imple-
mentation result for transfers, characterizing exactly which profiles of interim trans-
fer rules can be implemented with some collective transfer rule. Then, the main 
result of this section establishes that a unique optimal allocation rule exists, and 
shows it can be described as a weighted allocation rule with (uniquely determined) 
weights that we explicitly characterize.

We begin by introducing some convenient notation and terminology for standard 
objects. Just as in the auction setting, the Bayesian incentive properties of our design 
environment are convenient to discuss in terms of each agent’s interim (i.e., condi-
tioning only on his own type) outcomes.

DEFINITION 1: Fix any agent ​i  ∈  N​. Given an allocation rule ​x​, define the interim 
allocation rule to be ​​X​ i​ x​ : ​Θ​i​​  → ​ [0, 1]​​ given by ​​X​ i​ x​​(​θ​i​​)​  ≔  E​[x​(​θ​i​​, ​θ​−i​​)​]​​. Similarly, 
given a transfer rule ​m​, define the interim transfer rule to be ​​M​ i​ m​ : ​Θ​i​​  → 핉 ​given 
by ​​M​ i​ m​​(​θ​i​​)​  ≔  E​[m​(​θ​i​​, ​θ​−i​​)​]​​.

Now, say an allocation rule ​x​ is interim monotone if ​​X​ i​ x​​ is weakly decreasing for 
every ​i  ∈  N​. We say that an allocation rule ​x​ is implementable if a transfer rule ​m​ 
exists such that ​​(x, m)​​ is IC.

To characterize optimal mechanisms, we first need to understand which allocation 
rules are implementable. Classic results (Myerson 1981; Myerson and Satterthwaite 
1983) would imply that interim monotonicity would fully characterize imple-
mentability if the buyer could freely choose the interim transfer rule that each agent 
faces. However, our buyer is constrained in that different agents’ interim transfers 
must be derived from a common ex post transfer rule. Nevertheless, Lemma 1 below 
shows that the exact same characterization applies despite the added constraint on 
the transfers. Using this characterization, we also obtain the maximum buyer profit 
compatible with implementing an allocation rule ​x​.



2604 THE AMERICAN ECONOMIC REVIEW AUGUST 2024

LEMMA 1: Let ​x​ be some allocation rule.

	 (i)	 Mechanism ​​(x, m)​​ is IC and IR for some transfer rule ​m​ if and only if ​x​ is 
interim monotone.

	 (ii)	 If some transfer rule ​m​ exists such that mechanism ​​(x, m)​​ is IC and IR, then a 
maximally profitable such mechanism exists, with resulting profit

	​ ​min​ 
i∈N

​ ​ E​[x​(θ)​​(b − ​φ​i​​)​]​.​

Part  (i) of the lemma combines a standard observation with a novel one. The 
standard observation is that a given mechanism ​​(x, m)​​ is IC for seller ​i​ if and only if ​​
X​i​​​ is weakly decreasing and some constant ​​​ U 

¯
 ​​i​​​ exists such that the payment identity,

($)	​ ​M​i​​​(​θ​i​​)​  = ​​  U 
¯

 ​​i​​ + ​X​i​​​(​θ​i​​)​ ​θ​i​​ + ​∫ ​θ​i​​​ 
​​θ – ​​i​​​​​X​i​​​(​​θ ̃ ​​i​​)​ d ​​θ ̃ ​​i​​  for every  ​θ​i​​,​

holds. So the allocation rule ​x​ and the constants ​​​ U 
¯

 ​​1​​,  … , ​​ U 
¯

 ​​N​​​ pin down the interim 
transfer rules. The novel observation for establishing part  (i) is that a profile of 
interim transfer rules ​​​(​M​i​​)​​i∈N​​​ can be implemented via a common ex post transfer rule ​
m​ if and only if ​E​[​M​i​​​(​θ​i​​)​]​​ coincide for all ​i​. This condition is obviously necessary, 
given iterated expectations. Perhaps surprisingly, the condition is also sufficient, 
and sufficiency has a one-line proof: if ​​m – ​​ is the common expected transfer, then 
the ex post transfer rule ​m​(θ)​  ≔  − ​(N − 1)​​m – ​ + ​∑ i∈N​   ​​​ M​i​​​(​θ​i​​)​​ generates the desired 
interim transfer rules.11

To establish part (ii), we use the payment identity ($) to write the buyer’s expected 
payoff as

	​ E​[bx​(θ)​ − m​(θ)​]​  =  E​[bx​(θ)​]​ − E​[​M​i​​​(​θ​i​​)​]​  =  E​[x​(θ)​​(b − ​φ​i​​)​]​ − ​​ U 
¯

 ​​i​​​

for each seller ​i​. Importantly, because the interim transfers are identical on average, 
choosing ​​​ U 

¯
 ​​i​​​ for any seller ​i​ pins down the entire profile of constants ​​(​​ U 

¯
 ​​j​​)​j​​  ∈ ​ ℝ​​ N​​.  

Analogously to how an optimal auction would optimize the transfer rule by set-
ting each agent’s IR constraint to be binding, our remaining constant is optimized 
by requiring that some agent’s IR constraint binds (and the others’ constraints are 
satisfied). Since ​E​[​M​i​​​(​θ​i​​)​]​  =  E​[x​(θ)​ ​φ​i​​]​ + ​​ U 

¯
 ​​i​​​ coincide for all ​i  ∈  N​, an agent ​i​ 

whose IR constraint binds is the one with the highest expected virtual cost of trade  
​E​[x​(θ)​ ​φ​i​​]​​. Therefore, the buyer’s optimal payoff for a given allocation rule ​x​ is

	​ ​min​ 
i∈N

​ ​  E​[x​(θ)​​(b − ​φ​i​​)​]​.​

11 Gopalan, Nisan, and  Roughgarden (2018) show that a slight variant of this problem is computationally 
intractable. In particular, it is computationally hard to decide whether a given profile of interim transfer rules 
can be implemented via a common ex post transfer that is constrained to belong to some bounded interval. Our 
construction, which settles the question of implementability absent such a constraint, resembles previous construc-
tions in the literature that convert ex ante budget-balanced mechanisms into ex post budget-balanced mechanisms 
while preserving the players’ interim transfer rules (e.g., Makowski and Mezzetti 1994; d’Aspremont, Crémer, and  
Gérard-Varet 2004; Che and Kim 2006; Börgers and Norman 2009).
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With Lemma 1 in hand, our buyer’s problem can be recast directly as an optimi-
zation over allocation rules. Formally, the buyer’s optimization over allocation rules 
is

(BP)	​ ​max​ 
x∈

​ ​  ​{​min​ 
i∈N

​ ​  E​[x​(θ)​​(b − ​φ​i​​)​]​}​​

​such that x is interim monotone.​
Our main result is a complete characterization of the solution to the program 

(BP). To this end, we define a class of allocation rules that play a special role in our 
analysis and results.

DEFINITION 2: Given ​ω  ∈  ΔN​, the ​ω​-allocation rule is the allocation rule  
​​x​ω​​ ≔ ​1​ω⋅φ≤b​​​. Say ​ω  ∈  ΔN​ is optimal if the ​ω​-allocation rule is optimal. Say an 
allocation rule is a weighted allocation rule if it is a ​ω​-allocation rule for some ​
ω  ∈  ΔN​.

We now state our main characterization theorem.

THEOREM 1 (Optimal Allocation): A weighted allocation rule is essentially 
uniquely optimal.12 The unique optimal weight vector ​ω​ is characterized by either 
of the following two equivalent conditions:

	 (i)	 ​ω  ∈ ​ arg min​​ω ̃ ​∈ΔN​​ E​[​​(b − ​ω ̃ ​ · φ)​​+​​]​​.

	 (ii)	​ supp​(ω)​  ⊆ ​ arg max​i∈N​​ E​[​φ​i​​ ∣ ω · φ  ≤  b]​​.

Moreover, if ​b  < ​​ θ – ​​j​​​ for at least two ​j  ∈  N​, then every ​i  ∈  N​ has ​​ω​i​​  <  1​.

Theorem 1 says that trade outcomes in optimal mechanisms are given by weighted 
allocation rules. Notice that a weighted allocation rule is deterministic, so the the-
orem implies the buyer does not benefit from randomization. Note also that the 
weights are fixed and do not depend on reports. A higher weight for an agent means 
the mechanism is in a sense more responsive to that agent’s private information. So 
by comparing agents’ weights, we can understand which agents exert greater influ-
ence over the outcomes of the mechanism, a topic we will revisit in the next section.

Theorem  1 also characterizes the optimal weights with two equivalent condi-
tions. Condition (i) above is useful for computing the optimal weights numerically 
and analytically. The function ​ω  ↦  E​[​​(b − ω · φ)​​+​​]​​ is convex, and so determin-
ing optimal weights corresponds to minimizing a convex objective over a compact 
convex set. Moreover, in certain cases, as in Example  1 presented later, we can 
even compute the optimal weights ​ω​ analytically using the first-order conditions of 
the convex optimization problem. Condition (ii) of the theorem facilitates verifica-
tion of optimality: once a candidate for optimal weights is chosen, one can verify 

12 By “essentially uniquely,” we mean any alternative optimal allocation rule generates the same trade decision 
almost surely.
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optimality by checking that any agent who has a positive weight is a minimizer of 
the conditional expected virtual cost term. This condition reflects the fact that every 
agent who influences the trade outcome should have a binding IR constraint.

Specializing to the case of a single seller, Theorem 1 confirms the classic charac-
terization of optimal mechanisms. In this case, trade happens whenever the benefit 
to the buyer exceeds the lone seller’s virtual cost. The “weight” for this case is 
trivial, assigning all influence to the lone seller’s private information. The optimal 
allocation is deterministic (trade occurs whenever the agent’s type is below a cutoff 
type at which the benefit is equal to virtual cost), just as in Theorem 1.

The proof of Theorem  1 studies a relaxed program (RBP) in which the 
interim-monotonicity constraint is ignored. To solve the relaxed program, we con-
sider an auxiliary two-player zero-sum game in which the Maximizer chooses an 
allocation rule ​x​, the Minimizer chooses an agent ​i​ whose IR constraint must bind, 
and so the Maximizer’s objective is ​E​[x​(θ)​​(b − ​φ​i​​)​]​​. Observe that an allocation rule 
solves (RBP) if and only if it is a cautious optimum for the Maximizer in the aux-
iliary game—that is, a maximin strategy. Moreover, standard results for zero-sum 
games imply a maximin strategy is a Nash equilibrium strategy for the Maximizer, 
and vice versa, as long as some Nash equilibrium exists. Hence, we turn to charac-
terizing Nash equilibria of the auxiliary game.

We first show that if the Minimizer is allowed to choose a mixture, some Nash 
equilibrium of this auxiliary game exists by an appropriate minimax theorem, and 
every mixed strategy ​ω​ for the Minimizer exhibits a unique (up to almost-sure 
equivalence) best response for the Maximizer. Indeed, ​​x​ω​​​ is the essentially unique 
maximizer of

	​ x  ↦ ​ ∑ 
i
​ 
 
 ​​​ ω​i​​ E​[x​(θ)​​(b − ​φ​i​​)​]​  =  E​[x​(θ)​​(b − ω · φ)​]​​

because it sets ​x​(θ)​  ∈ ​ [0, 1]​​ to maximize the integrand ​x​(θ)​​(b − ω · φ)​​ in every 
realized state. Then, because the set of Nash equilibria of a two-player zero-sum 
game exhibits a product structure, it follows that an essentially unique allocation 
rule can be an optimal strategy for the Maximizer of the auxiliary game, and that 
it takes the form ​​x​ω​​​ for any Nash equilibrium choice ​ω​ of the Minimizer. The pair 
of conditions characterizing such ​ω​’s are standard to zero-sum games: the mixed 
strategy ​ω​ is a cautious optimum for the Minimizer (condition (i)) if and only if it 
is a best response to some Maximizer’s best response to ​ω​ (condition (ii), once the 
Maximizer’s best response to ​ω​ is substituted in). Now, observe that the essentially 
unique Nash equilibrium strategy for the Maximizer is actually interim monotone: 
because virtual costs are increasing, a cutoff rule for the ​ω​-weighted virtual cost 
is monotone and hence interim monotone. The result is a characterization of the 
unique optimal allocation rule, solving not only (RBP) but also (BP). Then, because 
our assumption that ​​​θ 

¯
 ​​i​​  <  b  < ​ φ​i​​​(​​θ 

– ​​i​​)​​ (for each ​i​) implies every weighted allocation 
rule has an interior probability of trade, a geometric argument converts uniqueness 
of the allocation rule into uniqueness of agents’ weights. Finally, to verify the last 
sentence of the theorem, we note that any agents ​i  ≠  j​ have ​E​[​φ​i​​ ∣ ​φ​i​​  ≤  b]​  ≤  b​ 
and ​E​[​φ​j​​ ∣ ​φ​i​​  ≤  b]​  =  E​[​φ​j​​]​  = ​​ θ 

–
 ​​j​​​, so that putting all weight on agent ​i​ would vio-

late condition (ii) if ​​​θ – ​​j​​  >  b​.
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To conclude the section, let us specialize our setting to a parametric example. We 
use the example to illustrate how we can use condition (i) of Theorem 1 to identify 
the optimal weights analytically. We then give an indirect implementation of the 
optimal mechanism.

EXAMPLE 1: Suppose that there are two sellers. Seller ​i​ has a power distri-
bution ​​F​i​​​(​θ​i​​)​  = ​ θ​ i​ ​α​i​​​​ over ​​θ​i​​  ∈ ​ [0, 1]​​ for some power ​​α​i​​  >  0​.13 Assume that  

​b  ≤  min​{​ 1 + ​α​1​​ _ ​α​1​​ + ​α​2​​ ​, ​ 
1 + ​α​2​​ _ ​α​1​​ + ​α​2​​ ​}​​—which for instance holds if ​​α​1​​, ​α​2​​, b  ≤  1.​ Then as we 

show in the Appendix, the optimal weight vector is

	​ ​ω​​ ∗​  ≔ ​ (​  ​α​1​​ _ ​α​1​​ + ​α​2​​ ​, ​ 
​α​2​​ _ ​α​1​​ + ​α​2​​ ​)​.​

A convenient feature of this example is that virtual costs are linear in costs,

	​ ​φ​i​​​(​θ​i​​)​  = ​ (1 + ​ 1 _ ​α​i​​ ​)​ ​θ​i​​.​

Combining this observation with the optimal weights we have computed, the essen-
tially unique optimal allocation rule results in trade if and only if

	​ b  ≥ ​ ω​​ ∗​ · φ  = ​   ​α​1​​ _ ​α​1​​ + ​α​2​​ ​ ​φ​1​​ + ​  ​α​2​​ _ ​α​1​​ + ​α​2​​ ​ ​φ​2​​  = ​  1 + ​α​1​​ _ ​α​1​​ + ​α​2​​ ​ ​θ​1​​ + ​ 1 + ​α​2​​ _ ​α​1​​ + ​α​2​​ ​ ​θ​2​​.​

So trade occurs whenever the benefit is at least a certain positive linear combination 
of the sellers’ costs. This allocation rule, combined with any transfer rule that sat-
isfies the payment identity ($) with ​​​ U 

¯
 ​​1​​  = ​​  U 

¯
 ​​2​​  =  0​, forms an optimal mechanism.

In addition, we show that the following indirect mechanism is optimal:

•	 Both sellers simultaneously send bids, ​​s​i​​  ∈ ​ ℝ​+​​​.
•	� Trade occurs if and only if ​b  ≥ ​ τ​1​​ ​s​1​​ + ​τ​2​​ ​s​2​​​, where ​​τ​i​​  ≔ ​   1 + ​α​−i​​ _ 

​(​α​1​​ + ​α​2​​)​ ​α​−i​​
 ​​ for each ​

i​.
•	� The price that the buyer pays is ​​s​1​​ + ​s​2​​ + κb​ if the good is sold, and zero  

otherwise, where ​κ  = ​   ​α​1​​ + ​α​2​​ _  
​(1 + ​α​1​​)​​(1 + ​α​2​​)​

 ​​(1 − ​α​1​​ ​α​2​​)​​.

This indirect mechanism has a “name-your-price” structure. Each seller submits a 
bid. It is useful to think of the bid as the price the buyer has to pay in exchange for 
that seller’s consent. The buyer pays the sum of the bids (plus a constant) if and only 
if trade occurs. Trade occurs when the benefit is higher than some linear combina-
tion of the bids.

When submitting a bid, each seller faces a trade-off like in a first-price auction. 
Increasing the bid means the agent is paid more if trade occurs. But increasing the 
bid also lowers the probability of trade. We show that the game has an equilibrium 

13 When ​​α​i​​  ≠  1​, the derivative of ​​F​i​​​ at ​​​θ 
¯

 ​​i​​  =  0​ is either zero or infinite, violating our assumption of a contin-
uous and strictly positive density. However, our main results (in particular, Theorems 1 and 2 and their supporting 
analysis) apply to the more general version of our model in which the density is only assumed to be continuous 

and strictly positive on ​​(​​θ 
¯

 ​​i​​, ​​θ 
– ​​i​​)​​. In particular, assuming the density ​f​ is positive over ​​(​​θ 

¯
 ​​i​​, ​​θ 

– ​​i​​)​​, we can define ​​φ​i​​​(​θ​i​​)​  ≔ ​

θ​i​​ + ​ ​F​i​​​(​θ​i​​)​ _ 
​f​i​​​(​θ​i​​)​

 ​​ over ​​(​​θ 
¯

 ​​i​​, ​​θ 
– ​​i​​)​​, and extend it continuously to the endpoints.
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with linear strategies in which type ​​θ​i​​​ bids ​​ ​(1 + ​α​i​​)​ ​α​−i​​ _ 1 + ​α​−i​​
 ​ ​ θ​i​​​, and in this equilibrium the  

buyer obtains her maximum possible payoff.

As mentioned earlier, determining the optimal weights using condition (i) in 
Theorem 1 entails solving a convex optimization program. We show in the Appendix 
that ​​ω​​ ∗​​ is a local minimum of this program, and hence is optimal. Toward showing 
the indirect mechanism is optimal, we first establish that the given strategy profile 
generates the above-described allocation rule and interim allocation rules. Thus, 
the indirect mechanism and strategy profile constitute an optimal mechanism if the 
strategy profile is an equilibrium. Moreover, because the induced allocation rule 
is interim monotone and the payment identity ($) holds, it follows that no type of 
either agent has a profitable deviation to submit another type’s bid. Finally, notice 
that any off-path bid (a bid not submitted by any type on-path) is outcome equivalent 
to bidding the highest type’s bid (generating no trade and zero transfer). Therefore, 
no type has any profitable deviation. That is, the given strategy profile is indeed an 
equilibrium.

Let us highlight two important features of the above example. First, notice that ​​
ω​ 1​ ∗​  > ​ ω​ 2​ ∗​​ whenever ​​α​1​​  > ​ α​2​​​: the seller with a higher ​​α​i​​​ receives a higher weight 
in the optimal mechanism, and in this sense has greater influence over the outcomes 
of the mechanism. In the bidding-game implementation, this influence ranking is 
reflected in ​​τ​1​​  > ​ τ​2​​​. Section III studies the role of asymmetry more broadly, ask-
ing how ex ante heterogeneity in sellers’ characteristics leads to asymmetric treat-
ment by the mechanism beyond this parametric example. Using the characterization 
of optimal weights in Theorem 1, we show that the optimal mechanism assigns a 
higher weight to agents who have higher costs ex ante. Theorem 2 formalizes the 
appropriate sense in which ​​α​1​​  ≥ ​ α​2​​​ corresponds to seller ​1​ having higher costs  
ex ante, and shows that it generates a ranking of weights more generally.

Second, the terms of trade arose in the example from a complex pricing mecha-
nism, complex in the sense that bidding behavior altered the terms of trade, not just 
whether trade occurred. In particular, the price at which the trade occurs depends on 
the type profile, unlike the case with ​N  =  1​ where the optimal mechanism can be 
implemented with a posted price. In Section IV, we show that this complex pricing 
aspect of this mechanism is a feature of every optimal mechanism in our setting.

III.  The Role of Agent Heterogeneity

In light of our leading application (sale of a large plot of land with dispersed 
ownership to an industrialist) it is natural to explore how the optimal mechanism 
treats (ex ante) heterogeneity between agents. Because the optimal mechanism uses 
a weighted-average allocation rule, this question amounts to understanding how 
agents’ endogenous weights differ.

Specifically, we seek conditions on primitives under which we can rank ​​ω​i​​​ and ​​
ω​j​​​ for two agents ​i​ and ​j​. The main result of this section, Theorem 2, provides an 
interpretable condition under which a ranking of agents’ virtual cost distributions 
implies a ranking on the weights in the optimal mechanism. To state this result, we 
use the following distributional-ranking definition.
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DEFINITION 3: Given two real random variables ​v​ and ​w​ with respective cumu-
lative distribution functions given by ​G​ and ​H​, ​v​ is larger than ​𝐰​ in the reversed 
hazard-rate order, denoted by ​v ​  ≽​rh​​  w​, if ​inf ​[supp​(w)​]​  ≤  inf ​[supp​(v)​]​​ and ​​ G _ H ​​ is 
weakly increasing on ​​(inf ​[supp​(w)​]​, ∞)​​.

The above distributional ranking is a useful strengthening of first-order stochastic 
dominance. Intuitively, the ranking requires that the conditional distributions, when 
conditioned on lying below any common threshold, are stochastically ranked. This 
ranking condition has been fruitful in past work in mechanism design. Specifically, 
in the literature on asymmetric auctions (e.g., Maskin and Riley 2000; Kirkegaard 
2012), ranking bidders’ value distributions via the reversed hazard-rate order has 
enabled the ranking of equilibrium bidding behavior, which in turn has been used 
to provide revenue rankings for alternative auction formats. In our setting, as the 
following theorem shows, a reversed hazard-rate order on agents’ virtual cost distri-
butions is relevant in designing optimal mechanisms.

THEOREM 2 (Ranking Allocation Weights): If ​​φ​i​​ ​  ≽​rh​​ ​ φ​j​​ + β​ for some ​β  ≥  0​, 
then the optimal vector of allocation weights ​ω​ satisfies ​​ω​i​​  ≥ ​ ω​j​​​. Moreover, ​​ω​i​​  > ​ ω​j​​​ 
whenever ​β  >  0​ and ​​ω​j​​  >  0​.

Theorem 2 follows from more general results (which further provide quantita-
tive bounds on how asymmetric the weights are) that we prove in the Appendix.14 
The core of the theorem’s proof is a result from the theory of stochastic orders that 
converts a reversed hazard-rate ranking on random variables into a second-order 
stochastic-dominance ranking of their weighted averages as the weights are made 
more assortative. More specifically, we work with the convex program given in con-
dition (i) of Theorem 1, and note that its loss function can be written as

	​ − E​[h​(​ω​i​​ ​φ​i​​ + ​ω​j​​ ​φ​j​​)​]​​

for some increasing and concave function ​h​ that depends on ​​​(​ω​k​​)​​k≠i,j​​​. Suppose  
​​φ​i​​ ​  ≽​rh​​ ​ φ​j​​ + β​ for some ​β  ≥  0​, and consider any weight vector ​ω​ with ​​ω​i​​  < ​ ω​j​​​. We 
can then define an alternate weight vector ​​ω ̃ ​​ by swapping the ​i​ and ​j​ coordinates of ​ω​. 
  Because ​​φ​i​​ ​  ≽​rh​​ ​ φ​j​​ + β​ and ​​ω​i​​  < ​ ω​j​​​, a textbook stochastic ranking result tells us  
​​ω​i​​ ​φ​i​​ + ​ω​j​​​(​φ​j​​ + β)​​ is below ​​ω​j​​ ​φ​i​​ + ​ω​i​​​(​φ​j​​ + β)​​ in the sense of second-order sto-
chastic dominance. But then,

	​ E​[h​(​ω​i​​ ​φ​i​​ + ​ω​j​​ ​φ​j​​)​]​  ≤  E​[h​(​ω​j​​ ​φ​i​​ + ​ω​i​​ ​φ​j​​ − ​(​ω​j​​ − ​ω​i​​)​β)​]​  ≤  E​[h​(​ω​j​​ ​φ​i​​ + ​ω​i​​ ​φ​j​​)​]​,​

so that ​​ω ̃ ​​ performs at least as well as ​ω​ in the convex program. But Theorem 1 then 
tells us that ​ω​ cannot be the unique optimal weight vector.

When types are drawn from power distributions, virtual costs can be ranked in 
the reversed hazard-rate order, and so Theorem 2 gives a ranking of the weights 

14 More specifically, if ​​φ​i​​ ​  ≽​rh​​  α ​φ​j​​ + β​, where ​0  <  α  ≤  1​ and ​β​ exceeds a certain bound, then ​α ​ω​i​​  ≥  ​ω​j​​​; 
and we prove a corresponding strict version of the same.
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that matches our closed-form calculations in Example  1. In particular, consider 
two agents ​i​ and ​j​ with distributions given by ​​F​i​​​(​θ​i​​)​  = ​ θ​ i​ ​α​i​​​​ and ​​F​j​​​(​θ​j​​)​  = ​ θ​ j​ ​α​j​​​​ for ​​θ​i​​, ​
θ​j​​  ∈ ​ [0, 1]​​, where ​​α​i​​, ​α​j​​  >  0​. If ​​α​i​​  ≥ ​ α​j​​​, then ​​φ​i​​​ is higher than ​​φ​j​​​ in the reversed 
hazard-rate order, and so ​​ω​i​​  ≥  ​ω​j​​​ by the theorem, regardless of the distributions of 
other agents.15

Let us now revisit our land acquisition interpretation. The principal, an indus-
trialist, wishes to buy a large plot of land whose ownership is dispersed across ​N​ 
individuals, with agent ​i​ owning share ​​σ​i​​​ of the land. Each agent’s valuation per 
unit of land is ​​θ​i​​​, and his utility is ​​σ​i​​ 𝚖 − ​σ​i​​ ​θ​i​​ 𝚡​. Because ​​σ​i​​​ is a positive scalar mul-
tiplying ​𝚖 − ​θ​i​​ 𝚡​, it is strategically irrelevant. Therefore, if the agents’ virtual cost 
distributions are ranked according to the reversed hazard-rate order, then a ranking 
of the weights follows. Land shares per se play no role in determining agents’ 
optimal weights. For instance, if two agents have the same virtual cost distribu-
tions, then the optimal mechanism will weigh them equally however asymmetric 
their land shares are.

But could the amount of landholding be systematically related to the cost distri-
bution? For example, consider two sellers with landholdings ​​σ​1​​  < ​ σ​2​​​, and assume 
that the shares are sufficiently asymmetric. Then it is conceivable that the agent 
with a larger landholding may have uses of land that generate higher value (thus, a 
higher cost of trade) in per-unit terms. For example, an agent with a larger piece of 
land might install a manufacturing plant. The smaller landowner cannot do the same 
because of the associated fixed costs and minimum-size constraints. This difference 
in how they use their plots can lead to ​​φ​2​​ ​  ≽​rh​​ ​ φ​1​​​; that is, the agent with a larger 
landholding may have higher productivity (and therefore cost of trade) per unit of 
land. As Theorem 2 says, the optimal mechanism assigns agent ​2​, the more produc-
tive agent, a higher weight.

Another compelling story could, however, apply to situations in which all the 
landowners have the same land use, say agriculture, and they differ only in the sizes 
of plots they own (in addition to idiosyncratic shocks). A negative relationship 
between the size of land and productivity is well documented (e.g., Berry and Cline 
1979; Banerjee 2000). In fact, the magnitude of this difference in productivity is 
often sizable. As Banerjee (2000, p. 1) says:16

In Punjab, Pakistan, productivity on the largest farms (as measured by 
value added per unit of land) is less than ​40​ percent that on the second 
smallest size group, while in Muda, Malaysia, productivity on the largest 
farms is just two-thirds that on the second smallest size farms.

15 As pointed out in Example 1, any ​​θ​i​​  ∈ ​ [0, 1]​​ has ​​φ​i​​​(​θ​i​​)​  = ​  ​α​i​​ + 1
 _ ​α​i​​ ​ ​ θ​i​​​, implying ​Pr​[​φ​i​​  ≤  x]​  = ​​ (​  ​α​i​​ x _ ​α​i​​ + 1 ​)​​​ 

​α​i​​
​​ for ​

x  ∈ ​ [0, ​ ​α​i​​ + 1
 _ ​α​i​​ ​ ]​​ and analogously for ​j​. Because ​​ ​α​i​​ + 1

 _ ​α​i​​ ​   ≥ ​ 
​α​j​​ + 1

 _ ​α​j​​ ​ ​ and any ​x​ in the common support has

	​ ​ 
Pr​[​φ​i​​  ≤  x]​

  _  
Pr​[​φ​j​​  ≤  x]​

 ​  proportional to ​x​​ ​α​i​​−​α​j​​​,​

it follows that ​​φ​i​​​ is larger than ​​φ​j​​​ in the reversed hazard-rate order.
16 One reason Banerjee (2000) offers for this negative relationship is decreasing returns to scale arising from 

incentive costs. Smaller plots tend to be managed by families, while larger ones require significant external labor.



2611HAGHPANAH ET AL.: BUYING FROM A GROUPVOL. 114 NO. 8

In such contexts, in which the agents with smaller landholdings are more pro-
ductive (in per-unit terms), we could have ​​φ​1​​ ​  ≽​rh​​ ​ φ​2​​​ and therefore ​​ω​1​​  ≥ ​ ω​2​​​ per 
Theorem 2. That is, the optimal mechanism would favor the agents with smaller 
landholdings.

In summary, a general qualitative feature emerges from the above two situations: 
the optimal mechanism favors the more productive agents, who are less ex ante 
inclined to part with their land. Given a systematic positive or negative relation-
ship between agents’ productivity and their landholdings, this observation further 
enables us to understand which agents the optimal mechanism favors.

IV.  Posted-Price Mechanisms

In some mechanism design problems—for example, selling a single indivisible 
good to a single agent—the optimal mechanism is a take-it-or-leave-it posted-price 
mechanism (Myerson 1981; Riley and Zeckhauser 1983). Beyond the single-agent 
setting, there are environments in which such pricing mechanisms remain approx-
imately optimal (Chawla et  al. 2010; Chawla, Malec and  Sivan  2015; Hart and 
Nisan 2017; Babaioff et  al. 2020). Especially in our setting, in which any agent 
can unilaterally veto the mechanism and all the agents must pay a common price, a 
natural conjecture is that posted-price mechanisms remain optimal. The purpose of 
this section is to establish that this conjecture is false. Of course, before we can do 
so, we must first define a posted-price mechanism for our setting.

In the one-agent setting, the IC direct mechanisms that correspond to a posted 
price are those satisfying two properties. First, the transfer is directly propor-
tional to the allocation probability. And second, the allocation probability is ​1​ 
for types above the price and ​0​ for those below it. The first condition, which we 
can interpret as a restriction that money never changes hands if the good is not 
sold and that the price at which trade occurs is constant when it does, general-
izes immediately. But the second condition, which we can interpret as stating 
that the agent freely decides whether to execute a trade, does not immediately 
generalize to the multi-agent setting. Who decides whether trade occurs? Once the 
buyer announces a price for the good, a complex negotiation process could ensue 
between the agents deciding whether to sell. Might eventual trade outcomes arise 
from some mixed-strategy equilibrium of the resulting bargaining game between 
the agents?

In light of these difficulties, we define a collective posted price rather permis-
sively, incorporating only the first of the two conditions mentioned in the previous 
paragraph. We also introduce a specific, interpretable pricing mechanism that will 
be important for our results.

DEFINITION 4: A mechanism ​​(x, m)​​ is a collective posted-price mechanism if 
some ​p  ∈ ​ 핉​+​​​ exists such that ​m  =  px​. It is a unanimous posted-price mechanism 
if it is a collective posted-price mechanism with price ​p​ such that ​x​(θ)​  = ​ 1​​θ​i​​≤p∀i∊N ​​ ​ 
for every ​θ  ∈  Θ​.

One can envision several examples of collective posted-price mechanisms. For 
example, the buyer could set a price ​p​ and execute a sale if and only if all agents 
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agree to the purchase—a unanimous posted price. Alternatively, the buyer could 
post a price and select an agent, or even a subset of agents, perhaps randomly, and 
execute the trade if all the agents in this chosen subset agree to the sale.

Although the space of all collective posted-price mechanisms is rather rich, the 
next result shows that arguably the simplest example of them is optimal.

PROPOSITION 1 (Optimal Posted Price is Unanimous): Some unanimous 
posted-price mechanism is optimal among IC and IR collective posted-price 
mechanisms.

To show this result, we begin with an arbitrary collective posted-price mech-
anism, with a view to showing some unanimous posted price does better. If the 
price exceeds the benefit of trade ​b​, then the mechanism is not profitable, and so a 
unanimous posted price slightly below ​b​ yields higher buyer profit. Now focus on 
the case of a price below ​b​. Observe that IR implies an agent’s interim allocation is 
zero whenever the agent’s type is above the price. Therefore, trade has zero proba-
bility conditional on any agent’s having a realized valuation above the price. Hence, 
a unanimous posted price (at the same price level) would generate profitable trade 
with a higher probability, and so it is more profitable.

Having characterized the optimal form of collective posted-price mechanism, we 
are poised to answer the question that motivated this subsection: when are collective 
posted-price mechanisms optimal? The result below establishes that, under a mild 
nondegeneracy condition, they never are.

PROPOSITION 2 (Posted Prices are Suboptimal): If at least two ​j  ∈  N​ have  
​b  < ​​ θ – ​​j​​​, then no collective posted-price mechanism is optimal.

To establish the above result, in light of Proposition 1, it suffices to show the opti-
mal allocation mechanism is not a unanimous posted price. We show the two cannot 
coincide by examining their interim allocation rules for an agent who has positive 
weight in the optimal weighted allocation rule. His interim allocation rule is clearly 
a step function under a unanimous posted-price mechanism. Meanwhile, it cannot be 
one under the optimal mechanism: his interim probability of trade is nonconstant in 
his type because the allocation rule puts positive weight on his own virtual cost, and it 
is continuous in his type because it puts positive weight on the (atomlessly distributed) 
virtual cost of at least one other agent. So the two allocation rules cannot coincide.

Thus, optimal mechanisms incorporate sellers’ private information, smoothly 
varying the terms of trade with an agent’s reported type. Observe that such continu-
ous incentives are reflected in the bidding game of Example 1, in which changing a 
bid leads to a change in the price conditional on trade.

V.  Group versus Single-Agent Mechanisms

In this section, we compare optimal mechanisms in our setting with optimal 
mechanisms for buying from a single agent. We use this comparison to highlight 
how optimal allocations are distorted and discuss welfare consequences of these 
distortions.
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We start by defining the single-agent benchmark. In this benchmark, a single 
agent owns a good that has valuation ​v ≔ σ · θ​ for him, where ​σ  = ​ (​σ​1​​,  … , ​σ​N​​)​​  
is a fixed vector of positive weights summing to ​1​, and the random vector ​θ  =  
​(​θ​1​​,  … , ​θ​N​​)​​ has each ​​θ​i​​​ drawn independently from ​​F​i​​​. Using the terminology from 
our land acquisition application, the agent owns a plot of land that is divided into ​
N​ parcels, possibly of different sizes. Land parcel ​i​ has size ​​σ​i​​​ and selling it has 
per-unit cost ​​θ​i​​​ to the agent.17 The agent privately knows ​​θ​1​​,  … , ​θ​N​​​ (and hence pri-
vately knows v). The buyer designs a (direct) mechanism in which the single seller 
reports her type ​θ​, resulting in a probability of trade and a transfer the buyer pays 
him. We study mechanisms that maximize the buyer’s profit subject to single-agent 
analogues of the IC and IR constraints. Let ​G​ denote the cumulative distribution 
function ​v​, and let ​g​ be the continuous and strictly positive density of v. Although 
we do not make this assumption for our analysis, let us focus our discussion around 

the regular case in which the associated virtual cost ​v + ​ G​(v)​ _ 
g​(v)​ ​​ is strictly increasing 

in ​v​.18

Notice that, both in the single-agent benchmark and in our group setting, a mech-
anism stipulates a probability of trade as a function of the random variable ​θ​, and 
that this random variable has the same distribution in both settings. Also, in both 
settings, the total monetary value of the good to the seller(s) is ​σ · θ​ and has the 
same distribution in both cases. From the perspective of the buyer, regardless of 
whether she interacts with a single agent (as described in the previous paragraph) 
or with the group (as in our main model), she is paying money to buy a good, and 
she has the same belief about how valuable the good is to the seller(s). Hence, the 
utilitarian-efficient allocation is the same in either setting: the good is efficiently 
traded whenever the benefit of doing so is greater than its cost,

	​ b  ≥  σ · θ.​

For any ​​c​0​​​, let the iso-cost curve for ​​c​0​​​ be the set of all type profiles that have 
the same cost ​​c​0​​​, i.e., those ​θ  ∈  Θ​ that satisfy ​​c​0​​  =  σ · θ​. Then, efficient trade 
occurs in the region of the type space that is below the iso-cost curve for ​b​. Panel 
A of Figure 1 illustrates this region for the case of two agents (​N  =  2​), in which 
iso-cost curves are straight lines with slope ​− ​ ​σ​1​​ _ ​σ​2​​ ​​. Iso-cost curves that are further in 
the northeast direction correspond to larger cost levels. In what follows, we compare 
the efficiency of the buyer’s optimal allocation rule across these two models.

17 These costs might be independent (conditional on observables) if they represent productivity of different 
parcels of land, and any shocks that affect multiple parcels’ productivity are observable to the buyer.

18 We make this assumption here only to streamline the exposition. Regularity of the distribution of v would 
follow if we were to assume each ​​​f​i​​⁄​F​i​​​​ is nonincreasing on ​​(​​θ ¯ ​​i​​, ​​θ 

– ​​i​​)​​ for each ​i  ∈  N​. Indeed, in this case, the corre-
sponding ratio for ​​v​i​​  = ​ σ​i​​ ​θ​i​​​ given by

	​ ​v​i​​  ↦ ​ 
​f​i​​​(​ 1 _ ​σ​i​​ ​ ​v​i​​)​
 _ 

​σ​i​​ ​F​i​​​(​ 1 _ ​σ​i​​ ​ ​v​i​​)​
 ​​

is nonincreasing there too. Iteratively applying Corollary 3.3 from Barlow, Marshall, and Proschan (1963) then 
tells us ​​g ⁄ G​​ is nonincreasing there, so that the associated virtual cost is strictly increasing—that is, ​v​ has a regular 
distribution.
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In a buyer-optimal mechanism for the single-agent benchmark, the good is traded 
whenever the benefit exceeds its single-agent virtual cost,

	​ b  ≥  σ · θ + ​ 
G​(σ ⋅ θ)​
 _ 

g​(σ ⋅ θ)​ ​.​

For any ​​c​0​​​, let the iso-single-agent-virtual-cost curve for ​​c​0​​​ be the set of all ​θ  ∈  Θ​ 

that have the same virtual cost ​​c​0​​​—that is, satisfying ​​c​0​​  =  σ · θ + ​ G​(σ · θ)​ _ 
g​(σ · θ)​ ​​. Then 

trade occurs below the iso-single-agent-virtual-cost curve for ​b​. This curve is shown 
for two agents in panel B of Figure 1. Observe that every iso-single-agent-virtual-cost 
curve is also an iso-cost curve (associated with a lower cost level), so that the former 
curves are also straight lines with slope ​− ​ ​σ​1​​ _ ​σ​2​​ ​​, and the virtual cost also increases as we 
move in the northeast direction. As is well known, optimal allocations for single-agent 

settings entail a downward distortion in trade: when ​σ · θ  <  b  <  σ · θ + ​ G​(σ · θ)​ _ 
G​(σ · θ)​ ​​,  

trade occurs in the efficient allocation but not according to optimal allocations in the  
single-agent benchmark.

In buyer-optimal mechanisms in our group setting, trade occurs whenever the 
benefit exceeds the weighted virtual cost of all group members,

	​ b  ≥  ω · φ  = ​ ∑ 
i
​ 
 
 ​​​ ω​i​​​[​θ​i​​ + ​ 

​F​i​​​(​θ​i​​)​ _ 
​f​i​​​(​θ​i​​)​

 ​]​.​

For any ​​c​0​​​, let the iso-group-virtual-cost curve for ​​c​0​​​ be the set of all type pro-
files that have the same weighted virtual cost ​​c​0​​​, i.e., those ​θ  ∈  Θ​ satisfying  

​​c​0​​  = ​ ∑ i​   ​​​ω​i​​​[​θ​i​​ + ​ ​F​i​​​(​θ​i​​)​ _ 
​f​i​​​(​θ​i​​)​

 ​]​​. Then, in the optimal allocation rule for our group setting, 

trade occurs below the iso-group-virtual-cost curve for ​b​. This allocation rule is 
illustrated for two agents in panel C of Figure 1. Notably, because the weights ​ω​ do 

Figure 1

Notes: Panel A: In the efficient allocation, trade occurs below the iso cost curve given by ​b  =  σ · θ​. Panel B: In 
the optimal allocation for the single-agent benchmark, trade occurs below the iso-single-agent-virtual-cost curve 

given by ​b  =  σ · θ + ​ G​(σ · θ)​ _ 
g​(σ · θ)​ ​​. Panel C: In the optimal allocation for our group setting, trade occurs below the 

iso-group-virtual-cost curve given by ​b  =  ω · φ​.

θ1

θ 2
Panel A

θ1
θ 2

Panel B

θ1

θ 2

Panel C
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not depend on the shares ​σ​, iso-group-virtual-cost curves are unrelated to the shares 
(holding fixed the distribution of ​θ​).

A comparison of the iso-cost curves with the iso-group-virtual-cost curves shows 
that an optimal allocation rule in our group setting differs from the efficient alloca-
tion for three reasons. To see this, let us convert the weighted virtual costs to (actual) 
costs in three steps, and study each conversion:

	​​ ∑ 
i
​ 
 
 ​​​ ω​i​​​[​θ​i​​ + ​ 

​F​i​​​(​θ​i​​)​ _ 
​f​i​​​(​θ​i​​)​

 ​]​  ↝ ​ ∑ 
i
​ 
 
 ​​​ σ​i​​​[​θ​i​​ + ​ 

​F​i​​​(​θ​i​​)​ _ 
​f​i​​​(​θ​i​​)​

 ​]​  ↝ ​ ∑ 
i
​ 
 
 ​​​ σ​i​​​[​θ​i​​ + ​ 

​F​i​​​(σ · θ)​
 _ 

​f​i​​​(σ · θ)​ ​]​  ↝ ​ ∑ 
i
​ 
 
 ​​​ σ​i​​ ​θ​i​​.​

The first conversion highlights a rotational distortion. Whereas the 
iso-group-virtual-cost curves are unaffected by the shares ​σ​, the iso-cost curves rotate 
as the shares change. With two agents, as ​​σ​1​​​ increases, each iso-cost curve rotates 
clockwise whereas iso-group-virtual-cost curves are unaltered. The second conver-
sion highlights a curvature distortion. Unlike iso-cost curves, iso-group-virtual-cost 
curves might be non-linear because the inverse hazard rate functions ​​F​i​​ / ​f​i​​​ might be 
non-linear. The third conversion highlights the familiar downward distortion. The 
addition of the inverse hazard rate term elevates the iso-weighted-virtual-cost curves 
and leads to lower probability of trade. The optimal mechanism for the single-agent 
benchmark exhibits only the third distortion (with a different inverse hazard rate, ​
G / g​) and not the other two.

Two salient features emerge from examining how these three different distortions 
interact. First, as we will demonstrate, trade in the group setting may be inefficiently 
high. That is, optimal allocations in our main model may prescribe trade even when 
trading is inefficient. This type of inefficient trade cannot happen in the single-agent 
benchmark, which exhibits only the downward distortion. Second, an efficiency 
comparison between buying from a group and buying from a single agent is ambig-
uous in general. As we will show, a key determinant of the welfare ranking is how 
large a benefit the good yields for the buyer. Focusing on the natural case in which 
the per-unit costs ​​​{​θ​i​​}​​i​​​ are identically distributed, we show optimal allocations in our 
group setting are more efficient than in the single-agent setting if ​b​ is large, and are 
less efficient when ​b​ is small. We elaborate more on these two observations below.

For the first observation, suppose each ​i  ∈  N​ has ​​θ​i​​  ∈ ​ [0, 1]​​ following the power 
distribution ​​F​i​​​(​θ​i​​)​  = ​ θ​ i​ α​​ for a power ​α  >  0​. Recall that identically distributed  

​​​{​θ​i​​}​​i​​​ lead to ​ω  = ​ (​ 1 _ N ​,  … , ​ 1 _ N ​)​​ being optimal in the group setting, and that ​​φ​i​​​(​θ​i​​)​  = 
​ α + 1 _ α  ​ ​θ​i​​​ for any ​​θ​i​​  ∈ ​ [0, 1]​​. Given the latter linear form, iso-weighted-virtual-cost 
curves are linear, and so there is no curvature distortion in this example. The overall 
distortion depends on the interaction between rotational and downward distortions, 
and the rotational distortion might dominate for certain type profiles. In particular, 
compare the weighted virtual cost,

	​ ω · φ  = ​ ∑ 
i
​ 
 
 ​​​  1 _ 

N ​ ​φ​i​​  = ​  1 + α _ αN  ​​∑ 
i
​ 
 
 ​​ ​ θ​i​​,​

to the (actual) cost,

	​​ ∑ 
i
​ 
 
 ​​​ σ​i​​ ​θ​i​​.​
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Suppose the share vector ​σ​ is asymmetric, so that some ​i​ has ​​σ​i​​  > ​  1 _ N ​​. Then, any 
large enough ​α​ admits a range of ​b​ for which

	​ ​ 1 + α _ αN  ​  <  b  < ​ σ​i​​.​

In this case, with positive probability—specifically, when ​​θ​i​​​ is high and ​​{​θ​j​​}​j≠i​​​ are 
low—trading is inefficient but still happens under the optimal allocation rule for 
the group setting. This example suggests that the irrelevance of land shares, ​σ​, to 
the optimal mechanism may distort trade in favor of smaller landholders with low 
productivity.

Second, consider the efficiency of the allocation. Specializing to the case in 
which ​​​{​θ​i​​}​​i​​​ are identically distributed, we provide an efficiency ranking between 
the group and single-agent settings for two cases: when the benefit to the buyer is 
very low, and when it is very high. First, when the benefit is low enough, we show 
our group setting generates a lower expected surplus than the single-agent bench-
mark. This surplus ranking holds in an ex post sense—that is, the buyer’s chosen 
mechanism for the single-agent setting stipulates trade whenever trade is efficient 
and happens in the group setting—if and only if the shares are sufficiently similar. 
On the other hand, when the benefit is large enough, then our group setting yields 
more surplus (in the stronger ex post sense) than the single-agent one whatever the 
share vector. In particular, our results imply that the efficiency ranking between the 
group and single-agent settings will generally depend on the specific parameters of 
the model. We formally state and prove these results in the online Appendix.

To provide some intuition, let us focus on the case in which the land shares are 
symmetric. In this case, because both weighted virtual costs and single-agent virtual 
costs are above actual costs, it follows that trading is efficient whenever the optimal 
allocation in the group or the single-agent setting prescribes it. Therefore, a surplus 
ranking will follow from showing one regime specifies trade in a bigger region than 
the other. When the actual cost realizations are extreme (either very high or very 
low) we can establish this ranking of trade regions. This is because, in these cases, 
we can rank the single-agent virtual costs against the weighted virtual costs. The 
case of high costs is simpler. Because the average cost can be high only if all sellers 
have a high cost, the density of the average cost must vanish at the tails, leading to 
an infinite single-agent virtual cost (whereas the weighted virtual cost is finite). The 
case of low costs requires a more detailed quantitative calculation, but we show in 
the Appendix that single-agent virtual costs are indeed lower than weighted virtual 
costs when the average actual cost is low. The ranking follows: when the benefit to 
the buyer is very low, the single-agent optimal mechanism generates more surplus 
than the optimal mechanism in the group setting, while the reverse ranking holds 
when the benefit is high.

VI.  Discussion

We now consider some variants of our main model and briefly discuss how our 
analysis can be extended in these directions. Any nontrivial formalism is deferred to 
the online Appendix.
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Dominant Strategies.—The notion of incentive compatibility we have employed 
so far is Bayesian incentive compatibility (BIC, which we have called IC through-
out), which requires only that sellers’ reports be best responses in expectation, given 
their own realized types. However, in our leading application, a group of sellers who 
collectively own a plot of land, one could envision scenarios without any private 
information inside the group. That is, the group members might know other mem-
bers’ costs, but the buyer does not.

Motivated by such situations, it is perhaps natural to consider more demand-
ing incentive constraints. Specifically, we consider what happens when the buyer 
is constrained to offer a mechanism that is dominant-strategy incentive compati-
ble (DIC). Whereas proportional transfers impose no constraints on what alloca-
tion rules can be implemented under Bayesian incentive constraints, we show they 
significantly constrain a buyer restricted to DIC mechanisms; that is, there is no 
counterpart to part (i) of Lemma 1 saying every ex post monotone allocation rule 
is DIC-implementable by some transfer rule.19 In particular, all deterministic DIC 
mechanisms take the form of a posted price (augmented by an upfront transfer) with 
trade occurring if and only if enough sellers approve the trade. Using this observa-
tion, we show that no optimal mechanism (i.e., those characterized by Theorem 1) 
is also DIC. The intuition is similar to that of Proposition 2: optimal mechanisms 
(putting weight on multiple agents) deliver smooth incentives to a single agent, 
whereas deterministic DIC mechanisms cannot.

Ex Post Participation.—With a view to respecting individual property rights, we 
have constrained our buyer to employ a mechanism that is individually rational for 
each seller—that is, such that every seller can keep his land rather than interacting 
with the mechanism. As with our other incentive constraints, we formulated IR in 
the interim sense, having each seller assess his participation decision in expectation 
over others’ types. One may wish to consider a buyer constrained by a stronger form 
of property rights—namely, that any seller has the option to walk away from the 
mechanism even after all uncertainty has been resolved. For some examples, such 
an ex post IR constraint imposes no additional costs on the buyer.20 For instance, in 
the equilibrium described in the bidding game of Example 1, no seller ever has an 
incentive to walk away, even after he learns the other seller’s bid if the powers in the 
sellers’ distributions multiply to at most one, ​​α​1​​ ​α​2​​  ≤  1​. When does this property 
hold more generally? And can our analytical approach be applied to understand such 
ex post constraints?

To better understand the ex post IR constraint more generally, we first answer 
an implementability question: When can a given allocation rule, together with an 
expected transfer, be implemented in some IC and ex post IR mechanism? Using 
this characterization, we provide sufficient conditions on primitives under which 
some buyer-optimal mechanism is also ex post IR. Applied to Example  1, these 

19 This fact is reminiscent of other work showing BIC-DIC equivalence fails given financial constraints. Even 
though unidimensional private-values mechanism design settings with flexible transfers admit a strong form of this 
equivalence (Gershkov et al. 2013), a DIC constraint severely constrains implementable allocations when paired 
with ex post budget balance. See Hagerty and Rogerson (1987), for example. 

20 A similar equivalence arises in related work by Che (2002).
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conditions say if ​​α​1​​  = ​ α​2​​  ≤  1​, some optimal mechanism exists that is also ex post 
IR, consistent with our calculations for that example.

Pareto-Optimal Mechanisms.—Our paper has focused on mechanisms that max-
imize the buyer’s expected payoff. Although this objective is a natural benchmark, 
it assumes the buyer has extreme bargaining power relative to the seller group. 
More generally, one might wonder what mechanisms can arise naturally with 
different allocations of bargaining rights. Specifically, we study Pareto-optimal 
mechanisms. That is, IC and IR mechanisms for which there is no alternative IC 
and IR mechanism that delivers a weakly higher buyer profit, and a weakly higher 
agent ​i​ value for each agent ​i​, with at least one of these ​N + 1​ inequalities strict. 
Our land acquisition application suggests another reason to care about the entire 
Pareto frontier. If the buyer is a government, state-owned enterprise, or other large 
stakeholder in the relevant community, then they may care about the welfare of 
the current landholders in addition to the purely financial consequences of trade. 
Understanding the range of optimal mechanisms all such stakeholders might wish 
to use amounts to understanding all Pareto optima of our space of IC and IR 
mechanisms.

Pareto-optimal mechanisms trade if and only if the buyer’s benefit maximizes a 
weighted average of sellers’ virtual and actual costs. Although this class of alloca-
tion rules is richer than the unique buyer optimum, it enjoys similar tractability and 
qualitative structure. For instance, Pareto-optimal mechanisms are deterministic and 
use weights that are fixed and do not depend on reports. The weight that applies to 
a seller’s cost is exactly the Pareto weight of that seller, whereas the weight that 
applies to the virtual cost is identified endogenously and reflects the agent’s influ-
ence over the outcomes. We also use our characterization to generalize the main 
result of Section  IV, showing every Pareto-optimal mechanism entails complex 
pricing.

Our characterization of implementable allocation rules, along with the analytical 
approach we adopt in developing Theorem 1, proves useful in providing our charac-
terization of Pareto-optimal mechanisms. A standard separation result enables us to 
represent Pareto optima as maximizers of weighted sums of the ​N + 1​ individuals’ 
objectives, and we can adapt our zero-sum game proof to this more general class of 
objectives.

Pre-market Trade.—Throughout, we have restricted attention to mechanisms in 
which agents are paid proportionally to their land shares. We mainly impose this 
structure as a fairness or institutional requirement that is natural in many applica-
tions. As formalized in the Appendix, we point out another desirable property of 
such mechanisms for the case in which sellers’ per-unit costs are identically distrib-
uted. We show that if the buyer uses these proportional transfer mechanisms, then 
sellers have no incentives to manipulate the outcome by trading their shares before 
interacting with the mechanism. We also show, by example, that this property could 
be violated if the buyer were not restricted to paying agents proportionally to their 
shares (as in Güth and Hellwig 1986). Thus, in addition to being realistic in many 
settings, our assumption of collective transfers yields a desirable robustness prop-
erty for buying mechanisms.
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The result that the sellers have no incentives to trade shares is based on two 
observations. First, the optimal mechanism is independent of the shares. Second, in 
a mechanism that is independent of the shares, the sellers’ incentives to trade shares 
disappear if agents are paid the same price per share. When discriminatory pricing is 
allowed, the buyer optimally treats sellers with different shares differently, opening 
the door to gaming by trading shares.

Beyond Veto Bargaining.—An important feature of our environment is that any 
agent can unilaterally veto the mechanism. This feature, captured by the require-
ment that the mechanism be IR for all of the agents, is natural in settings with 
strong property rights. However, a more permissive bargaining arrangement may be 
more appropriate for modeling some contexts: for example, when eminent domain 
enables a government to forcibly acquire land from some individuals for public 
projects. As in some redevelopment projects, we could require that rather than una-
nimity, the terms of trade need to be approved by at least ​n​ agents for some given ​
n  <  N​. This flexibility raises new modeling questions concerning how exactly one 
determines whether a mechanism has sufficient approval.

In one approach, we could require this approval by ​n​ sellers determined ex 
ante—that is, independent of their type realizations. This formulation reduces nearly 
immediately to the analysis in our main model. Indeed, one need only replace the 
IR constraint (which we imposed for all ​N​ agents in our model) with a weaker 
assumption that at least ​n​ agents’ IR constraints are satisfied. Because the buyer has 
no reason to condition on the types of agents facing no IR constraint, her problem 
reduces to an ​n​-agent specification of our main model. The optimal mechanism allo-
cates the good if and only if the benefit to the buyer exceeds a weighted sum of the 
chosen ​n​ agents’ virtual costs. The buyer would then choose to tailor the mechanism 
to the ​n​ agents she finds most favorable to interact with ex ante. For instance (given 
Theorem 1), the ​n​ agents with the lowest virtual cost distributions if these distribu-
tions are first-order stochastically ranked.

Appendix A. Proofs for Main Results

A. Proofs for Section II

We first reproduce the statement of Lemma 1.

LEMMA: Let ​x​ be some allocation rule.

	 (i)	 Mechanism ​​(x, m)​​ is IC and IR for some transfer rule ​m​ if and only if ​x​ is 
interim monotone.

	 (ii)	 If some transfer rule ​m​ exists such that mechanism ​​(x, m)​​ is IC and IR, then a 
maximally profitable such mechanism exists, with resulting profit

	​ ​min​ 
i∈N

​ ​ E​[x​(θ)​​(b − ​φ​i​​)​]​.​
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PROOF OF LEMMA 1:
For each ​i  ∈  N​, let ​​X​i​​ ≔ ​X​ i​ x​​, and define ​​M​ i​ ∗​ : ​Θ​i​​  →  ℝ​ by

	​ ​M​ i​ ∗​​(​θ​i​​)​  ≔ ​ X​i​​​(​θ​i​​)​ ​θ​i​​ + ​∫ ​θ​i​​​ 
​​θ – ​​i​​​​​X​i​​​(​​θ ̃ ​​i​​)​ d ​​θ ̃ ​​i​​.​

Given a transfer rule ​m​, standard arguments (Myerson 1981; Myerson and 
Satterthwaite 1983) show that ​​(x, m)​​ is IC if and only if each ​i  ∈  N​ has ​​X​i​​​ weakly 
decreasing and ​​M​ i​ m​  = ​ M​ i​ ∗​ + ​​ U 

¯
 ​​i​​​ for some constant ​​​ U 

¯
 ​​i​​  ∈  ℝ​; that such a mechanism 

is IR if and only if ​​​ U 
¯

 ​​i​​  ≥  0​ for each ​i  ∈  N​; and that ​E​[​M​ i​ ∗​​(​θ​i​​)​]​  =  E​[​X​i​​​(​θ​i​​)​ ​φ​i​​]​​. 
Given iterated expectations, the latter equation simplifies to 
 ​E​[​M​ i​ ∗​​(​θ​i​​)​]​  =  E​[x​(θ)​ ​φ​i​​]​​.

Using the above observations, let us prove the two parts of the lemma in turn.
Toward part (i), note the first paragraph says interim monotonicity is necessary 

for ​x​ to be IC implementable; and for sufficiency it suffices to show some transfer 
rule ​​m​​ 0​​ exists such that ​​M​ i​ ​m​​ 0​​ − ​M​ i​ ∗​​ is constant for each ​i  ∈  N​ (since raising such a 
transfer rule by a large enough constant will ensure IR). The transfer rule ​​m​​ 0​​ given 
by ​​m​​ 0​​(θ)​  ≔ ​ ∑ i∈N​   ​​​ M​ i​ ∗​​(​θ​i​​)​​ has this property, and so part (i) follows.

Now, toward part  (ii), suppose ​x​ is indeed implementable; say transfer rule ​
m​ is such that ​​(x, m)​​ is IC and IR. Then each ​i  ∈  N​ admits ​​​ U 

¯
 ​​i​​  ≥  0​ such that  

​​M​ i​ m​  = ​ M​ i​ ∗​ + ​​ U 
¯

 ​​i​​​. Hence, for any ​i  ∈  N​, we can write the expected transfer as

	​ E​[m​(θ)​]​  =  E​[​M​ i​ M​​(​θ​i​​)​]​  =  E​[x​(θ)​ ​φ​i​​]​ + ​​ U 
¯

 ​​i​​,​

so that the buyer’s expected value can be written as

	​ E​[bx​(θ)​ − m​(θ)​]​  =  E​[x​(θ)​​(b − ​φ​i​​)​]​ − ​​ U 
¯

 ​​i​​.​

Reducing the transfer rule by a constant will reduce each of ​​​{​​ U 
¯

 ​​i​​}​​i​​​ by the same con-
stant, and so raise the buyer’s expected value. The buyer therefore optimally sets ​​
min​i∈N​​ ​​ U 

¯
 ​​i​​  =  0​. But in this case, we have ​E​[bx​(θ)​ − m​(θ)​]​  ≤  E​[x​(θ)​​(b − ​φ​i​​)​]​​ for 

every ​i  ∈  N​, with equality for some ​i​. Said differently, we then have

	​ E​[bx​(θ)​ − m​(θ)​]​  = ​ min​ 
i∈N

​ ​ E​[x​(θ)​​(b − ​φ​i​​)​]​,​

delivering part (ii) ∎

The following notation will be convenient to us in making formal arguments.

NOTATION 1: Let ​​ ̃ ​​ denote the set of all allocation rules , modulo the ​F​-almost 
everywhere equivalence relation, a subset of ​​L​​ ∞​​(Θ, F)​​. Each element of  corre-
sponds to one of ​​ ̃ ​​ in the obvious way.

Consider now the relaxed buyer problem,

(RBP)	​ ​max​ 
x∈​ ̃ ​

​ ​  ​{​min​ 
i∈N

​ ​  E​[x​(θ)​​(b − ​φ​i​​)​]​}​.​
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which is our buyer’s problem without the interim-monotonicity constraint (and cast 
in ​​ ̃ ​​). The following lemma characterizes solutions of this relaxed program.

LEMMA 2: A unique solution exists to program (RBP). This solution is given by the ​
ω​-allocation rule, where ​ω  ∈  ΔN​ is any weight vector satisfying the two equivalent 
conditions (i) and (ii) in the statement of Theorem 1.

PROOF:
Consider a two-player zero-sum game where the maximizer (Max) chooses ​x  ∈ ​

 ̃ ​​ and the minimizer (Min) chooses ​ω  ∈  ΔN​. The objective (that is, the payoff to 
Max) is

	​ ​(x, ω)​  ≔  E​[x​(θ)​​(b − ω · φ)​]​.​

We will first argue that a Nash equilibrium exists for this zero-sum game; and that 
the Nash equilibria are exactly the pairs ​​(​x​​ ∗​, ​ω​​ ∗​)​  ∈ ​  ̃ ​ × ΔN​ for which ​​x​​ ∗​​ solves 
(RBP) and ​​ω​​ ∗​​ satisfies condition (i). Then we will argue that ​​x​ω​​​ is Max’s unique best 
response to any Min strategy ​ω​; that Max has a unique Nash equilibrium strategy; 
and that condition (ii) is equivalent to being a Nash equilibrium strategy for Min. 
Establishing these facts will establish the lemma.

First, because ​​ ̃ ​​ is weak*-compact (by Banach-Alaoglu) and convex, the space ​
ΔN​ obviously is as well, and the objective is weak*-continuous in the strategy pro-
file, it follows from Sion’s minimax theorem that

	​ ​max​ 
x∈​ ̃ ​

​ ​ ​ min​ 
ω∈ΔN

​​ ​(x, ω)​  = ​  min​ 
ω∈ΔN

​​ ​max​ 
x∈​ ̃ ​

​ ​ ​(x, ω)​,​

where all extrema in the equation are attained by Berge’s theorem. Then, because 
the auxiliary game is strictly competitive, Proposition 22.2 from Osborne and 
Rubinstein (1994) tells us some Nash equilibrium exists, and that the Nash equilib-
ria are exactly the pairs ​​(​x​​ ∗​, ​ω​​ ∗​)​  ∈ ​  ̃ ​ × ΔN​ for which

	​ ​x​​ ∗​  ∈ ​ arg max​x∈​ ̃ ​​​  ​ min​ 
ω∈ΔN

​​ ​(x, ω)​

and​

	​ ​ω​​ ∗​  ∈ ​ arg min​ω∈ΔN​​  ​max​ 
x∈​ ̃ ​

​ ​  ​(x, ω)​.​

(In particular, the set of equilibria forms a product set.) Observe, though, that ​​
min​ω∈ΔN​​ ​(x, ω)​  = ​ min​i∈N​​ E​[x​(θ)​​(b − ​φ​i​​)​]​​ for each ​x  ∈ ​  ̃ ​​ because ​​(x, · )​ is​ 
affine. Hence, ​​x​​ ∗​​ maximizes this quantity if and only if ​​x​​ ∗​​ solves (RBP). Moreover,  
​​max​x∈​ ̃ ​​​  ​(x, ω)​  =  E​[​max​𝚡∈​[0,1]​​​​(b − ω · φ)​𝚡]​  =  E​[​​(b − ω · φ)​​+​​]​​ for each ​
ω  ∈  ΔN​, so that minimizing these expressions is equivalent—that is, the minimax 
strategies are exactly those satisfying condition  (i). So we have established that 
some Nash equilibrium exists; and that the Nash equilibria are exactly the pairs  
​​(​x​​ ∗​, ​ω​​ ∗​)​  ∈ ​  ̃ ​ × ΔN​ for which ​​x​​ ∗​​ solves (RBP) and ​​ω​​ ∗​​ satisfies condition (i).

It remains to show that ​​x​ω​​​ is Max’s unique best response to any Min strategy  
​ω​; that Max has a unique Nash equilibrium strategy; and that condition  (ii) is 
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equivalent to being a Nash equilibrium strategy for Min. Toward the first assertion, 
consider any ​ω  ∈  ΔN​. Because ​​​{​θ​i​​}​​i∈N​​​ are atomless and independent and ​​​{​φ​i​​}​​i∈N​​​ 
are all strictly increasing, it follows that ​Pr​{ω · φ  =  b}​  =  0​, so that the ​​ ̃ ​​ element 
with representative ​​x​ω​​​ is the unique ​x  ∈ ​  ̃ ​​ such that

	​ Pr​{x​(θ)​  ∈ ​ arg max​𝚡∈​[0,1]​​​​[​(b − ω · φ)​𝚡]​}​  =  1.​

Thus, the ​ω​-allocation rule ​​x​ω​​​ is Min’s unique best response (in ​​ ̃ ​​ ) to ​ω​. From the 
product structure of the set of Nash equilibria, then, it follows that Max has a unique 
Nash equilibrium strategy ​​x​​ ∗​​, which is then the unique solution to (RBP).

All that remains now is to show that condition  (ii) is equivalent to being 
a Nash equilibrium strategy for Min. But because ​​x​ω​​​ is the unique Max best 
response to ​ω  ∈  ΔN​, we know ​ω​ is a Nash equilibrium strategy if and only if  
​ω  ∈ ​ arg max​​ω ̃ ​∈ΔN​​ ​(​x​ω​​, ​ω ̃ ​)​​ or, equivalently (since ​​(​x​ω​​, ·)​​ is affine) every ​i  ∈  
supp​(ω)​​ belongs to ​​argmax​i∈N​​ E​[​(b − ​θ​i​​)​ ​1​ω·θ≤b​​]​​. Finally ​b  > ​​ θ 

¯
 ​​i​​​ for every ​i  ∈  N​, 

the event ​​{ω · θ  ≤  b}​​ has strictly positive probability, so that the latter condition is 
equivalent to condition (i). The lemma follows. ∎

We now reproduce the statement of Theorem 1.

THEOREM  1 (Optimal Allocation): A weighted allocation rule is essentially 
uniquely optimal. The unique optimal weight vector ​ω​ is characterized by either of 
the following two equivalent conditions:

	 (i)	​ ω  ∈ ​ arg min​​ω ̃ ​∈ΔN​​ E​[​​(b − ​ω ̃ ​ · φ)​​+​​]​​.

	 (ii)	​ supp​(ω)​  ⊆ ​ arg max​i∈N​​ E​[​φ​i​​ ∣ ω · φ  ≤  b]​​.

Moreover, if ​b  < ​​ θ – ​​j​​​ for at least two ​j  ∈  N​, then every ​i  ∈  N​ has ​​ω​i​​  <  1​.

PROOF OF THEOREM 1:
First, by Lemma 1, an allocation rule is optimal if and only if it solves program 

(BP), so we focus on solutions to this program.
Now, Lemma 2 tells us that conditions (i) and (ii) in the theorem’s statement are 

equivalent, that some ​ω  ∈  ΔN​ exists that satisfies those conditions, and that (the 
almost-sure equivalence class of) ​​x​ω​​​ is uniquely optimal in (RBP). Because ​​x​ω​​​ is 
interim monotone and solves a relaxation of (BP), it follows directly that ​​x​ω​​​ solves 
(BP), and that every other solution ​x​ to (BP) has ​x​(θ)​  = ​ x​ω​​​(θ)​​ almost surely.

Next, we establish ​i  ∈  N​ has ​​ω​i​​  <  1​ if some ​j  ∈  N\​{i}​​ has ​b  < ​​ θ – ​​j​​​. To see this 
fact, note that if ​i  ∈  N​ had ​​ω​i​​  =  1​, then ​j  ∈  N\​{i}​​ would have

	​E​[​φ​i​​ ∣ ω · φ  ≤  b]​  =  E​[​φ​i​​ ∣ ​φ​i​​  ≤  b]​  ≤  b  < ​​ θ – ​​j​​  =  E​[​φ​j​​]​  =  E​[​φ​j​​ ∣ ω · φ  ≤  b]​,​

in contradiction to condition (ii).
Finally, we turn to uniqueness of ​ω​. Suppose ​​ω ̃ ​  ∈  ΔN​ is such that ​​x​​ω ̃ ​​​​ is optimal, 

and so ​​x​​ω ̃ ​​​​(θ)​  = ​ x​ω​​​(θ)​​ almost surely; our aim is to show ​​ω ̃ ​  =  ω​. Toward establish-
ing this equality, define ​G ≔ ​∏ i∈N​   ​​​ (b − ​φ​i​​​(​​θ 

– ​​i​​)​, b − ​​θ 
¯

 ​​i​​)​​, the interior of the support of ​
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b ​1​N​​ − φ​. Now, define the linear map ​L : ​ℝ​​ N​  → ​ ℝ​​ 2​​ by letting ​L​(z)​ ≔ ​(ω · z, ​ω ̃ ​ · z)​​  
for each ​z  ∈ ​ ℝ​​ N​​. Let us now observe some properties of ​G​ and ​L​. First, that  
​ω · φ​(​θ 

¯
 ​)​  <  b  <  ω · φ​(​θ – ​)​​ and ​​ω ̃ ​ · φ​(​θ 

¯
 ​)​  <  b  < ​ ω ̃ ​ · φ​(​θ – ​)​​ implies ​L​(G)​​ is 

not a subset of ​​ℝ​+​​ × ℝ​, of ​​ℝ​−​​ × ℝ​, of ​ℝ × ​ℝ​+​​​, or of ​ℝ × ​ℝ​−​​​. Second, that ​ 
Pr​{​x​​ω ̃ ​​​​(θ)​  = ​ x​ω​​​(θ)​}​  =  1​ implies ​L​(G)​​ is a subset of ​​ℝ​ +​ 2 ​ ∪ ​ℝ​ −​ 2 ​​. Third, because ​L​ 
is linear and ​G​ is convex, the set ​L​(G)​​ is convex. Combining these three observa-
tions tells us that ​L​(G)​​ is contained in a single line through the origin. Because ​
G​ is open and ​L​ is linear, then, ​L​(​ℝ​​ N​)​​ is contained in the same line. Said differ-
ently, the rank of the linear map ​L​ is ​1​, so that vectors ​ω, ​ω ̃ ​  ∈ ​ ℝ​ +​ N ​​ are proportional. 
Because ​​​|ω|​​1​​  =  1  = ​​ |​ω ̃ ​|​​1​​​, it follows that ​ω  = ​ ω ̃ ​​. ∎

PROOF FOR EXAMPLE 1:
In what follows, we proceed in three steps. First, we show ​​ω​​ ∗​​ is the optimal 

weight vector, thus characterizing optimal allocation rules. Second, we name a spe-
cific (ex post) transfer rule, and show that this transfer rule paired with our optimal 
allocation rule constitutes an optimal mechanism. Third, we show that the strategy 
profile we have named for the bidding game is an equilibrium that induces this opti-
mal mechanisms.

We first prove that ​​ω​​ ∗​​ is the optimal vector of weights. To this end, let

	 ​​ν​i​​  ≔  1 + ​ 1 _ ​α​i​​ ​  = ​  ​α​i​​ + 1
 _ ​α​i​​ ​ ​

for each agent ​i​, and notice that ​​φ​i​​​(​θ​i​​)​  = ​ ν​i​​ ​θ​i​​​ for every ​​θ​i​​  ∈ ​ Θ​i​​  = ​ [0, 1]​​. For any ​
ω  ∈  ΔN​ with ​min​{​ω​1​​ ​ν​1​​, ​ω​2​​ ​ν​2​​}​  ≥  b​ (an interval of ​ω​ including ​​ω​​ ∗​​), observe that

 ​ E​[​​(b − ω · φ)​​+​​]​  = ​ ∫ 
0
​ ​ 

b _ ​ω​1​​​ν​1​​ ​​​​∫ 
0
​ 
​ b−​ω​1​​​ν​1​​​θ​1​​ _ 
​(1−​ω​1​​)​​ν​2​​

 ​
​​​[b − ​ω​1​​ ​ν​1​​ ​θ​1​​ 

                              − ​(1 − ​ω​1​​)​ ​ν​2​​ ​θ​2​​]​ ​α​1​​ ​θ​ 1​ ​α​1​​−1​ ​α​2​​ ​θ​ 2​ ​α​2​​−1​d​θ​2​​d ​θ​1​​.​

Therefore,

  ​  ​  d _ 
d ​ω​1​​

 ​E​{​​[b − ​(​ω​1​​, 1 − ​ω​1​​)​ · φ]​​+​​}​

        = ​ ∫ 
0
​ ​ 

b _ ​ω​1​​​ν​1​​ ​​​​α​1​​ ​α​2​​ ​∫ 
0
​ 
​ b−​ω​1​​​ν​1​​​θ​1​​ _ 
​(1−​ω​1​​)​​ν​2​​

 ​
​​​(​ν​2​​ ​θ​2​​ − ​ν​1​​ ​θ​1​​)​ ​θ​ 1​ ​α​1​​−1​ ​θ​ 2​ ​α​2​​−1​d​θ​2​​d​θ​1​​​

    ​    = ​ ∫ 
0
​ ​ 

b _ ​ω​1​​​ν​1​​ ​​​​α​1​​ ​α​2​​​{​ν​2​​ ​θ​ 1​ ​α​1​​−1​ ​ 
​​[​ 

b − ​ω​1​​ ​ν​1​​ ​θ​1​​ _ 
​(1 − ​ω​1​​)​ ​ν​2​​

 ​]​​​ 
​α​2​​+1

​
  _ 1 + ​α​2​​

 ​  − ​ν​1​​ ​θ​ 1​ ​α​1​​​ ​ 
​​[​ 

b − ​ω​1​​ ​ν​1​​ ​θ​1​​ _ 
​(1 − ​ω​1​​)​ ​ν​2​​

 ​]​​​ 
​α​2​​

​
 _ ​α​2​​ ​ }​d​θ​1​​​

    ​    = ​ ∫ 
0
​ ​ 

b _ ​ω​1​​​ν​1​​ ​​​​θ​ 1​ ​α​1​​−1​ ​​[​ 
b − ​ω​1​​ ​ν​1​​ ​θ​1​​ _ 
​(1 − ​ω​1​​)​ ​ν​2​​

 ​]​​​ 
​α​2​​

​​[​α​1​​ ​ 
b − ​ω​1​​ ​ν​1​​ ​θ​1​​ _ 
​(1 − ​ω​1​​)​ ​ν​2​​

 ​ − ​α​2​​ ​ 
​ω​ 1​ ∗​ ​ν​1​​ _ 

1 − ​ω​ 1​ ∗​
 ​ ​θ​1​​]​ d​θ​1​​.​

Note now that if ​​ω​1​​  = ​ ω​ 1​ ∗​​, the integrand is then equal to

	​ ​  d _ 
d ​θ​1​​

 ​​{​θ​ 1​ ​α​1​​​ ​​[​ 
b − ​ω​1​​ ​ν​1​​ ​θ​1​​ _ 
​(1 − ​ω​1​​)​ ​ν​2​​

 ​]​​​ 
​α​2​​+1

​}​,​
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so that

	​ ​  d _ 
d ​ω​1​​

 ​ E​{​​[b − ​(​ω​1​​, 1 − ​ω​1​​)​ · φ]​​+​​}​  = ​​ (​  b _ ​ω​1​​ ​ν​1​​ ​)​​​ 
​α​1​​

​ ​0​​ ​α​2​​+1​ − ​0​​ ​α​1​​​ ​​[​ 
b _ 

​(1 − ​ω​1​​)​ ​ν​2​​
 ​]​​​ 

​α​2​​+1
​  =  0.​

Hence, ​​ω​​ ∗​​ solves the convex program from Theorem 1(i), meaning it is optimal.
Now, consider the mechanism ​​(x, m)​​ given by ​x​(θ)​  ≔ ​ x​​ω​​ ∗​​​​(θ)​​ and

	​ m​(θ)​  ≔  x​(θ)​​[κb + ​β​1​​ ​θ​1​​ + ​β​2​​ ​θ​2​​]​,​

where

	​ κ  = ​   ​α​1​​ + ​α​2​​ _  
​(​α​1​​ + 1)​​(​α​2​​ + 1)​ ​​(1 − ​α​1​​ ​α​2​​)​​

	​ ​β​i​​  = ​  ​α​i​​ + 1
 _ ​α​−i​​ + 1 ​ ​α​−i​​ for i  ∈  N.​

Let us argue that ​​(x, m)​​ is an optimal mechanism. For each ​i  ∈  N​, define the interim 
allocation rule ​​X​i​​ ≔ ​X​ i​ x​​, the interim transfer rule ​​M​i​​ ≔ ​M​ i​ m​​, and the interim transfer 
rule ​​M​ i​ ∗​​ as defined in the proof of Lemma 1. If ​​M​i​​  = ​ M​ i​ ∗​​ for both ​i  ∈  N​, then as 
explained in Lemma 1 proof, the mechanism ​​(x, m)​​ is IC and has binding IR for both 
agents, and is therefore best for the buyer among all IC and IR mechanisms with 
allocation rule ​x​; because ​x​ is optimal, it will then follow that ​​(x, m)​​ is optimal. So 
we now turn to showing ​​M​i​​  = ​ M​ i​ ∗​​ for both ​i  ∈  N​. To that end, let

	​ ​γ​i​​  ≔ ​ ω​ i​ ∗​ ​ν​i​​  = ​  ​α​i​​ + 1
 _ ​α​1​​ + ​α​2​​ ​  >  0,​

and note that ​b  ≤ ​ γ​i​​​ by hypothesis. Therefore, ​​X​i​​​ is zero on ​​(​ b _ ​γ​i​​ ​, 1]​​, so that any ​​θ​i​​  ∈ ​
[0, 1]​​ has

	​ ​X​i​​​(​θ​i​​)​  =  Pr​[​γ​−i​​ ​θ​−i​​  ≤  b − ​γ​i​​ ​θ​i​​]​  = ​​ (​ b − ​γ​i​​ ​θ​i​​ _ ​γ​−i​​ ​ )​​ 
+
​ 

​α​−i​​
​​

and

     ​​     ∫ ​θ​i​​​ 
1
​​ ​X​i​​  = ​ 1​​θ​i​​≤​ b _ ​γ​i​​ ​

​​ ​∫ ​θ​i​​​ 
​ b _ ​γ​i​​ ​​​​​(​ b − ​γ​i​​ ​​θ ̃ ​​i​​ _ ​γ​−i​​ ​ )​​​ 

​α​−i​​

​d ​​θ ̃ ​​i​​ 

	 = ​ 1​​θ​i​​≤​ b _ ​γ​i​​ ​
​​ ​∫ ​θ​i​​​ 

​ b _ ​γ​i​​ ​​​​​(​ b − ​γ​i​​ ​​θ ̃ ​​i​​ _ ​γ​−i​​ ​ )​​​ 
​α​−i​​

​d ​​θ ̃ ​​i​​ 

	 = ​  ​γ​−i​​ _ ​γ​i​​ ​ ​1​​θ​i​​≤​ b _ ​γ​i​​ ​
​​ ​∫ 

0
​ ​ 
b−​γ​i​​​θ​i​​ _ ​γ​−i​​ ​ ​​​y​​ ​α​−i​​​ dy 

	 = ​  ​α​−i​​ + 1
 _ ​α​i​​ + 1 ​ ​1​​θ​i​​≤​ b _ ​γ​i​​ ​

​​ · ​  1 _ ​α​−i​​ + 1 ​ ​​(​ b − ​γ​i​​ ​θ​i​​ _ ​γ​−i​​ ​ )​​​ 
​α​−i​​+1

​ 

	 = ​   1 _ ​α​i​​ + 1 ​​(​ b − ​γ​i​​ ​θ​i​​ _ ​γ​−i​​ ​ )​ ​X​i​​​(​θ​i​​)​ 

	 = ​ (​  1 _ ​α​i​​ + 1 ​ ​ 1 _ ​γ​−i​​ ​ b − ​  1 _ ​α​i​​ + 1 ​ ​ ​γ​i​​ _ ​γ​−i​​ ​ ​θ​i​​)​ ​X​i​​​(​θ​i​​)​ 

	 = ​ [​ 
​α​1​​ + ​α​2​​ _  

​(​α​1​​ + 1)​​(​α​2​​ + 1)​ ​ b − ​  1 _ ​α​−i​​ + 1 ​ ​θ​i​​]​ ​X​i​​​(​θ​i​​)​.​



2625HAGHPANAH ET AL.: BUYING FROM A GROUPVOL. 114 NO. 8

Hence,

	​ ​M​ i​ ∗​​(​θ​i​​)​  = ​ X​i​​​(​θ​i​​)​ ​θ​i​​ + ​∫ ​θ​i​​​ 
​​θ – ​​i​​​​ ​X​i​​  = ​ [​ 

​α​1​​ + ​α​2​​ _  
​(​α​1​​ + 1)​​(​α​2​​ + 1)​ ​ b + ​  ​α​−i​​ _ ​α​−i​​ + 1 ​ ​θ​i​​]​ ​X​i​​​(​θ​i​​)​.​

Next, note that each ​y  ∈ ​ [0, 1]​​ has

	​ E​[​θ​−i​​ ​1​​θ​−i​​≤y​​]​  = ​ ∫ 
0
​ 
y
​​​θ​−i​​​(​α​−i​​ ​θ​ −i​ ​α​−i​​−1​)​ d​θ​−i​​  = ​   ​α​−i​​ _ ​α​−i​​ + 1 ​ ​y​​ ​α​−i​​+1​.​

Therefore, each ​i  ∈  N​ and ​​θ​i​​  ∈ ​ [0, 1]​​ has

 ​ E​[​θ​−i​​ x​(​θ​i​​, ​θ​−i​​)​]​  =  E​[​θ​−i​​ ​1​​θ​−i​​≤​ b−​γ​i​​​θ​i​​ _ ​γ​−i​​ ​ ​​]​  = ​ 1​​θ​i​​≤​ b _ ​γ​i​​ ​
​​ · ​  ​α​−i​​ _ ​α​−i​​ + 1 ​ ​​(​ b − ​γ​i​​ ​θ​i​​ _ ​γ​−i​​ ​ )​​​ 

​α​−i​​+1

​

                = ​   ​α​−i​​ _ ​α​−i​​ + 1 ​​(​ b − ​γ​i​​ ​θ​i​​ _ ​γ​−i​​ ​ )​ ​X​i​​​(​θ​i​​)​ 

                = ​ α​−i​​ ​ 
​α​i​​ + 1

 _ ​α​−i​​ + 1 ​​[​ 
​α​1​​ + ​α​2​​ _  

​(​α​1​​ + 1)​​(​α​2​​ + 1)​ ​ b − ​  1 _ ​α​−i​​ + 1 ​ ​θ​i​​]​ ​X​i​​​(​θ​i​​)​ 

                = ​   ​α​−i​​ _ 
​​(​α​−i​​ + 1)​​​ 2​ ​​[​(​α​1​​ + ​α​2​​)​b − ​(​α​i​​ + 1)​ ​θ​i​​]​ ​X​i​​​(​θ​i​​)​.​

It follows that

 ​ M​(​θ​i​​)​  =  E​{​[κb + ​β​i​​ ​θ​i​​ + ​β​−i​​ ​θ​−i​​]​x​(​θ​i​​, ​θ​−i​​)​}​ 

	 = ​ {κb + ​β​i​​ ​θ​i​​ + ​β​−i​​ ​ 
​α​−i​​ _ 

​​(​α​−i​​ + 1)​​​ 2​ ​​[​(​α​1​​ + ​α​2​​)​b − ​(​α​i​​ + 1)​ ​θ​i​​]​}​ ​X​i​​​(​θ​i​​)​

	 = ​ {​[κ + ​β​−i​​ ​ 
​α​−i​​ _ 

​​(​α​−i​​ + 1)​​​ 2​ ​​(​α​1​​ + ​α​2​​)​]​b 

            + ​[​β​i​​ − ​β​−i​​ ​ 
​α​−i​​ _ 

​​(​α​−i​​ + 1)​​​ 2​ ​​(​α​i​​ + 1)​]​ ​θ​i​​}​ ​X​i​​​(​θ​i​​)​ 

	 = ​ {​[κ + ​  ​α​1​​ ​α​2​​ _  
​(1 + ​α​1​​)​​(1 + ​α​2​​)​

 ​​(​α​1​​ + ​α​2​​)​]​b 

            + ​[​β​i​​ − ​  ​α​1​​ ​α​2​​ _  
​(1 + ​α​1​​)​​(1 + ​α​2​​)​

 ​​(​α​i​​ + 1)​]​ ​θ​i​​}​ ​X​i​​​(​θ​i​​)​

	 = ​ [​ 
​α​1​​ + ​α​2​​ _  

​(1 + ​α​1​​)​​(1 + ​α​2​​)​
 ​ b + ​(​β​i​​ − ​  ​α​1​​ ​α​2​​ _ 1 + ​α​−i​​

 ​)​ ​θ​i​​]​ ​X​i​​​(​θ​i​​)​ 

	 = ​ [​ 
​α​1​​ + ​α​2​​ _  

​(1 + ​α​1​​)​​(1 + ​α​2​​)​
 ​ b + ​  ​α​−i​​ _ 1 + ​α​−i​​

 ​ ​θ​i​​]​ ​X​i​​​(​θ​i​​)​ 

	 = ​ M​ i​ ∗​​(​θ​i​​)​.​

Hence, the given mechanism ​​(x, m)​​ is optimal.
Finally, let us turn to the bidding game in which each agent ​i​ can submit any bid ​​

s​i​​  ≥  0​; trade occurs if and only if

	​ ​τ​1​​ ​s​1​​ + ​τ​2​​ ​s​2​​  ≤  b,​
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where

	​ ​τ​i​​  ≔ ​   ​α​−i​​ + 1
 _  

​(​α​1​​ + ​α​2​​)​ ​α​−i​​
 ​  for i  ∈  N;​

and the price (paid if and only if trade occurs) is ​p  =  κb + ​s​1​​ + ​s​2​​​. Let us consider 
the strategy profile in which each type ​​θ​i​​​ of each agent ​i​ bids ​​β​i​​ ​θ​i​​​. We will argue 
that this strategy profile constitutes a Bayes Nash equilibrium and that it generates 
allocation rule ​x​ and transfer rule ​m​; optimality will then follow from optimality of 
the mechanism ​​(x, m)​​. First, any type profile ​θ  ∈  Θ​ has

	​ ​τ​i​​ ​β​i​​ ​θ​i​​  = ​ ω​ i​ ∗​ ​ν​i​​ ​θ​i​​  = ​ ω​ i​ ∗​ ​φ​i​​​(​θ​i​​)​∀ i  ∈  N  ⇒ ​ τ​1​​ ​β​1​​ ​θ​1​​ + ​τ​2​​ ​β​2​​ ​θ​2​​  = ​ ω​​ ∗​ · φ​(θ)​.​

Because each agent ​i​ bids ​​s​i​​  = ​ β​i​​ ​θ​i​​​, it follows that trade occurs if and only if  
​​ω​​ ∗​ · φ​(θ)​  ≤  b​—that is, the induced allocation rule is exactly ​x​. Second, if trade 
happens at type profile ​θ​, the price paid under this strategy profile is

	​ p  =  κb + ​s​1​​ + ​s​2​​  =  κb + ​β​1​​ ​θ​1​​ + ​β​2​​ ​θ​2​​.​

Thus, the induced transfer rule is exactly ​m​. All that remains then is to check 
that the described bidding rule is an equilibrium. To that end, consider any type  
​​θ​i​​  ∈ ​ [0, 1]​​ of any agent ​i​; we want to show ​​β​i​​ ​θ​i​​​ yields a weakly higher expected 
payoff for this type than any other ​​s​i​​  ≥  0​. Because the mechanism ​​(x, m)​​ is IC, 
we know that ​​θ​i​​  ∈ ​ arg max​​​θ ̃ ​​i​​∈​[0,1]​​​ E​[m​(​​θ ̃ ​​i​​, ​θ​−i​​)​ − ​θ​i​​ x​(​​θ ̃ ​​i​​, ​θ​−i​​)​]​​. But then, because the 
bidding game and strategy profile induce ​x​ and ​m​, it follows that ​​θ​i​​​ has no profitable 
deviation in ​​​{​β​i​​ ​​θ ̃ ​​i​​}​​​​θ ̃ ​​i​​∈​[0,1]​​​  = ​ [0, ​β​i​​]​​. Meanwhile, every bid ​​s​i​​  ≥ ​ β​i​​​ has

	​ ​τ​i​​ ​s​i​​  ≥ ​ τ​i​​ ​β​i​​  = ​ γ​i​​  ≥  b,​

and so (because agent ​− i​ has a strictly positive bid almost surely) leads to a zero 
probability of trade. Thus, all bids ​​s​i​​  ≥ ​ β​i​​​ are payoff-equivalent for ​i​, and so do not 
constitute profitable deviations because bid ​​β​i​​​ does not. Hence, the given strategy 
profile is an equilibrium, as required. ∎

B. Proofs for Section III

The following lemma provides a sufficient condition to be able to weakly rank 
agents’ weights in the optimal mechanism, and further provides a quantitative suf-
ficient conditions for one agent’s weight to be substantially higher than another’s.

LEMMA 3: Suppose constants ​α  ∈ ​ (0, 1]​​ and ​β  ≥ ​ (1 − α)​ ​ ​(​​θ 
– ​​i​​ + α ​​θ – ​​j​​)​ ______ 
​(1 + α)​ ​ ​ are such that

	​ ​φ​i​​ ​  ≽​rh​​  α ​φ​j​​ + β.​

Then, the optimal weight vector ​ω​ satisfies ​α ​ω​i​​  ≥ ​ ω​j​​​.
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PROOF:
Suppose ​​φ​i​​, ​φ​j​​, α, β​ satisfy the given hypotheses, and let ​ω  ∈  ΔN​ have ​α ​ω​i​​  < ​

ω​j​​​ (which in particular implies ​​ω​j​​  >  0​). To establish the lemma, we need to show 
that ​ω​ is not optimal. To do so, we construct ​​​ω ̃ ​​i​​, ​​ω ̃ ​​j​​  ≥  0​ such that ​​​ω ̃ ​​i​​ + ​​ω ̃ ​​j​​  = ​ ω​i​​ + ​
ω​j​​​ and ​​(​​ω ̃ ​​i​​, ​​ω ̃ ​​j​​)​  ≠ ​ (​ω​i​​, ​ω​j​​)​​, with ​​​ω ̃ ​​i​​ ​φ​i​​ + ​​ω ̃ ​​j​​ ​φ​j​​ ​  ≽​icv​​ ​ ω​i​​ ​φ​i​​ + ​ω​j​​ ​φ​j​​,​ where ​​≽​icv​​​ is the 
increasing concave order (a.k.a second-order stochastic dominance). Because ​
h : ℝ →  ℝ​ given by ​h​(z)​ ≔ − E​[​​(b − z − ​∑ k∈N\​{i,j}​​   ​​​ ω​k​​ ​φ​k​​)​​+​​]​​ is (weakly) increas-

ing and concave, finding such ​​​ω ̃ ​​i​​, ​​ω ̃ ​​j​​​ would show that ​ω​ is not the unique minimizer 

of ​​ω ˆ ​ ↦  E​[​​(b − ​ω ˆ ​ · φ)​​+​​]​​, the objective in condition (i) of Theorem 1,  and so is not 
optimal.

Now, define ​γ ≔ ​ 
α​(​ω​i​​ + ​ω​j​​)​ _ 
​α​​ 2​ ​ω​i​​ + ​ω​j​​

 ​  >  0​, and let ​​​ω ̃ ​​i​​ ≔ γ ​ 1 _ α ​ ​ω​j​​​ and ​​​ω ̃ ​​j​​ ≔ γα ​ω​i​​​. By con-

struction, ​​​ω ̃ ​​i​​ + ​​ω ̃ ​​j​​  = ​ ω​i​​ + ​ω​j​​​. Moreover, ​​(​​ω ̃ ​​i​​, ​​ω ̃ ​​j​​)​  ≠ ​ (​ω​i​​, ​ω​j​​)​​—obviously if ​​
ω​i​​  =  0  < ​​ ω ̃ ​​i​​​, and otherwise because ​​ 

​​ω ̃ ​​j​​ _ ​​ω ̃ ​​i​​
 ​  =  α ​ α ​ω​i​​ _ ​ω​j​​ ​  <  α  < ​ 

​ω​j​​ _ ​ω​i​​ ​​. It thus remains to 
show that ​​​ω ̃ ​​i​​ ​φ​i​​ + ​​ω ̃ ​​j​​ ​φ​j​​ ​  ≽​icv​​ ​ ω​i​​ ​φ​i​​ + ​ω​j​​ ​φ​j​​​. To that end, first observe that

​​​ω ̃ ​​i​​ ​φ​i​​ + ​​ω ̃ ​​j​​ ​φ​j​​  =  γ ​ 
​ω​j​​ _ α ​ ​φ​i​​ + γα ​ω​i​​ ​φ​j​​​

	​ =  γ ​ 
​ω​j​​ _ α ​ ​φ​i​​ + γ ​ω​i​​​(α ​φ​j​​ + β)​ − γ ​ω​i​​ β​

	​ ​≽​icv​​  γ ​ω​i​​ ​φ​i​​ + γ ​ 
​ω​j​​ _ α ​​(α ​φ​j​​ + β)​ − γ ​ω​i​​ β​

	​ =  γ​(​ω​i​​ ​φ​i​​ + ​ω​j​​ ​φ​j​​)​ + γ​(​ ​ω​j​​ _ α ​ − ​ω​i​​)​β​

	​ =  γ​[​ω​i​​​(​φ​i​​ − ​​θ – ​​i​​)​ + ​ω​j​​​(​φ​j​​ − ​​θ – ​​j​​)​]​ + γ​[​(​ 
​ω​j​​ _ α ​ − ​ω​i​​)​β + ​ω​i​​ ​​θ 

– ​​i​​ + ​ω​j​​ ​​θ 
– ​​j​​]​,​

where the inequality comes from Theorem 4.A.37 of Shaked and Shanthikumar 
(2007). Next, we establish that

	​ γ​[​ω​i​​​(​φ​i​​ − ​​θ – ​​i​​)​ + ​ω​j​​​(​φ​j​​ − ​​θ – ​​j​​)​]​ + γ​[​(​ 
​ω​j​​ _ α ​ − ​ω​i​​)​β + ​ω​i​​ ​​θ 

– ​​i​​ + ​ω​j​​ ​​θ 
– ​​j​​]​​

      ​      ​≽​icv​​ ​ ω​i​​​(​φ​i​​ − ​​θ – ​​i​​)​ + ​ω​j​​​(​φ​j​​ − ​​θ – ​​j​​)​ + γ​[​(​ 
​ω​j​​ _ α ​ − ​ω​i​​)​β + ​ω​i​​ ​​θ 

– ​​i​​ + ​ω​j​​ ​​θ 
– ​​j​​]​​

To do so, observe that ​γ  =  1 − ​  ​(1 − α)​ _ 
​(​α​​ 2​ ​ω​i​​ + ​ω​j​​)​

 ​​(​ω​j​​ − α ​ω​i​​)​  ≤  1​ and ​z  ≔ ​ ω​i​​​(​φ​i​​ − ​​θ – ​​i​​)​ + ​ 
ω​j​​​(​φ​j​​ − ​​θ – ​​j​​)​​ has zero mean. Because a constant shift obviously preserves ​​≽​icv​​​, we 
need only observe ​γ z ​  ≽​icv​​  z​, which follows directly from Jensen’s inequality.21

Therefore,

	​​​ω ̃ ​​i​​ ​φ​i​​ + ​​ω ̃ ​​j​​ ​φ​j​​ ​  ≽​icv​​  γ​[​ω​i​​​(​φ​i​​ − ​​θ – ​​i​​)​ + ​ω​j​​​(​φ​j​​ − ​​θ – ​​j​​)​]​ + γ​[​(​ 
​ω​j​​ _ α ​ − ​ω​i​​)​β + ​ω​i​​ ​​θ 

– ​​i​​ + ​ω​j​​ ​​θ 
– ​​j​​]​​

  ​  ​≽​icv​​ ​ ω​i​​​(​φ​i​​ − ​​θ – ​​i​​)​ + ​ω​j​​​(​φ​j​​ − ​​θ – ​​j​​)​ + γ​[​(​ 
​ω​j​​ _ α ​ − ​ω​i​​)​β + ​ω​i​​ ​​θ 

– ​​i​​ + ​ω​j​​ ​​θ 
– ​​j​​]​​

  ​  = ​ ω​i​​ ​φ​i​​ + ​ω​j​​ ​φ​j​​ + γ​(​ ​ω​j​​ _ α ​ − ​ω​i​​)​β − ​(1 − γ)​​(​ω​i​​ ​​θ 
– ​​i​​ + ​ω​j​​ ​​θ 

– ​​j​​)​,​

21 For ​η : ℝ  →  ℝ​ concave, ​Eη​(γ z)​  ≥  E​[γη​(z)​ + ​(1 − γ)​η​(0)​]​  =  γEη​(z)​ + ​(1 − γ)​η​(Ez)​  ≥  Eη​(z)​.​
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Because ​β  ≥ ​ (1 − α)​ ​ ​​θ 
– ​​i​​ + α ​​θ – ​​j​​ _____ 1 + α ​​, it will therefore follow that ​​​ω ̃ ​​i​​ ​φ​i​​ + ​​ω ̃ ​​j​​ ​φ​j​​ ​ ≽​icv​​ ​ ω​i​​ ​φ​i​​ + 

​ω​j​​ ​φ​j​​​ if we establish that

	​ λ  ≔  γ​(​ ​ω​j​​ _ α ​ − ​ω​i​​)​​(1 − α)​​ ​​θ 
– ​​i​​ + α ​​θ – ​​j​​ _____ 1 + α ​ − ​(1 − γ)​​(​ω​i​​ ​​θ 

– ​​i​​ + ​ω​j​​ ​​θ 
– ​​j​​)​​

is nonnegative. And indeed, ​λ  = ​ 
​(1 − α)​ ​​(α ​ω​i​​ − ​ω​j​​)​​​ 2​  ____________  
​(1 + α)​​(​α​​ 2​ ​ω​i​​ + ​ω​j​​)​

 ​​(​​θ 
– ​​i​​ − ​​θ – ​​j​​)​​, so the lemma will fol-

low as long as we have ​​​θ – ​​i​​  ≥ ​​ θ – ​​j​​​. For this ranking, note Theorem 1.B.42 of Shaked 
and Shanthikumar (2007) implies ​E​[​φ​i​​]​  ≥  E​[α ​φ​j​​ + β]​,​ i.e.,

	​​​ θ – ​​i​​  ≥  α ​​θ – ​​j​​ + β  ≥  α ​​θ – ​​j​​ + ​(1 − α)​​ ​​θ 
– ​​i​​ + α ​​θ – ​​j​​ _____ 1 + α ​  = ​​ θ – ​​i​​ − ​  2α _ 1 + α ​​(​​θ 

– ​​i​​ − ​​θ – ​​j​​)​.​

Hence, ​​​θ – ​​i​​  ≥ ​​ θ – ​​j​​​, as required. ∎

The following lemma sharpens the previous one by showing the weight ranking 
result often holds strictly. Whereas the previous lemma’s proof uses the characteri-
zation of optimal weights as a minimax strategy, the following one uses the charac-
terization as Minimizer’s best response.

LEMMA 4: Suppose constants ​α  ∈ ​ (0, 1]​​ and ​β  ≥ ​ (1 − α)​ ​ ​​θ 
– ​​i​​ + α ​​θ – ​​j​​ _____ 1 + α ​ ​ are such that

	​ ​φ​i​​ ​  ≽​rh​​  α ​φ​j​​ + β​

and ​β  >  0​. Then, the optimal weight vector ​ω​ cannot satisfy ​α ​ω​i​​  = ​ ω​j​​  >  0​.

PROOF:
Consider any ​ω  ∈  ΔN​ with ​α ​ω​i​​  =  ​ω​j​​  >  0​, with a view to showing it 

cannot be optimal. Defining the random variables ​​​φ ̃ ​​j​​  ≔  α ​φ​j​​ + β​ and ​y ≔ 
​ 1 _ ​ω​i​​ ​​(b − ​∑ k∈N\​{i,j}​​   ​​​ ω​k​​ ​φ​k​​)​ + β​, observe that ​​x​ω​​​(θ)​  = ​ 1​​φ​i​​+​​φ ̃ ​​j​​≤𝐲​​​. Meanwhile, the ran-
dom variables ​​φ​i​​, ​​φ ̃ ​​j​​, y​ are independent of ​y​ and ​​φ​i​​ ​  ≽​rh​​ ​​ φ ̃ ​​j​​​.

Now, let us observe that ​E​[​φ​i​​ ∣ ω · φ  ≤  b]​  ≥  E​[​​φ ̃ ​​j​​ ∣ ω · φ  ≤  b]​​. Indeed, this in- 
equality is equivalent to showing ​Eη​(​​φ ̃ ​​j​​, ​φ​i​​)​  ≥  0​, where ​η : ​ℝ​​ 2​  →  ℝ​ is given by ​
η​(s, t)​ ≔ ​(t − s)​E​[​1​s+t≤𝐲​​]​​. Because ​η​(s, t)​ + η​(t, s)​  =  0​ for every ​s, t  ∈  ℝ​ and ​
η​ is nonincreasing in its first argument (as a product of two nonnegative nonin-
creasing functions) on ​​{​(s, t)​  ∈ ​ ℝ​​ 2​ : s  ≤  t}​​, the inequality follows directly from 
Theorem 1.B.48 of Shaked and Shanthikumar (2007).

Hence, ​ω​ satisfies

	​ E​[​φ​i​​ ∣ ω · φ  ≤  b]​  ≥  E​[​​φ ̃ ​​j​​ ∣ ω · φ  ≤  b]​​

           ​           =  αE​[​φ​j​​ ∣ ω · φ  ≤  b]​ + β.​

Assume now, for a contradiction, that ​ω​ is optimal. In this case, Theorem 1(ii) yields

	​ E​[​φ​i​​ ∣ ω · φ  ≤  b]​  =  E​[​φ​j​​ ∣ ω · φ  ≤  b]​  ≕ ​ θ ˆ ​.​
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Because the (interior-probability) event that ​ω · φ  ≤  b​ is the event that the bounded 
random variable ​​φ​i​​​ [resp. ​​φ​j​​​] lies below some random variable independent of it, 

it follows that ​​θ ˆ ​  <  E​[​φ​i​​]​  = ​​ θ 
–
 ​​i​​​ [resp. ​​θ ˆ ​  < ​​ θ – ​​j​​​]. Therefore, ​​ 

​​θ – ​​i​​ + α ​​θ – ​​j​​ _____ 1 + α ​   > ​ θ ˆ ​​, implying ​

β  > ​ (1 − α)​​θ ˆ ​​. Hence, ​​θ ˆ ​  ≥  α​θ ˆ ​ + β  > ​ θ ˆ ​,​ a contradiction. ∎

We now reproduce the statement of Theorem 2.

THEOREM (Ranking Allocation Weights): If ​​φ​i​​ ​  ≽​rh​​ ​ φ​j​​ + β​ for some ​β  ≥  0​, then 
the optimal vector of allocation weights ​ω​ satisfies ​​ω​i​​  ≥ ​ ω​j​​​. Moreover, ​​ω​i​​  > ​ ω​j​​​ 
whenever ​β  >  0​ and ​​ω​j​​  >  0​.

PROOF OF THEOREM 2:
The first statement is exactly Lemma 3, specialized to the case of ​α  =  1​. Given 

this result, the second statement corresponds exactly to Lemma 4, specialized to the 
case of ​α  =  1​. ∎

C. Proofs for Section IV

We now reproduce the statement of Proposition 1.

PROPOSITION (Optimal Posted Price is Unanimous): Some unanimous posted-price 
mechanism is optimal among IC and IR collective posted-price mechanisms.

PROOF OF PROPOSITION 1:
Consider an arbitrary collective posted-price mechanism ​​(x, m)​​ with price ​p​. Let 

us show a unanimous posted price performs better.22

If ​p  ≥  b​, then the profit associated with the mechanism is always nonpositive, 
and so a unanimous posted price with price in ​​(​max​i∈N​​ ​​θ 

¯
 ​​i​​, b)​​ is more profitable.

Now, suppose ​p  <  b​. For any agent ​i  ∈  N​ and ​​θ​i​​  ∈ ​ (p, ​​θ – ​​i​​]​​, IR implies ​​X​ i​ x​​(​θ​i​​)​  =  0, 
​and so ​x​(​θ​i​​, ​θ​−i​​)​​ must be zero almost surely. It follows that ​x​(θ)​  ≤ ​ x​​ U​​(θ)​​ almost 
surely, where ​​x​​ U​​ is the allocation rule

	​ ​x​​ U​​(θ)​  ≔ ​ 1​​θ​j​​≤p∀j∈N​​ ​

associated with a unanimous posted price of ​p​. Hence, ​​(b − p)​E​[x​(θ)​]​ 
≤ ​ (b − p)​E​[​x​​ U​​(θ)​]​​—strictly so unless ​x​(θ)​  = ​ x​​ U​​(θ)​​ almost surely. Therefore, the 
unanimous posted-price mechanism ​​(​x​​ U​, p ​x​​ U​)​​ yields a higher profit.

Having shown every collective posted price is outperformed by some unanimous 
posted price, it remains to note that an optimal posted price exists. Any posted price 
outside of ​​(​max​i∈N​​ ​​θ 

¯
 ​​i​​, b)​​ yields a nonpositive profit, whereas unanimous posted 

prices in this interval yield strictly positive profit. It thus suffices to show the buyer 
has some preferred price in ​​[​max​i∈N​​ ​​θ 

¯
 ​​i​​, b]​​—which follows from compactness of this 

interval and continuity of the objective ​p  ↦ ​ (b − p)​​∏ i∈N​   ​​​ F​i​​​(p)​​. ∎

22 Our proof establishes any IC and IR collective posted price that is not almost surely identical to a unanimous 
one is strictly worse than some unanimous posted price.
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LEMMA 5: If ​x​ is an optimal allocation rule, then ​​X​ i​ x​​( · )​​ is continuous on ​​(​​θ 
¯

 ​​i​​, ​​θ 
– ​​i​​)​​ 

for every ​i  ∈  N​ with ​​ω​i​​  <  1​, and is nonconstant on ​​(​​θ 
¯

 ​​i​​, ​​θ 
– ​​i​​)​​ if the optimal weights ​

ω​ have ​​ω​i​​  >  0​.

PROOF:
Let ​ω  ∈  ΔN​ be optimal, and let ​​X​i​​ ≔ ​X​ i​ ​x​ω​​​​ for each ​i  ∈  N​. Essential uniqueness 

of the optimal allocation rule (assured by Theorem 1) means it suffices to show ​​
X​i​​​( · )​​ is continuous for every ​i  ∈  N​, and is nonconstant on ​​(​​θ 

¯
 ​​i​​, ​​θ 

– ​​i​​)​​ if the optimal 
weights ​ω​ have ​​ω​i​​  >  0​.23

First, let us see any given ​i  ∈  supp​(ω)​​ is nonconstant. Indeed, a nonempty open 
neighborhood in ​​Θ​−i​​​ exists such that ​ω · ​(​​θ 

¯
 ​​i​​, ​θ​−i​​)​  <  b  <  ω · φ​(​​θ – ​​i​​, ​θ​−i​​)​​ for any ​​θ​−i​​​ 

in this neighborhood.24 Because ​​θ​−i​​​ has full support and ​x​ is decreasing, it follows 
that ​​lim​​θ​i​​↘​​θ 

¯
 ​​i​​​​ ​X​i​​​(​θ​i​​)​  < ​ lim​​θ​i​​​↗​​​​θ – ​​i​​​​ ​X​i​​​(​θ​i​​)​​. Hence, ​​X​i​​​ is not constant on ​​(​​θ 

¯
 ​​i​​, ​​θ 

– ​​i​​)​​.
Next, let us show that any ​i  ∈  N​ with ​​ω​i​​  <  1​ has ​​X​i​​​ continuous. For each ​​θ​i​​  ∈ ​ Θ​i​​​, 

the interim probability of trade is given by

	​ ​X​ i​ x​​(​θ​i​​)​  =  Pr​
{

b − ​  ∑ 
j∈N\​{i}​

​ 
 
 ​​ ​ ω​j​​ ​φ​j​​​(​θ​j​​)​  ≤ ​ ω​i​​ ​φ​i​​​(​θ​i​​)​

}
​.​

Recall that ​​​{​θ​j​​}​​
j∈N

​​​ are independent and atomlessly distributed, ​​ω​−i​​​ is nonzero, and ​​
φ​i​​​( · )​​ is continuous. It follows that the random variable on the left side of the above 
inequality is atomlessly distributed, while the quantity on the right side varies con-
tinuously with ​​θ​i​​​. Hence, ​​X​ i​ x​​ is continuous, as desired. ∎

We now reproduce the statement of Proposition 2.

PROPOSITION (Posted Prices are Suboptimal): If at least two ​j  ∈  N​ have ​b  < ​​ θ – ​​j​​​,  
then no collective posted-price mechanism is optimal.

PROOF OF PROPOSITION 2:
Given Proposition 1, we need only show the unanimous posted-price mechanism 

is not an optimal mechanism for any price. Let ​ω​ denote the optimal weight vec-
tor assured by Theorem  1, fix some ​i  ∈  N​ such that ​​ω​i​​  >  0​, and let ​​X​i​​​ denote ​
i​’s interim allocation rule induced by a unanimous posted-price mechanism. By 
iterated expectations, constants ​p​ and ​​𝚡 – ​​ exist such that every ​​θ​i​​  ∈ ​ Θ​i​​​ has ​​X​i​​​(​θ​i​​)​  
= ​ 𝚡 – ​ ​1​​θ​i​​≤p​​.​ The function ​​X​i​​​ therefore cannot be both continuous and nonconstant on ​​
(​​θ 
¯

 ​​i​​, ​​θ 
– ​​i​​)​​, it is discontinuous there if ​​​θ 

¯
 ​​i​​  <  p  < ​​ θ – ​​i​​​ and ​​𝚡 – ​  ≠  0​, and is constant there 

otherwise. Given that the last assertion of Theorem 1 tells us ​​ω​i​​  <  1​, Lemma 5 thus 
delivers the proposition. ∎

23 Essential uniqueness implies ​​X​ i​ x​​(​θ​i​​)​  =  ​X​i​​​(​θ​i​​)​​ almost surely. Because ​​θ​i​​​ has convex support and ​​X​ i​ x​​ is mono-
tone, it then follows (after establishing continuity of ​​X​i​​​) that the two functions are identical on ​​(​​θ 

¯
 ​​i​​, ​​θ 

– ​​i​​)​​.
24 Indeed, these inequalities hold whenever all of ​​​{​φ​j​​​(​θ​j​​)​}​​

j∈N\​{i}​
​​​ are within ​ϵ​ of ​b​, where ​ϵ  >  0​ is smaller than ​ 

​ω​i​​ min​{b − ​​θ 
¯

 ​​i​​, ​φ​i​​​(​​θ 
– ​​i​​)​ − b}​​. This condition describes an open neighborhood because ​​​{​φ​j​​}​​

j∈N
​​​ are continuous.
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Online Appendix

B. Supporting analysis for Section 6

The following lemma shows that the share-weighted average of N independent
types has a well-behaved distribution if each component does, and documents
features of this distribution at the edges of its support.25

Lemma 6: Let G denote the cumulative distribution function of v “ σ ¨ θ.

• The distribution G admits a continuous density g which is strictly positive
on the interior of its support rσ ¨ θ, σ ¨ θ̄s.

• As v Õ σ ¨ θ̄, we have

gpvq

pσ ¨ θ̄ ´ vqN
Ñ

1

pN ´ 1q!

ź

iPN

fipθ̄iq

σi
.

• As v Œ σ ¨ θ, we have

gpvq

pv ´ σ ¨ θqN´1
Ñ

1

pN ´ 1q!

ź

iPN

fipθiq

σi
.

• As v Œ σ ¨ θ, we have

Gpvq

pv ´ σ ¨ θqN
Ñ

1

N
¨

1

pN ´ 1q!

ź

iPN

fipθiq

σi
and

Φpvq ´ v

v ´ σ ¨ θ
Ñ

1

N
,

where Φpvq :“ v ` Gpvq
gpvq

.

Proof. For each n P N , let Gn denote the CDF of
řn
i“1 σiθi. The support of Gn

is
“
řn
i“1 σiθi,

řn
i“1 σiθ̄i

‰

, and when n ą 1 any z in this support has

Gnpzq “

ż θ̄n

θn

Gn´1pz ´ σnθnqfnpθnq dθn.

Because G1pv1q “ F1p
v1
σ1
q for every v1, it follows that G1 is continuously differen-

tiable on its support with derivative g1pv1q “
1
σ1
f1p

v1
σ1
q. Then, by induction on n,

25Whereas previous analyses apply readily to the case in which fi may fail to be continuous
and strictly positive at the endpoints of its support (like Example 1), the analysis of this section
makes use of the fact that limθiŒθi

fipθiq and limθiÕθ̄i fipθ̄iq are both in p0,8q. Nevertheless,
our qualitative results can be adapted to the case of power distributions—with Fipθiq “ θαi for
α ą 0—albeit with the threshold 2

N`1 being replaced with the threshold α`1
Nα`1 .
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every n P N has Gn continuously differentiable on the interior of its support with
the associated density at z in its support given by

gnpzq “

ż θ̄n

θn

gn´1pz ´ σnθnqfnpθnq dθn.

Also by induction, gn is strictly positive on the interior of its support because fn
is and (in the case of n ą 1) gn´1 is. This establishes the first bullet.

To see the fourth bullet would follow from the third, note L’Hôpital’s rule yields

lim
vŒθ1

Gpvq
pv´θ1q

N “ lim
vŒθ1

gpvq
Npv´θ1q

N´1 ,

and note Φpvq´v
v´θ1

“
Gpvq

pv´θ1qgpvq
. So it remains to show the second and third bullets.

Because the two are identical up to relabeling, we prove only the second bullet.

For any ε ą 0 and any n P N , let

hnpεq :“ pn´ 1q!

«

n
ź

i“1

σi
fipθiq

ff

gn

˜

ε`
n
ÿ

i“1

σiθi

¸

.

We need to show that hN pεq
εN´1 Ñ 1 as ε Œ 0. Let us show by induction that every

n P N has hnpεq
εn´1 Ñ 1 as ε Œ 0, which will then deliver the lemma. For the base

case, note that

h1pεq
ε0

“ σ1
f1pθ1q

g1 pε` σ1θ1q “
f1

´

θ1`
ε
σ1

¯

f1pθ1q
,

which converges to 1 as εŒ 0.

For the inductive step, suppose n ą 1 and that the limit equation holds for
n´ 1. Then, any small enough ε ą 0 has

hnpεq “ pn´ 1q σn
fnpθnq

ż θ̄n

θn

hn´1 pε´ σn rθn ´ θnsq fnpθnq dθn

“ n´1
fnpθnq

ż θn`
ε
σn

θn

hn´1 pε´ σn rθn ´ θnsq fnpθnqσi dθn

“ n´1
fnpθnq

ż ε

0

hn´1pε̃qfnpθn `
ε´ε̃
σn
q dε̃

ùñ
hnpεq
εn´1 ´ 1 “

hnpεq
εn´1 ´

1
εn´1

ż ε

0

pn´ 1qε̃n´2 dε̃

“ pn´ 1q1
ε

ż ε

0

`

ε̃
ε

˘n´2

«

hn´1pε̃q
ε̃n´2

fn

ˆ

θn`
ε´ε̃
σn

q

˙

fnpθnq
´ 1

ff

dε̃,

which converges to zero (because the integrand does uniformly) as ε Œ 0, as
required.

The next lemma shows how virtual costs from our group setting and the single-
agent analogue can be ranked for very high and very low types.
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Lemma 7: Suppose tFiuiPN all coincide (so ω “ p 1
N
, . . . , 1

N
q is optimal). Let G,

g, and Φ be as defined in Lemma 6. Then:

• Every v P Θ1ztθ̄1u close enough to θ̄1 has Φpvq ą ϕ1pθ̄1q.

• If σi ă
2

N`1
for every i P N , then every θ P Θztθu close enough to θ has

ω ¨ ϕpθq ą Φpσ ¨ θq.

• If σi ą
2

N`1
for some i P N , then some η P RN

`` exists such that every
sufficiently small ε ą 0 has ω ¨ ϕpθ ` εηq ă Φ pσ ¨ pθ ` εηqq.

Proof. All three parts follow from Lemma 6. First, as v Õ θ̄1, that lemma tells us
gpvq Ñ 0 so that Φpvq Ñ 8. Meanwhile, that f1 is continuous and strictly positive
implies ϕ1 is bounded. Hence, large enough v P rθ1, θ̄1q have Φpvq ą ϕ1pθ̄1q.

Toward the second and third bullets, let us write opθ ´ θq for any function of

θ P Θ with opθ´θq
}θ´θ}

θŒθ
ÝÝÑ 0.26 Lemma 6 tells us limvŒθ1

Φpvq´v
v´θ1

“ 1
N
, so that

Φpσ ¨ θq ´ θ1 “ σ ¨ θ ´ θ1 `
1
N
pσ ¨ θ ´ θ1q ` opθ ´ θq “

N`1
N
σ ¨ pθ ´ θq ` opθ ´ θq.

Meanwhile, as θ1 Œ θ1, both f1pθ1q and F1pθ1q
θ1´θ1

converge to f1pθ1q, so that

ϕ1pθ1q´θ1
θ1´θ1

“ 1` ϕ1pθ1q´θ1
θ1´θ1

“ 1` F1pθ1q
pθ1´θ1qf1pθ1q

Ñ 2.

So ϕipθiq´θi “ 2pθi´θiq`opθ´θq, implying ω ¨ϕpθq´θ1 “ 2ω ¨ pθ´θq`opθ´θq.
Therefore,

ω ¨ ϕpθq ´ Φpσ ¨ θq “
`

2ω ´ N`1
N
σ
˘

¨ pθ ´ θq ` opθ ´ θq

“ N`1
N

`

2
N`1

1N ´ σ
˘

¨ pθ ´ θq ` opθ ´ θq.

We now pursue the second bullet. If σi ă
2

N`1
for every i P N , then the vector

N`1
N

`

2
N`1

1N ´ σ
˘

has strictly positive entries, so that ω ¨ ϕpθq ´ Φpσ ¨ θq ą 0 for
sufficiently small θ P Θztθu.

Finally, to establish the third bullet, suppose some i P N has σi ą
2

N`1
. Then,

some γ P p0, 1q exists such that

γ
`

2
N`1

´ σi
˘

` p1´ γqmax
jPN

`

2
N`1

´ σj
˘

ă 0.

Then η P RN
`` with ηi “ γ and every other entry equal to 1´γ

N´1
is as desired.

Now, we introduce a notion of (utilitarian) efficiency ranking of allocation rules.

Definition 5: Given an allocation rule x, the surplus generated by x in state
θ P Θ is

sxpθq :“ xpθqpb´ σ ¨ θq.

Given two allocation rules x and x̃, say x is ex-ante more efficient than x̃ if

E rsxpθqs ą E rsx̃pθqs ;
26Note this property is independent of the norm because any two norms on RN have bounded

ratio.
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and say x is ex-post more efficient than x̃ if

P tsxpθq ě sx̃pθqu “ 1 and P tsxpθq ą sx̃pθqu ą 0.

The next definition initializes language to discuss incentive properties and op-
timality of mechanisms in the single-agent benchmark.

Definition 6: Say a mechanism px,mq is single-agent incentive compatible
(SIC) if

θ P argmaxθ̂PΘ

”

mpθ̂q ´ σ ¨ θxpθ̂q
ı

, @θ P Θ,

that is, report θ̂ “ θ maximizes the expected payoff of type profile θ over all possible
reports in Θ. Say the mechanism is single-agent individually rational (SIR)
if

mpθq ´ σ ¨ θxpθq ě 0, @θ P Θ,

that is, the expected payoff of type profile θ, when reporting truthfully, is nonnega-
tive. A single-agent-optimal mechanism is an SIC and SIR mechanism that
generates weakly higher buyer profit than any other SIC and SIR mechanism.27 A
single-agent-optimal allocation rule is any allocation rule x such that px,mq
is a single-agent-optimal mechanism for some m.

Say an allocation rule x is single-agent implementable if some transfer
rule m exists such that the mechanism px,mq is SIR; and say x is single-agent
monotone if

xpσ ¨ θq ď xpσ ¨ θ̃q, @θ, θ̃ P Θ with σ ¨ θ ą σ ¨ θ̃.

The next lemma shows that any single-agent-optimal mechanism is bounded
between two cutoff mechanisms for the aggregated cost, in which the cutoffs solve
a first-order condition equating the benefit of trade to single agent’s virtual cost.

Lemma 8: Some smallest and largest p
b
, p̄b P pσ ¨ θ, σ ¨ θ̄q exist such that Φpp

b
q “

Φpp̄bq “ b, where Φ is as defined in Lemma 6. Moreover, some single-agent-
optimal allocation rule exists, and any single-agent-optimal allocation rule x sat-
isfies 1σ¨θďp

b
ď xpθq ď 1σ¨θďp̄b almost surely.

Proof. Lemma 6 tells us Φ is continuous on pσ ¨ θ, σ ¨ θ̄q, and that Φpvq con-
verges to σ ¨ θ [resp. 8] as v Œ σ ¨ θ [resp. v Õ σ ¨ θ̄]. Therefore, the set
 

p P pσ ¨ θ, σ ¨ θ̄q : Φppq “ b
(

is closed and bounded away from tσ ¨θ, σ ¨ θ̄u (hence
compact), the set is nonempty by the intermediate value theorem, and every price
p P pσ ¨ θ, σ ¨ θ̄q strictly below [resp. above] this set has Φppq ă b [resp. Φppq ą b].
In particular, this set of prices has a smallest and largest element, p

b
and p̄b,

respectively.

27Note, in this this short-hand, a single-agent-optimal mechanism/allocation is optimal for the
buyer in the single-agent setting, and is not the preferred mechanism of the agent.
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Now define the allocation rule x˚ by

x˚pθq :“ 1σ¨θďp
b
` xpθq1σ¨θPpp

b
,p̄bs.

Because x is r0, 1s-valued, a given θ P Θ has 1σ¨θďp
b
ď xpθq ď 1σ¨θďp̄b if and only

if xpθq “ x˚pθq. It therefore remains to show xpθq “ x˚pθq almost surely.

To show this equality, note that (straightforwardly adapting standard results
from unidimensional mechanism design) a given allocation rule x̃ is single-agent
implementable if and only if it is single-agent monotone, and that the maximum
buyer value attainable by an SIC and SIR mechanism with allocation rule x̃ is
E tx̃pθq rb´ Φpσ ¨ θqsu. Existence of an optimal allocation rule then follows from
the observation that x̃ ÞÑ E tx̃pθq rb´ Φpσ ¨ θqsu is a weak*-continuous function
on the weak*-compact set X̃ .

Now, by construction (and since p
b
ď p̄b), the allocation rule x˚ is single-agent

monotone because x is. Therefore, single-agent optimality of x tells us

0 ě E tx˚pθq rb´ Φpσ ¨ θqsu ´ E txpθq rb´ Φpσ ¨ θqsu

“ E
!

r1´ xpθqs rb´ Φpσ ¨ θqs1σ¨θďp
b
` xpθq rΦpσ ¨ θq ´ bs1σ¨θąp̄b

)

.

Because a nonnegative random variable can have nonpositive expectation only if
said random variable is almost surely zero, it follows that the random variable
r1´ xpθqs rb´ Φpσ ¨ θqs1σ¨θďp

b
` xpθq rΦpσ ¨ θq ´ bs1σ¨θąp̄b is almost surely zero.

Equivalently, r1´ xpθqs1σ¨θďp
b
` xpθq1σ¨θąp̄b is almost surely zero. Thus, xpθq “

x˚pθq almost surely, as required.

Finally, we prove an efficiency ranking result

Proposition 3: Suppose tFiuiPN all coincide.

(i) If b is large enough, then any optimal allocation rule for our group setting is
ex-post more efficient than any single-agent-optimal allocation rule.

(ii) If b is small enough, then any optimal allocation rule for our group setting
is ex-ante less efficient than any single-agent-optimal allocation rule.

Moreover, this efficiency ranking is an ex-post ranking if σi ă
2

N`1
for every

i P N (in particular, if σ is close enough to ω), and is not an ex-post ranking
if σi ą

2
N`1

for some i P N (in particular if σ is close enough to δi).

Proof. Because tFiuiPN all coincide, it follows from the uniqueness part of Theo-
rem 1 that every allocation rule in our model agrees almost everywhere with xω,
where ω “ p 1

N
, . . . , 1

N
q. Moreover, because ex-ante and ex-post efficiency rankings

are both invariant to probability-zero changes to an allocation rule, we can prove
the result by comparing single-agent-optimal allocation rules to xω. In what fol-
lows, let Φ be as defined in Lemma 6; let p

b
, p̄b be as defined in Lemma 8; and use

the notation y ąP ỹ to say that the random variables y and ỹ have y ě ỹ almost
surely with P ty ą ỹu ą 0.

First, let us show xω is ex-post more efficient than single-agent-optimal allo-
cation rules when b is high enough. To that end, note Lemma 7 tells us ev-

5



ery v P rθ1, θ̄1q in some neighborhood of θ̄1 in Θ has Φpvq ą ϕ1pθ̄1q. Because
θ ÞÑ ω ¨ ϕpθq is continuous and strictly increasing, some b˚ P pθ̄1, ϕ1pθ̄1qq exists
such that every θ P Θztθ̄u with ω ¨ ϕpθq ą b˚ is in said neighborhood. Now,
take any b P rb˚, ϕ1pθ̄1qq and any single-agent monotone allocation rule x; we
want to show x is ex-post less efficient than xω. To see it, given any θ P Θztθ̄u
with ω ¨ ϕpθq ě b, note that any θ̃ P Θ with θ̃ ě θ has ω ¨ ϕpθ̃q ě b and so
Φpσ ¨ θ̃q ą ϕ1pθ̄1q ą b. Thus, any θ P Θ with ω ¨ ϕpθq ě b has σ ¨ θ ą p̄b, where
p̄b is as given by Lemma 8. Because ϕ is continuous, it follows that any θ P Θ
with ω ¨ ϕpθq close enough to b also has σ ¨ θ ą p̄b. Therefore, xωpθq ąP 1σ¨θďp̄b .
Lemma 8 then implies xωpθq ąP xpθq. Finally, because b ą θ̄1, it follows that
sxωpθq ąP sxpθq. That is, xω is ex-post more efficient than x.

Next, specializing to the case in which each i P N has σi ă
2

N`1
, let us show

xω is ex-post less efficient than single-agent-optimal allocation rules when b is low
enough. To that end, note Lemma 7 tells us every θ P Θztθu in some neighborhood
of θ has ω ¨ ϕpθq ą Φpσ ¨ θq; let b˚ P pθ1, θ̄1q be small enough that every θ P Θztθu
with ω ¨ θ ď b˚ or σ ¨ θ ď b˚ is in said neighborhood. Now, take any b P pθ1, b˚s
and any single-agent-optimal allocation rule x; we want to show x is ex-post less
efficient than xω. To see it, given any θ P Θztθu with ω ¨ ϕpθq ď b, note that any
θ̃ P Θ with θ̃ ď θ has ω ¨ θ̃ ď ω ¨ϕpθ̃q ď b and so Φpσ ¨ θ̃q ă ω ¨ϕpθ̃q ď b. Thus, any
θ P Θ with ω ¨ ϕpθq ď b has ω ¨ θ ă p

b
, where p

b
is as given by Lemma 8. Because

ϕ is continuous, it follows that any θ P Θ with ω ¨ ϕpθq close enough to b also has
ω ¨ θ ă p

b
. Therefore, xωpθq ăP 1ω¨θěp

b
. Lemma 8 then implies xωpθq ăP xpθq.

Moreover, because p
b
ă Φpp

b
q “ b, it follows from Lemma 8 that, almost surely,

either xpθq “ 0 or σ ¨ θ ă b. It follows that sxωpθq ăP sxpθq. That is, x is ex-post
more efficient than xω.

Now, specializing to the case in which some i P N has σi ą
2

N`1
, let us show

xω is not ex-post more efficient than single-agent-optimal allocation rules when b
is low enough. To that end, let note Lemma 7 delivers some η P RN

`` such that
ω ¨ ϕpθ ` εηq ă Φ pσ ¨ pθ ` εηqq for all sufficiently small ε ą 0. Let θpεq :“ θ ` εη

for every ε, and for any b P pθ1, ϕ1pθ̄1qq, let εb :“
p̄b´θ1
σ¨η

so that σ ¨ θpεbq “ p̄b. That

b “ Φpp̄bq ą p̄b then implies σ ¨ θpεbq ă b and p̄b Œ θ1 as b does, and so too does
εb. Therefore, whenever b P pθ1, ϕ1pθ̄1qq is sufficiently small, we have that θpεbq is
interior in Θ and

ω ¨ ϕpθpεbqq ă Φpσ ¨ θpεbqq “ Φpp̄bq “ b.

Let us fix such a small b and any single-agent allocation rule x, with a view to
showing x is not ex-post more efficient than xω. Because ϕ is continuous, then,
some θ̂ ą θpεbq in the interior of Θ is close enough to θpεbq to ensure ω ¨ ϕpθ̂q ă b
and σ ¨ θ̂ ă b. Thus,

p̄b ă σ ¨ θ̂ ă b and ω ¨ ϕpθ̂q ă b.

Again by continuity, every θ in some neighborhood of θ̂ satisfies the same three
inequalities. Therefore, P tp̄b ă σ ¨ θ ă b and ω ¨ ϕpθq ă bu ą 0. Lemma 8 then
tells us P txpθq “ 0, xωpθq “ 1, and ω ¨ ϕpθq ă bu ą 0. Thus, x is not ex-post
more efficient than xω.

6



Finally, returning to the case of general σ, let us show xω is ex-ante less efficient
than single-agent-optimal allocation rules when b is low enough. For any b P
pθ1, ϕ1pθ̄1qq, let xσ,b denote some single-agent-optimal allocation rule, and let

Spσ, bq :“ E txσ,bpθqpb´ σ ¨ θqu

denote the surplus it generates. We want to show that

Spσ, bq ą E txωpθqpb´ σ ¨ θqu

when b is close enough to θ1. Because tθiuiPN are i.i.d., we know that E txωpθqpb´ θiqu
is the same for each i P N , so that E txωpθqpb´ σ ¨ θqu “ E txωpθqpb´ ω ¨ θqu .
Meanwhile, the ex-post efficiency ranking of this proof’s second paragraph implies
(by taking expectations) the ex-ante efficiency ranking Spω, bq ą E txωpθqpb´ ω ¨ θqu
for all sufficiently small b. The proposition will therefore follow if we can show
Spσ, bq ě Spω, bq when b P pθ1, ϕ1pθ̄1qq is close enough to θ1. We now pursue this
ranking.

Let γ :“
f1pθ1q

N

pN´1q!

ś

iPN
1
σi
ą 0. In what follows, we use Lemma 6’s calculations

of the behavior of G, g, and Φ around θ1. First, for p P pθ1, θ̄1q, we have

1

pp´θ1q
N`1E r1σ¨θďp pσ ¨ θ ´ θ1qs “ 1

pp´θ1q
N`1

ż p

θ1

pv ´ θ̄1qgpvq dv

“
γ

pp´θ1q
N`1

ż p

θ1

pv ´ θ̄1q
N dv

` 1
p´θ1

ż p

θ1

´

v´θ1
p´θ1

¯N ”

gpvq
pv´θ1q

N´1 ´ γ
ı

dv

“
γ

N`1
` 1

p´θ1

ż p

θ1

´

v´θ1
p´θ1

¯N ”

gpvq
pv´θ1q

N´1 ´ γ
ı

dv

pŒθ1
ÝÝÝÑ

γ
N`1

.

Moreover, we have

Φppq´θ1
p´θ1

“ 1` Φppq´p
p´θ1

pŒθ1
ÝÝÝÑ 1` 1

N
“ N`1

N
.

Therefore,

1

rΦppq´θ1s
N`1E t1σ¨θďp rΦppq ´ σ ¨ θsu

“

”

p´θ1
Φppq´θ1

ıN
Gppq

pp´θ1q
N ´

”

p´θ1
Φppq´θ1

ıN`1
1

pp´θ1q
N`1E r1σ¨θďp pσ ¨ θ ´ θ1qs

pŒθ1
ÝÝÝÑ

`

N
N`1

˘N γ
N
´
`

N
N`1

˘N`1 γ
N`1

“ NN´1

pN`1qN`2p2N`1q
γ.

Meanwhile, any b P pθ1, θ̄1q has θ1 ă p
b
ď p̄b ă Φpp̄bq “ b, so that p

b
, p̄b Œ θ1 as b

does. We can therefore specialize the above calculation to deduce

1

pb´θ1q
N`1E

”

1σ¨θďp
b
pb´ σ ¨ θq

ı

and 1

pb´θ1q
N`1E r1σ¨θďp̄b pb´ σ ¨ θqs
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both converge to NN´1

pN`1qN`2p2N`1q
γ as b Œ θ1. Now, because every v ď p̄ has

v ď Φpp̄q “ b, Lemma 8 implies

1σ¨θďp
b
pb´ σ ¨ θq ď xσ,bpθq pb´ σ ¨ θq ď 1σ¨θďp̄b pb´ σ ¨ θq ,

so that

1

pb´θ1q
N`1Spσ, bq

bŒθ1
ÝÝÝÑ NN´1

pN`1qN`2p2N`1q
γ

“
NN´1f1pθ1q

N

pN´1q!pN`1qN`2p2N`1q

ź

iPN

1

σi

“
γ̃

ś

iPN σi
, where

where γ̃ :“
NN´1f1pθ1q

N

pN´1q!pN`1qN`2p2N`1q
ą 0. Note that this calculation specializes to

1

pb´θ1q
N`1Spω, bq

bŒθ1
ÝÝÝÑ

γ̃
`

1
N

˘N
.

Therefore,

Spσ, bq

Spω, bq

bŒθ1
ÝÝÝÑ

`

1
N

˘N

ś

iPN σi
“

«

1
N

ř

iPN σi

p
ś

iPN σiq
1
N

ffN

.

The inequality of arithmetic and geometric means (AM-GM) tells us that this
limit ratio is strictly greater than 1 if σ ‰ ω, so that Spσ, bq ď Spω, bq when
b P pθ1, θ̄1q is sufficiently small. The proposition follows.

C. Supporting analysis for Section 7

C.1. Dominant strategies

In light of the revelation principle, we formalize more demanding incentive con-
straints through direct mechanisms below.

Definition 7: Say a mechanism px,mq is dominant-strategy incentive com-
patible (DIC) if

θi P argmaxθ̂iPΘi

!

mpθ̂i, θ´iq ´ θixpθ̂i, θ´iq
)

, @i P N, @θ P Θ; (DIC)

A mechanism is DIC if an agent finds truthful reporting dominant in the direct
revelation game; that is, he would willingly report truthfully even if he knew
others’ reported types.

We showed in Lemma 1 that for a given allocation rule, interim montonicity is
equivalent to BIC implementability. Said differently, we showed that being able
to BIC-implement an allocation rule with agent-specific transfers is equivalent to
being able to do so with only collective transfers. Moreover, Theorem 1 explicitly
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characterizes the allocation rule from optimal BIC and IR mechanisms, showing it
stipulates trade if and only if the benefit to the buyer exceeds the player-weighted
virtual cost. Notice, though, that this allocation rule is monotone in the agents’
profile of types. If our seller could engage in agent-specific transfers, such mono-
tonicity would render the same allocation rule DIC implementable too. Therefore,
a natural conjecture is that (as in single-good auction settings) our seller can
attain DIC at no additional cost.

The following result shows the above natural conjecture is false: the restriction
to DIC mechanisms is with loss of optimality for the seller. Optimal mechanisms
must leverage agents’ uncertainty about others’ realized types.

Proposition 4 (Dominance binds): If at least two j P N have b ă θ̄j, then no
DIC mechanism is optimal.

The proof of Proposition 4 leverages the fact that the essentially unique optimal
allocation rule is bang-bang—every type profile leads to a deterministic trade
outcome. The main thrust of our proof is a structural lemma that characterizes
the full class of DIC bang-bang mechanisms, as summarized in two properties.
The first property concerns the transfer: It can be decomposed into a price (p)
that will be paid if and only if trade occurs and a subsidy that will be paid to the
sellers whether or not trade occurs. The second property gives a representation of
the allocation rule: trade is determined by the price and J , a collection of subsets
of N such that the good is sold if and only if, for some J P J , every agent in J
agrees to the purchase at price p.

The proof of the structural lemma proceeds in two steps. First, we show the
transfer rule is constant among type profiles leading to certain trade, and constant
among type profiles leading to non-trade, which leads directly to the price/subsidy
form. To prove this property, consider any two type profiles θ and θ1 such that
xpθq “ xpθ1q; say this trade probability is equal to 1, the alternative case being
analogous. Letting θ˚ be a type profile that is coordinatewise higher than both θ
and θ1, we construct a finite sequence of type profiles such that the first type profile
in the sequence is θ and the last is θ˚, the type profiles get coordinatewise higher as
the sequence progresses, and consecutive entries in the sequence differ in only one
agent’s type. But then, because DIC (for the agent whose type is raised in a given
increment of the sequence) implies x must be monotone, it follows that every type
profile in the sequence generates probability 1 of trade. Hence, DIC (again, for the
agent whose type is incremented) implies consecutive sequence members yield an
identical transfer. A symmetric argument applies to θ1, so that mpθ1q “ mpθ˚q “
mpθq. Hence, any DIC-implementing transfer takes the given price-subsidy form.
The second property that the structural lemma establishes is the structure on the
allocation rule. Given that the mechanism is incentive-equivalent to a collective
posted price of p, DIC implies (fixing a realization of others’ types) the trade
decision must be identical for all types of agent i below p and for all types of
agent i above p. Hence, the allocation rule is essentially a decreasing t0, 1u-valued
transformation of the vector-valued function θ ÞÑ p1θjěpqjPN . The “coalitional”
property amounts to a more explicit description of such functions.
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C.2. Ex-post participation

Let us formulate a notion of ex-post individual rationality. As usual, we do so for
direct mechanisms—for convenience and without loss. Say a mechanism px,mq is
ex-post indiviually rational (epIR) if mpθq ´ θixpθq ě 0 for every θ P Θ and
i P N .

The following lemma reduces IC-and-epIR implementability to the study of the
allocation rule and agents’ interim values.

Lemma 9: Given allocation rule x and U P RN , the following are equivalent:

(i) Some transfer rule m exists such that the mechanism px,mq is IC and epIR
and gives interim utility U i to type θ̄i of each agent i.

(ii) The allocation rule x is interim monotone, the quantities tU i ` E rxpθqϕisuiPN
all coincide, and every agent i P N and type θi P Θi have (letting Xi :“ Xx

i ):

ż θ̄i

θi

Xipθ̃iq dθ̃i ě E
„

xpθi,θ´iq

ˆ

max
jPNztiu

θj ´ θi

˙

`



´ U i.

The above lemma shows how an epIR constraint can be formulated directly
over allocation rules. The conditions given in the lemma amount to saying that,
when the interim transfer rules are solved out from the allocation rule via the
sellers’ IC constraint and revenue equivalence, seller i’s interim transfer is at least
her interim expectation of the minimum transfer required to stop all sellers from
walking away. This condition is trivially necessary, but we constructively show it
to be sufficient too.

As a demonstration that the above characterization is useful, let us apply it
to derive a sufficient condition for epIR to be without loss of optimality for our
buyer.

Proposition 5 (Sufficient condition for epIR): Suppose N “ 2 and F1 “ F2.
Then, some optimal mechanism is epIR if the virtual cost ϕ1 admits a nonin-
creasing density on its support.

In particular, this proposition applies to the special case of Example 1 in which
α1 “ α2 ď 1.

C.3. Pareto-optimal Mechanisms

Recall, a Pareto-optimal mechanism, is an IC and IR mechanism such that
no alternative IC and IR mechanism delivers a weakly higher buyer profit, and
a weakly higher agent i value for each agent i, with at least one of these N ` 1
inequalities strict. Then, a Pareto-optimal allocation is any allocation rule x
such that px,mq is a Pareto-optimal mechanism for some m. In this subsection, we
provide a characterization of which mechanisms are Pareto optimal, and explain
the reasoning behind it.

Following standard arguments, one can show that any Pareto optimal mecha-
nism can be represented as a solution to a program maximizing a weighted sum of
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values of the N ` 1 individuals (N sellers and the buyer), and—because increas-
ing the transfer by a constant preserves all constraints—the Pareto weight on the
buyer (normalized to 1) is at least as high as the sum of weights tλiuiPN on the
agents. Conversely, we observe that any interim monotone allocation rule that
maximizes such a weighted sum is Pareto optimal.28

We can therefore solve a family of programs much like the buyer’s problem
(BP), but with modified objective, to trace out the entire Pareto frontier. Vectors
λ of Pareto weights are paired with endogenous allocation weights ω to describe
the following class of allocation rules.

Definition 8: Let ∆p2Nq denote the set of all pλ, ωq with λ, ω P RN
` and

ÿ

iPN

pλi ` ωiq “ 1.

For any such pλ, ωq, let the pλ, ωq-allocation rule, denoted by xλ,ω, be given by

xλ,ωpθq :“ 1λ¨θ`ω¨ϕpθqďb.

We now state our main characterization theorem of this section. It characterizes
Pareto-optimal allocation rules as those that weigh the benefit of trade against a
weighted average of its actual and virtual costs.

Theorem 3 (Pareto-optimal allocations): The pλ, ωq-allocation rule is Pareto
optimal for any pλ, ωq P ∆p2Nq satisfying the following two equivalent conditions:

1. ω P argminω̃: pλ,ω̃qP∆N Erpb´ λ ¨ θ ´ ω̃ ¨ϕq
`
s.

2. supppωq Ď argmaxiPN E rϕi | λ ¨ θ ` ω ¨ϕ ď bs.

Moreover, every Pareto-optimal allocation rule is essentially of this form.29

Finally, analogous to Proposition 2, it is natural to explore whether some Pareto
optimal mechanism can be implemented via posted prices. That is, one can ask
whether the suboptimality of collective posted prices was an artefact of our fo-
cus on the buyer-optimal mechanisms. However, as we show in Proposition 7, no
Pareto optimal mechanism can be implemented as a collective posted price mech-
anism (if trade is neither unambiguously efficient nor inefficient). Therefore, this
intuitive class of simple mechanisms is strictly suboptimal regardless of whether
one favors the buyer or the seller.

C.4. Pre-market trade of land shares

Consider a game that extends our model by adding a pre-market phase in which
the agents trade their shares. The buyer then observes the agents’ shares and
chooses a profit-maximizing mechanism. We study two different versions of this

28The latter observation would be obvious if all weights were strictly positive. We show it
holds in our setting even with some zero weights, because the optimizer is essentially unique.

29The proof also establishes that, if the pλ, ωq- and pλ, ω̃q-allocation rules are both Pareto
optimal, then they essentially coincide.
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game: one in which agents must be paid proportionally to their shares, as we have
required throughout this paper, and one without this constraint. We show that in
the first regime, agents do not benefit from trade, but in the second regime they
do.

We start with some notation and then define the game. Let Σ “ tσ “

pσ1, . . . , σNq P p0, 1q
N :

ř

iPN σi “ 1u be the set of possible profiles of shares
that the agents might have. Agents’ initial shares σ “ pσ1, . . . , σNq P Σ are fixed
but unknown to the buyer. For the present analysis, we assume tθiuiPN are i.i.d.
with distribution Fi “ F1. A mechanism is a profile of functions px,m1, . . . ,mNq

where x : Θ Ñ r0, 1s is the allocation rule and mi : Θ Ñ R is the transfer rule of
agent i. Notice that here we are considering a more general class of mechanisms
than the one studied throughout this paper because here we impose no structure
relating the transfers of different agents to each other. Play proceeds as follows.

1. Seller 1 proposes shares σ̂ P Σ and lump-sum net transfers τ̂ P RN with
1 ¨ τ “ 0, and then the other agents sequentially vote on whether to accept
the proposal. Realized shares σ1 and transfers τ are then equal to σ̂ and τ̂
if all accept the proposal, and equal to σ and ~0 if anyone rejects.30

2. The buyer observes σ1 and chooses a mechanism px,mq.

In the discriminatory-pricing regime, the buyer can choose any mecha-
nism. In the uniform-pricing regime, the buyer can choose any uniform-
pricing mechanism—that is a mechanism px,m1, . . . ,mNq in which agents
are paid proportionally to their chosen shares, mi “ σ1i

ř

jPN mj.

3. Each agent i privately learns his type θi drawn independently from F , de-
cides whether to participate in the mechanism, and if he participates, what
type θ̂i to report.

4. The good is sold with probability xpθ̂q and each agent i is paid mipθ̂q. The
payoff of agent i is then τi `mipθ̂q ´ σ

1
iθixpθ̂q.

31

Our solution concept, which we simply call equilibrium for brevity, is perfect
Bayesian equilibrium in which:

• Players do not signal what they do not know—hence, play from stage 2
onward corresponds to the mechanism design problem with shares σ1 and
type distribution θ „

Â

iPN F1;

• The buyer-optimal mechanism is offered, and sellers all participate and
truthfully report their types, for any realized shares σ1.32

30The specific bargaining protocol is immaterial, though we fix one for concreteness. What
matters for our analysis is that the realized shares σ1 are set to maximize sellers’ sum of payoffs.

31A more natural specification would be τi ` mipθ̂q ` σ1iθir1 ´ xpθ̂qs, which explicitly takes
into account that seller i has value σ1iθi (which depends on σ1) if he retains his land. Because
we maintain i.i.d. types for the present analysis, though, the difference

ř

iPN E rσ1iθis does not
vary with σ1, and so will not affect pre-market non-manipulability. We therefore maintain the
payoff specification of our main model for ease of comparison.

32The latter feature simplifies the analysis, but is not necessary. If we removed this equilibrium
refinement, but enriched the model to allow the buyer to pay sellers even when some sellers do
not participate, our results would remain unchanged.

12



We say that the game is pre-market non-manipulable if some equilibrium
exists in which the agents choose σ1 “ σ in the first stage and the buyer attains
her optimal value (among all IC and IR mechanisms for shares σ). The following
result shows that a uniform-pricing regime generates such non-manipulability.

Proposition 6 (Uniform pricing avoids pre-market trade): Suppose sellers’ types
are i.i.d. Then, the uniform-pricing game is pre-market non-manipulable, but the
discriminatory-pricing game need not be.

The proof shows that sellers’ total surplus is invariant to their shares under uni-
form pricing, and shows a numerical example (an instance of Example 1) in which
the sellers increase their total surplus by making their shares more symmetric.

D. Proofs for Section C

D.1. Proofs for Section C.1

Lemma 10: Suppose that px,mq is a DIC mechanism and θ, θ1 P Θ have xpθq “
xpθ1q P t0, 1u. Then mpθq “ mpθ1q.

Proof. Define θ˚ :“ θ_ θ1 if xpθq “ xpθ1q “ 0, and θ˚ :“ θ^ θ1 if xpθq “ xpθ1q “ 1.
We will observe that mpθq “ mpθ˚q “ mpθ1q; by symmetry, it suffices to show
mpθq “ mpθ˚q. To show it, define the type profile

θ` :“ pθ˚i 1iď` ` θi1ią`qiPN P Θ for each ` P t0, . . . , Nu “ N Y t0u.

Observe, either θ0 ď ¨ ¨ ¨ ď θN and xpθ0q “ 0, or θ0 ě ¨ ¨ ¨ ě θN and xpθ0q “ 1. In
either case, because x is weakly decreasing (due to DIC) and can only take values
in r0, 1s, it follows by induction that xpθ0q “ ¨ ¨ ¨ “ xpθNq. For each i P N , because
θi and θi´1 differ only in the i coordinate and xpθi´1q “ xpθiq, it follows from DIC
(for agent i) that mpθi´1q “ mpθiq. Thus, mpθq “ mpθ0q “ ¨ ¨ ¨ “ mpθNq “ mpθ˚q,
as desired.

Definition 9: Say a mechanism px,mq or an allocation rule x is bang-bang if
xpθq P t0, 1u almost surely.

Lemma 11: Suppose px,mq is a DIC bang-bang mechanism. Then, some p, s P R
and J Ď 2N exist such that, almost surely:

(i) mpθq “ pxpθq ` s;

(ii) xpθq “ 1
Ť

JPJ
Ş

jPJtθjďpu
.

Moreover, we may assume without loss that no two members of J are nested, and
that θj ă p ă θ̄j for each j P

Ť

J .

Proof. Fix a DIC mechanism px,mq such that xpθq almost surely in t0, 1u. By
Lemma 10, some constants mL,mH P R exists such that mpθq “ mL [resp. mH ]
for every θ P Θ with xpθq “ 0 [resp. 1]. So, defining p :“ mH´mL ě 0 and letting
s :“ mL, we have mpθq “ pxpθq ` s whenever xpθq P t0, 1u, an almost sure event.

Now, modifying x on an a null set, and similarly modifying the transfer rule
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to maintain m “ px` s, we may assume without loss that x is (statewise) t0, 1u-
valued.33 DIC of the modified mechanism follows from DIC of the original one.

Next, we show x has the desired structure. Given an agent i P N and type
realization θi P Θi, his payoff from a reported type profile of θ̂ is pp´ θiqxpθ̂q ´ s,
which is strictly increasing [resp. decreasing] in xpθ̂q if θi ă p [resp. θi ą p].
Hence, given θ´i P Θ´i DIC implies that one the following three possibilities holds:
xp¨, θ´iq “ 1 globally, xp¨, θ´iq “ 0 globally, or xpθi, θ´iq “ 1 [resp. xpθi, θ´iq “ 0]
for each θi P Θi with θi ă p [resp. θi ą p]. Hence, letting Θ̃ :“

ś

iPN rΘiztpus,
some y : t0, 1uN Ñ t0, 1u exists such that every θ P Θ̃ has xpθq “ y pp1θiďpqiPNq.
Moreover, we may assume without loss that y is constant in its i coordinate if
p ď θi or p ě θ̄i for i P N . Then, monotonicity of x implies y is monotone too. If
we let J̃ :“ tJ Ď N : yp1Jq “ 1u, then, xpθq “ 1

Ť

J̃PJ̃
Ş

jPJ̃tθjěpu
almost surely.

Define Ĵ :“
!

tj P J̃ : θj ă pu : J̃ P J̃ with θ̄j ą p @j P J̃
)

. Then, xpθq “

1
Ť

ĴPĴ
Ş

jPĴtθjďpu
almost surely, and θj ă p ă θ̄j for each j P

Ť

Ĵ . Finally, let

J :“ tJ P Ĵ : EĴ P Ĵ with Ĵ Ĺ Ju. Then, xpθq “ 1
Ť

JPJ
Ş

jPJtθjďpu
almost surely,

θj ă p ă θ̄j for each j P
Ť

J , and no two members of J are nested. Thus,
pp, s,J q is as required.

Proof of Proposition 4. Let x be any DIC-implementable allocation rule. First,
let pp, s,J q be as delivered by Lemma 11 (with J chosen so that the “moreover”
part of the lemma holds).

Let us show x it cannot be optimal. First, if J is either H or tHu, then
Erxpθqs P t0, 1u, and so Theorem 1 says (given that θi ă b ă ϕipθ̄iq for each
i P N) that x is not optimal. Second, if i P J P J , then Xx

i is discontinuous at
p P pθi, θ̄iq, implying (by Lemma 5 and since the last assertion of Theorem 1 tells
us ω is nontrivial) that x is not an optimal allocation rule.

D.2. Proofs for Section C.2

Proof of Lemma 9. First, define the transfer rulem by lettingmpθq :“ maxiPN θixpθq.
Note that a transfer rule m is such that px,mq is epIR if and only if m ě m.

Now, for each agent i, let M˚
i be as defined in the proof of Lemma 1. As

explained in that proof, given a transfer rule m, the mechanism px,mq is IC and
gives high-type utility U i to each agent i if and only if x is interim monotone
and Mm

i “ M˚
i ` U i for each agent i. So condition (i) holds if and only if

x is interim monotone and some transfer rule m exists such that m ě m and
Mm

i “ M˚
i ` U i for each agent i. Observe, the last condition also implies that

tU i ` E rxpθqϕisuiPN all coincide because (as noted in the proof of Lemma 1) each
i P N has E rM˚

i pθqs “ E rxpθqϕis.
To prove the lemma, it therefore suffices to show the following: Given a pro-

file pMiqiPN of interim transfer rules such that tE rMipθiqsuiPN all coincide, the

33For instance, if x is almost-surely constant, we can modify it to be constant; and otherwise,
we can replace x with θ ÞÑ 1xpθqą0.
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following are equivalent:

• Some transfer rule m ě m has Mm
i “Mi for each agent i;

• Each agent i has Mi ěMm
i .

To see this equivalence delivers the lemma, note that the the inequality Mipθiq ě
Mm

i pθiq rearranges to exactly the inequality in the lemma’s statement.

The first bullet immediately implies the second, because integration is mono-
tone. To pursue the converse, suppose the second bullet holds, that is, Mi ěMm

i

for each agent i. Let m :“ E rMipθiq ´M
m
i pθiqs, which is the same nonnegative

quantity for every agent i. If m ą 0, then the transfer rule m given by

mpθq :“ mpθq ` m´pN´1q
ź

iPN

rMipθiq ´M
m
i pθiqs

is as desired; and if m “ 0, then the transfer rule m given by

mpθq :“ mpθq `max
iPN

rMipθiq ´M
m
i pθiqs

is as desired. Indeed, in both cases, m ě m by construction; in the m ą 0 case,
Mm

i “ Mi because agents’ types are independent; and in the m “ 0 case each
Mm

i “ Mi because types are independent and each agent j ‰ i has Mm
j pθjq “

Mm
j pθjq almost surely.

The following lemma simplifies the characterization of the previous lemma to
understand when epIR is without loss of optimality in our buyer’s problem, in the
two-agent symmetric case.

Lemma 12: Suppose N “ 2 and F1 “ F2. Let z̄ :“ ϕ1pθ̄1q, let G denote the
CDF of ϕ1, let λ :“ ϕ´1

1 : rθ1, z̄s Ñ Θ1 extended to be constant above z̄, and let

p̂¨q : RÑ R be given by ŷ :“ 2b´ y (the reflection across b).

Then, some optimal mechanism is epIR if and only if every z P rθ1, bs has

Gpzq rλpẑq ´ λpzqs `

ż ẑ

z

rλpŷq ´ λpyqs dGpyq `

ż z̄

ẑ

Gpŷq dλpyq ě 0.

Proof. Let x denote the p1
2
, 1

2
q-weighted allocation rule. From Theorem 1, we know

that an optimal mechanism exists with allocation rule x and IR binding for both
agents. Letting X1 :“ Xx

1 , define the function η : Θ1 Ñ R via

ηpθ1q :“

ż θ̄1

θ1

X1pθ̃1q dθ̃1 ´ E
“

xpθ1,θ2q pθ2 ´ θ1q`

‰

for each θ1 P Θ1. Given symmetry and given Lemma 9, we know some optimal
mechanism is epIR if the function η is globally nonnegative. Conversely, because
(given Theorem 1) any optimal mechanism has binding IR and has an allocation
rule that agrees with x almost surely, and because (as will be clear from our
analysis below) η is continuous, it follows that nonnegativity of the function η
is also necessary for some optimal mechanism to be epIR. The lemma will then
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follow if we show the inequalities in the lemma’s statement characterize global
nonnegativity of η.

Observe now that G, λ, p̂¨q are all continuous and monotone, and λ is strictly
increasing. To see when ηpθ1q ě 0 for every θ1 P Θ1, we equivalently characterize
when ηpλpzqq ě 0 for every z P rθ1, z̄s.

Now, let us compute η more explicitly. Any z P rθ1, z̄s has

xpλpzq,θ2q “ 11
2
ϕ1pλpzqq`

1
2
ϕ2ďb

“ 1ϕ2ďẑ,

and so (extending λ to equal θ̄1 above z̄),

ηpλpzqq “

ż λpz̄q

λpzq

X1pθ̃1q dθ̃1 ´ E
 

1ϕ2ďẑ rλpϕ2q ´ λpzqs1λpϕ2qąλpzq

(

“

ż z̄

z

X1pλpyqq dλpyq ´ E t1zăϕ2ďẑ rλpϕ2q ´ λpzqsu

“

ż z̄

z

Gpŷq dλpyq ´ 1zăẑ

ż ẑ

z

rλpyq ´ λpzqs dGpyq.

Now, observe 1zăẑ “ 1zăb. Thus, if z ě b, we have ηpλpzqq “
şz̄

z
Gpŷq dλpyq ě 0.

So let us focus on the remaining case of z ă b. In this case, note that p̂¨q is a
continuous decreasing bijection on rz, ẑs, and so

ż ẑ

z

Gpŷq dλpyq “

ż z

ẑ

Gpyq drλ ˝ p̂¨qspyq

“ rGpyqλpŷqszy“ẑ ´

ż z

ẑ

λpŷq dGpyq

“ rGpzqλpẑq ´Gpẑqλpzqs `

ż ẑ

z

λpŷq dGpyq.

Therefore,

ηpλpzqq “

ż z̄

z

Gpŷq dλpyq ´

ż ẑ

z

rλpyq ´ λpzqs dGpyq

“

ż ẑ

z

Gpŷq dλpyq `

ż z̄

ẑ

Gpŷq dλpyq `

ż ẑ

z

λpzq dGpyq ´

ż ẑ

z

λpyq dGpyq

“

"„

Gpzqλpẑq ´Gpẑqλpzq



`

ż ẑ

z

λpŷq dGpyq

*

`

ż z̄

ẑ

Gpŷq dλpyq ` λpzq

„

Gpẑq ´Gpzq



´

ż ẑ

z

λpyq dGpyq

“ Gpzq rλpẑq ´ λpzqs `

ż ẑ

z

rλpŷq ´ λpyqs dGpyq `

ż z̄

ẑ

Gpŷq dλpyq.

Thus, η is globally nonnegative if and only if the last expression is globally non-
negative for each z P rθ1, bq, as required.
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Proof of Proposition 5. Let z̄, G, λ, p̂¨q be as defined in the previous lemma.
In light of that lemma, we need to show each z P rθ1, bq has

Gpzq rλpẑq ´ λpzqs `

ż ẑ

z

rλpŷq ´ λpyqs dGpyq `

ż z̄

ẑ

Gpŷq dλpyq ě 0.

By hypothesis G admits a nonincreasing density g on its support. In this case,
any z P rθ1, bq has

Gpzq rλpẑq ´ λpzqs `

ż ẑ

z

rλpŷq ´ λpyqs dGpyq `

ż z̄

ẑ

Gpŷq dλpyq

ě

ż ẑ

z

rλpŷq ´ λpyqs dGpyq

“

ż b

z

rλpŷq ´ λpyqs gpyq dy `

ż ẑ

b

rλpŷq ´ λpyqs gpyq dy

“

ż b

z

rλpŷq ´ λpyqs rgpyq ´ gpŷqs dy

ě 0,

as required.

D.3. Proofs for Section C.3

In this section, we prove our characterization of the Pareto frontier. We also
extend some previous results for buyer-optimal mechanisms to the entire Pareto
frontier.

D.3.1. Proof of Theorem 3

To simplify our algebra in what follows, let ~y denote the vector y1N P RN for any
scalar y P R.

Definition 10: Let Λ denote the set of all vectors λ P RN
` such that ~1 ¨ λ ď 1.

Given λ P Λ, a λ-compatible vector is any ω such that pλ, ωq P ∆p2Nq.

The following lemma studies a program in which an allocation rule is chosen
to maximize a weighted sum of utilities, the monotonicity property required by
IC is ignored, the payment formula is assumed, and the constant on the payment
formula is chosen to make IR bind for some agent. To state the lemma, for any
x P X or X̃ , define the profit level

πpxq :“ min
iPN

E rxpθqpb´ϕiqs .

In light of Lemma 1, if x P X is implementable, this profit level is the highest one
consistent with IC and IR mechanisms that use allocation rule x.
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Lemma 13: Given any λ P Λ, a unique solution exists to program

max
xPX̃

!

p1´~1 ¨ λqπpxq ` λ ¨ E
”

xpθqp~b´ θq
ı)

.

This solution is given by the pλ, ωq-allocation rule, where ω is any λ-compatible
vector satisfying the following two equivalent conditions:

(i) ω P argminω̃: pλ,ω̃qP∆N Erpb´ λ ¨ θ ´ ω̃ ¨ϕq
`
s.

(ii) supppωq Ď argmaxiPN E rϕi | λ ¨ θ ` ω ¨ϕ ď bs.

Proof. Substituting the definition of πpxq and rearranging, the program’s objective
can be rewritten as

min
iPN

E
!

xpθq
”

b´ λ ¨ θ ´ p1´~1 ¨ λqϕi

ı)

.

We can therefore follow the proof of Lemma 2 by modifying the two-player zero-
sum game. Specifically, have Minimizer choose from the altered strategy space
p1´~1 ¨ λq∆N of λ-compatible vectors, and change the objective to

Gλpx, ωq :“ E rxpθq pb´ λ ¨ θ ´ ω ¨ϕqs .

Following exactly the proof of Lemma 2, mutatis mutandis, delivers the result.

Motivated by the above lemma, we will say a vector ω is λ-optimal if it is
λ-compatible and satisfies the numbered conditions in Lemma 13.

In what follows, let Z Ď Rˆ RN denote the set

Z “
!´

π, E
”

xpθqp~b´ θq
ı

´ ~π
¯

: x P X , π P R, E rxpθqpb´ϕiqs ě π @i P N
)

,

which is the set of payoff vectors induced by all mechanisms when the payment
formula and IR are imposed. Given any Z̃ Ď RˆRN , say a point pπ, uq is Pareto
optimal in Z̃ if pπ, uq P Z̃ and no pπ̃, ũq P Z̃ztpπ, uqu exists with pπ̃, ũq ě pπ, uq.

The following lemma establishes a useful technical property of the payoff set Z
and its Pareto frontier.

Lemma 14: Every z P Z admits some z̃ ě z that is Pareto optimal in Z.

Proof. We begin with useful preliminary claim: The set tz P Z : z ě zu is
compact for any z P R ˆ RN . To show this fact, write z “ pπ, uq. Letting π̄ :“
miniPN E rpb´ϕiq`s, note that no x P X and π ą π̄ can satisfy E rxpθqpb´ϕiqs ě
π @i P N . Because X̃ is weak* compact (by Banach Alaoglu), the set

!´

π, E
”

xpθqp~b´ θq
ı

´ ~π
¯

: x P X̃ , π P rπ, π̄s, E rxpθqpb´ϕiqs ě π @i P N
)

is a continuous image of a compact space. Therefore, tz P Z : z ě zu is the
intersection of the closed set Rˆpu`RN

` q with a compact set, and so is compact.

With the compactness claim in hand, we now establish the lemma. View Z as
a subset of Rt0,...,Nu, and let z´1 :“ z P Z. For each z̃ P Z, let Zpz̃q :“ tẑ P Z :
ẑ ě z̃u, a nonempty (containing z̃) and compact subset of Z. Recursively for each
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j P t0, . . . , Nu, we can therefore take zj P argmaxz̃PZpzj´1q z̃j. By construction,

z ď z0 ď ¨ ¨ ¨ ď zN . Let us observe z̃ :“ zN is Pareto optimal in Z. To that
end, let ẑ P Zpz̃q; we want to show ẑ ď z̃. And indeed, every j P t0, . . . , Nu has
ẑ P Zpzj´1q, so that ẑj ď zjj ď z̃j. Therefore, ẑ “ z̃, delivering the lemma.

The following lemma links Pareto optimality in the value set Z to the cutoff
rule form.

Lemma 15: Take any π˚ P R and x˚ P X , and let u˚ :“ E
”

x˚pθqp~b´ θq
ı

´ ~π˚.

The vector pπ˚, u˚q is Pareto optimal in Z if and only if some λ P Λ and λ-optimal
ω exist such that: x˚pθq “ xλ,ωpθq almost surely; and π˚ ď πpxλ,ωq, with equality
if ω ‰ ~0.

Proof. Let us prove the following three conditions are equivalent:

(a) Payoff vector pπ˚, u˚q is Pareto optimal in Z.

(b) Some λ P Λ exists such that

pπ˚, x˚q P argmaxpπ,xqPRˆX

!

π ` λ ¨
´

E
”

xpθqp~b´ θq
ı

´ ~π
¯)

s.t. E
”

xpθqp~b´ϕiq
ı

ě π @i P N.

(c) Some λ P Λ and λ-optimal ω exist such that: x˚pθq “ xλ,ωpθq almost surely;
and π˚ ď πpxλ,ωq, with equality if ω ‰ ~0.

First, let us see that conditions (b) and (c) are equivalent. To that end, fix
λ P Λ, and consider the program in condition (b), which can be rewritten as

max
pπ,xqPRˆX

!

p1´~1 ¨ λqπ ` λ ¨ E
”

xpθqp~b´ θq
ı)

s.t. π ď πpxq.

For any given x P X , the optimization for π is trivial to solve. The objective is
weakly increasing in π (because ~1 ¨ λ ď 1), strictly so if ~1 ¨ λ ă 1. Therefore,
condition (b) is satisfied if and only if:

• π˚ ď πpx˚q, with equality if ~1 ¨ λ ă 1;

• x˚ P argmaxxPX

!

p1´~1 ¨ λqπpxq ` λ ¨ E
”

xpθqp~b´ θq
ı)

.

The equivalence then follows directly from Lemma 13.

Now, we establish condition (b) implies condition (a). To that end, suppose
condition (b) holds, and take any pπ, uq P Z with pπ, uq ě pπ˚, u˚q; we want to
show pπ, uq “ pπ˚, u˚q. First, by definition of Z, some allocation rule x exists

such that x “ E
”

xpθqp~b´ θq
ı

´ ~π. Then, that pπ, uq ě pπ˚, u˚q implies—because

pπ, uq ÞÑ π`λ ¨ pu´~πq is weakly increasing—that pπ, xq is also an optimal solution
to the program in condition (b). Hence, x is an optimal solution to the program
in Lemma 13. The uniqueness part of Lemma 13 therefore tells us xpθq “ x˚pθq
almost surely. By revenue equivalence (Myerson, 1981; Myerson and Satterthwaite,
1983), then, u´ u˚ “ pπ ´ π˚q~1. Hence,

pπ ´ π˚qp1, ~́1q “ pπ, uq ´ pπ˚, u˚q ě 0,
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implying π ´ π˚ “ 0, and so u “ u˚, as required.

Finally, let us show condition (a) implies condition (b). Supposing pπ˚, u˚q is
Pareto optimal in Z, we want to show some λ P Λ exists such that pπ˚, u˚q P
argmaxpπ,uqPZ rπ ` λ ¨ us. First note, Z is the linear image of a set defined by
linear inequality constraints on a convex domain; hence it is convex, and so too
is Z´ :“ Z ´ pR` ˆ RN

` q. Now, because pπ˚, u˚q is Pareto optimal in Z, it is also
Pareto optimal in Z´, hence on the boundary of the latter. By the supporting
hyperplane theorem, some nonzero pγ, λq P Rˆ RN exists such that

pπ˚, u˚q P argmaxpπ,uqPZ´ rγπ ` λ ¨ us .

Because Z´ is downward comprehensive, the separation property implies pγ, λq ě
0. Scaling the nonzero nonnegative vector pγ, λq by a strictly positive constant,
we may assume without loss that max tγ, maxiPN λiu “ 1. Finally, the definition
of Z implies pπ˚ ´ 1, u˚ ` ~1q P Z too, so that pπ˚, u˚q P argmaxpπ,uqPZ rγπ ` λ ¨ us

requires γ ě ~1 ¨ λ. Thus, γ “ 1, and λ is as desired.

We now prove the characterization theorem.

Proof of Theorem 3. Lemma 13 says the two numbered conditions on ω are
equivalent, so we need only show x˚ is Pareto optimal if and only if some λ P Λ
and λ-optimal ω exist such that x˚pθq “ xλ,ωpθq almost surely.

First, suppose λ P Λ, the vector ω is λ-optimal, and x˚pθq “ xλ,ωpθq almost
surely. By Lemma 15, then, the vector pπ˚, u˚q is Pareto optimal in Z, where π˚ :“

πpx˚q and u˚ :“ E
”

x˚pθqp~b´ θq
ı

´ ~π˚ Lemma 1 then implies that some transfer

rule m˚ exists such that px˚,m˚q is IC and Πpx˚,m˚q “ π˚; that Upx˚,m˚q “ u˚

and px˚,m˚q is IR; and (given revenue equivalence) that every alternative IC and
IR mechanism px,mq has pΠpx,mq, Upx,mqq P Z. Hence, Pareto optimality of the
mechanism px˚,m˚q follows from Pareto optimality of pπ˚, u˚q in Z.

Conversely, suppose px˚,m˚q is a Pareto optimal mechanism for some transfer
rule m˚. Letting π˚ :“ Πpx˚,m˚q and u˚ :“ Upx˚,m˚q, Lemma 1 and revenue
equivalence tell us pπ˚, u˚q P Z. Lemma 14 therefore delivers some pπ̃, ũq ě
pπ˚, u˚q that is Pareto optimal in Z. By definition of Z, some allocation rule x̃

exists such that ũ “ E
”

x̃pθqp~b´ θq
ı

´ π̃~1. Given Lemma 15, we may assume

without loss that x̃ “ xλ,ω for some λ P Λ and λ-optimal, and π̃ ď πpx̃q. Because
x̃ is monotone (hence interim monotone) and shifting transfers by a constant
preserves IC, Lemma 1 tells us some transfer rule m̃ exists such that px̃, m̃q is
IC and generates Πpxλ,ω, m̃q “ π̃, and that px̃, m̃q is IR because π̃ ď πpx̃q and
Upx̃, m̃q “ ũ. Hence, the IC and IR mechanism pxλ,ω, m̃q generates a payoff vector
pπ̃, ũq ě pπ˚, u˚q. Because the mechanism px˚,m˚q is Pareto optimal, it follows
that pπ̃, ũq “ pπ˚, u˚q. Finally, the uniqueness statement in Lemma 13 implies
x˚pθq “ x̃pθq almost surely, delivering the theorem.

D.3.2. Generalizing other results to Pareto-optimal mechanisms

Now, we establish that the main result of Section 5 applies more generally to the
entire Pareto frontier, as does the main result reported in Section C.1.
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Proposition 7 (Simple mechanisms Pareto dominated): If b ă θ̄j for every
j P N , then no collective posted-price mechanism is Pareto optimal, and no DIC
mechanism is Pareto optimal.

Proof. First, Theorem 3 tells us any Pareto-optimal allocation rule x is essentially
identical to the pλ, ωq-allocation rule for some λ and ω. Because θi ă b ă θ̄i ă
ϕipθ̄iq for every i P N , it follows that 0 ă E rxpθqs ă 1. Now, observe that
x generates interim allocation rules Xi that are continuous on pθi, θ̄iq for every
i P N with λi ` ωi ă 1, and nonconstant on pθi, θ̄iq if the optimal weights pλ, ωq
have λi ` ωi ą 0. Indeed, the proof is identical to the proof of Lemma 5, but
with Theorem 3 playing the role of Theorem 1, and λj ` ωj playing the role of
ωj and λjθj ` ωjϕj playing the role of ωjϕj for each j P N . To see that some
agent i has Xi being both non-constant and continuous on pθi, θ̄iq, it suffices to
show no agent i has λi ` ωi “ 1; assume otherwise for a contradiction. Note that
λ ¨θ`ω ¨ϕpθq “ ωiϕpθiq`p1´ωiqθi is a strictly increasing transformation of θi P Θi

that lies between θi and ϕipθiq. Therefore, some cutoff p P rϕ´1
i pbq, bs exists such

that λ ¨ θ ` ω ¨ϕ ď b if and only if θi ď p. Hence,

E rϕi | λ ¨ θ ` ω ¨ϕ ď bs “ E rϕi | θi ď ps “ p,

where the last equality holds because a posted price of p (with agent i alone
choosing whether to buy) generates the allocation rule xλ,ω with binding IR for
agent i. Therefore,

E rϕi | λ ¨ θ ` ω ¨ϕ ď bs ď b ă θ̄j “ E rϕjs “ E rϕj | λ ¨ θ ` ω ¨ϕ ď bs ,

as desired.

Next, we observe that no agent i exists such that Xx
i |pθi,θ̄iq is both continuous

and nonconstant, if px,mq is either an IC collective posted-price mechanism or
a bang-bang DIC mechanism—which will deliver the proposition. Given that
we have seen 0 ă E rxpθqs ă 1, and that Theorem 3 tells us all Pareto-optimal
mechanisms are bang-bang, the result follows directly from Lemma 11 for the case
of bang-bang DIC mechanisms. So let us focus on showing it for the case of an IC
posted-price mechanism. Let px,mq be an IC collective posted price mechanism
with price p P R. Below, we show no agent i exists such that Xx

i |pθi,θ̄iq is both
continuous and nonconstant. By the previous paragraph, it will follow that x is
not Pareto optimal. Consider any agent i. Every θi, θ̂i P Θi have

Mm
i pθ̂iq ´ θiX

x
i pθ̂iq “ pp´ θiqX

x
i pθ̂iq,

and so IC implies Xx
i pθiq “ maxθ̂iPΘi X

x
i pθ̂iq for any θi P rθi, pq and Xx

i pθiq “

minθ̂iPΘi X
x
i pθ̂iq for any θi P pp, θ̄is. In particular, Xx

i is constant both on rθi, pq

and on pp, θ̄is. Therefore, Xx
i is either constant on pθi, θ̄iq or discontinuous at

p P pθi, θ̄iq.

D.4. Proof for Section C.4

Proof of Proposition 6. First, consider the uniform-pricing regime. Following
the agents’ choice of shares σ1, the buyer’s optimal mechanism is characterized
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by Theorem 1. An optimal mechanism px˚,m˚q is independent of the shares
and depends only on the agents’ distributions of types.34 Because agents have
identical distributions, the weights in the optimal mechanism are all ωi “

1
N

and
the optimal mechanism is symmetric. Hence, some u P R` exists such that a seller
with share σ1i gets payoff τi`σ

1
iu if the buyer chooses this optimal mechanism and

all sellers participate and truthfully report. The following play thus describes an
equilibrium:

• The first seller proposes shares split σ and zero upfront transfers.

• Any other seller accepts a proposal pσ̃, τ̃q if and only if τ̃i ` σ̃iu ą σiu.

• For any realized shares σ1, the buyer proposes the mechanism px˚,m˚q.

• If the mechanism px˚,m˚q is proposed, then all sellers participate and truth-
fully report their types.

• If a mechanism other than px˚,m˚q is proposed, then all sellers decline to
participate.

This equilibrium has σ1 “ σ and yields the buyer her optimal value, as required.
Thus, the uniform-pricing game is pre-market non-manipulable.

Now, consider the discriminatory-pricing regime. Given any realized shares σ1,
seller i’s cost of parting with his land is σ1iθi, and so (a straightforward computation
shows) his virtual cost is σ1iϕi. Following Proposition 4.3 in Güth and Hellwig
(1986), the essentially unique buyer-optimal mechanism for realized shares σ1 has
allocation rule given by xpθq “ 1σ1¨ϕďb, and transfers set so that IR binds for each
agent.35 By Proposition 4.2 of the same paper, seller i’s expected payoff (gross of
τi) is then E r1σ1¨ϕďb σ1ipϕi ´ θiqs. Therefore, the sum of the sellers’ payoffs is

Upσ1q :“ E r1σ1¨ϕďb σ1 ¨ pϕ´ θqs .

if a buyer-optimal mechanism is played—that is, if the buyer proposes it and all
sellers participate and truthfully report—following share choice σ1.

To complete the proof of the proposition, we show by example that some spec-
ification of the model has Upσ̃q ą Upσq for some σ̃ P Σ. The proposition will
then follow, because any equilibrium would involve a successful proposal away
from shares σ—for otherwise, the first seller could propose shares σ̃ together with
lump-sum transfers to make every seller better off.

Consider the case with two sellers, each of whom has θi uniform on r0, 1s, and

34The proof of Theorem 1 establishes that the optimal allocation rule is essentially unique,
and Lemma 1 then implies all optimal mechanisms have the same interim transfer rules. In
particular, all mechanisms yield the same per-share payoffs to all agents.

35Güth and Hellwig (1986) characterize profit-maximizing mechanisms for a seller who provides
a public good to a group of agents and is allowed to use agent-specific transfers. A straightforward
relabelling turns their model into one with a buyer who buys a public good from a group of sellers,
so their analysis gives a characterization of buyer-optimal mechanisms. Güth and Hellwig (1986)
impose a stronger regularity assumption (equivalent to assuming ϕipθiq ´ θi is increasing in our
setting), but their proof applies identically under our weaker regularity assumption that ϕi is
strictly increasing. Finally, they do not state essential uniqueness, but their proof establishes it
because the allocation rule that solves their relaxed program is essentially unique.
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a benefit b “ 1. Then, any σ1 P Σ has

Upσ1q “ E r1σ1¨ϕďb σ1 ¨ pϕ´ θqs “ E r1σ1¨ϕď1 σ
1
¨ θs .

In particular, the uniform share vector σ̃ “ p1
2
, 1

2
q has

Upσ̃q “ 1
2
E r1θ1`θ2ď1 pθ1 ` θ2qs

“ E r1θ1`θ2ď1 θ1s

“

ż 1

0

ż 1´θ1

0

θ1 dθ2 dθ1 “

ż 1

0

p1´ θ1qθ1 dθ1 “
“

1
2
θ2

1 ´
1
3
θ3

1

‰1

θ1“0

“
1

6
.

Meanwhile, as σ Ñ p1, 0q, the quantity Upσq converges (by the dominated conver-
gence theorem) to

E
„

1
θ1ď

1
2
θ1



“

ż

1
2

0

θ1 dθ1 “
“

1
2
θ2

1

‰

1
2
θ1“0

“
1

8
ă

1

6
.

In particular, when the initial shares σ are sufficiently asymmetric, we have Upσ̃q ą
Upσq, as required.
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