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Abstract. We study optimal mechanisms for selling multiple products to a buyer who
learns her values for those products sequentially. A mechanism may use static prices or
adjust them over time, and it may sell the products separately or as bundles. We study
mechanisms that provide the buyer a nonnegative ex post utility.We show that there exists
an optimal mechanism that determines the allocation of each product as soon as the buyer
learns her value for that product. This observation allows us to solve for optimal mecha-
nisms recursively. We use this recursive characterization to show that static mechanisms
are suboptimal if the buyer first learns her values for products that are ex ante less valua-
ble. Under this condition, the ability to bundle products is less profitable than the ability to
adjust prices dynamically.
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1. Introduction
Online multiproduct sellers increasingly use interactive
websites to customize their offers to individual buyers.
For example, a user who clicks on the first Harry Potter
movie on Amazon is shown a “Bundle and save” offer
to buy all eight Harry Potter movies at a discounted
price. Additionally, insurance providers make personal-
ized offers to a user, involving discounts to buy bundles
of insurance products, after she fills out an online form
that solicits the buyer’s preferences and characteristics.
What selling strategy should a multiproduct seller use
to maximize profit? Should he offer products as bundles
or sell them individually? Should he use static prices
or adjust them dynamically based on user interaction?
Should he combine these two instruments and use both
bundling and dynamically adjusted prices?

We study these questions in a setting with a rich class
of selling strategies. There are a number of products,
and the buyer learns her values for products sequen-
tially, one product in each period. These values are
drawn independently from known distributions. The
selling strategy is a mechanism that specifies a set of
possible decisions for the buyer in each period as well
as the eventual allocation of products and the payment
as a function of all these decisions. A special case is the
class of static mechanisms in which prices do not change
over time but products may be sold as bundles. Another

special case is when the products are sold separately
but at dynamically adjusted prices. A general mecha-
nismmay combine these two instruments and sell prod-
ucts as bundles and at dynamically adjusted prices.

We restrict attention to mechanisms in which the
buyer has an ex post nonnegative utility. That is, after
the buyer learns all of her values, her utility for the
allocation and prices specified by the mechanism must
be nonnegative. This restriction excludes mechanisms
in which the seller “sells the store in advance” to the
buyer. In such a mechanism, before the buyer learns
her values, the seller offers her the grand bundle of
products at a price equal the buyer’s expected value.
The constraint that ex post utility must be nonnegative
allows us to compare dynamic and static mechanisms
on an equal footing by isolating the ability to adjust
prices over time from the ability to charge the buyer
advance payments before she learns her values. For a
static mechanism, our ex post nonnegative utility con-
straint is equivalent to the standard notion of individ-
ual rationality. Thus, our class of mechanisms includes
well-studied static multiproduct screening mecha-
nisms (going back to Stigler 1963, Adams and Yellen
1976, McAfee et al. 1989).

Our first result is that, in order to maximize profit, it
is without loss of generality to restrict attention to a
class of separable mechanisms. A separable mechanism
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has two features. First, it sells the products separately.
That is, the allocation of each product is specified
immediately once the value for that product is revealed
to the buyer. Second, in each period, the buyer simply
reports the value learned in that period. A special case
is when the buyer is offered a deterministic price based
on previous interactions, but in general, a separable
mechanismmay be randomized.

A separable mechanism is handicapped because it
sells the products separately. It does not have the abil-
ity to “bundle” the products by arbitrarily tying the
allocation of one product to the value for another. To
see this, consider selling two products, and suppose
that the value for each product is either 1 or 2. A static
mechanism can bundle the products. For example, it
can offer the two products only as a bundle at a take it
or leave it price of 3. If the buyer’s value for either one
of the products is 2, she buys the bundle, and other-
wise, she buys nothing. In this static mechanism, the
allocation of the first product depends on the buyer’s
value for the second product. So, no separable mecha-
nism can implement this allocation.

Bundling is a strong instrument to screen types in
static settings (McAfee et al. 1989). Because a separable
mechanism cannot use such an instrument and given
that the ex post utility constraint restricts the use of
advance payments, it is a priori not clear that a separa-
ble mechanism can be optimal. Indeed, as we discuss
later, static mechanismsmay be suboptimal with corre-
lated values. Nevertheless, in our setting with inde-
pendent values, we show that any mechanism can be
converted to a separable one with the same profit. The
main insight is that dynamic screening is a weakly
more powerful instrument than bundling.

The fact that separable mechanisms are optimal sig-
nificantly simplifies the problem because optimal sepa-
rable mechanisms can be characterized via standard
recursive methods (Green 1987, Spear and Srivastava
1987, Thomas andWorrall 1990). In particular, an opti-
mal mechanismmaintains a state variable, the promised
utility, which is the buyer’s expected utility. The prom-
ised utility affects the allocation and is updated in each
period. For any given period and any promised utility,
the optimal allocation can be characterized via backward
induction. In particular, in each period, the optimal allo-
cation maximizes the seller’s expected revenue given
how much revenue the seller can extract in future peri-
ods for any updated promised utility.

We use our recursive characterization to identify condi-
tions under which static mechanisms are (strictly) sub-
optimal. With two types and two values, we provide a
complete characterization. To describe this characteriza-
tion, suppose that the value for each product is either 1 or
2. Let q1 be the probability that that the first product’s
value equals 2 and q2 be the probability that the second
product’s value equals 2. The set of possible pairs (q1, q2)
forwhich staticmechanisms are suboptimal is specified in
Figure 1. Roughly speaking, staticmechanisms are subop-
timal if and only if q1 is low and q2 is high: that is, the first
product is ex ante less valuable than the secondproduct.

We generalize this insight to any number of prod-
ucts and values. In particular, we show that static
mechanisms are suboptimal if the first product is ex
ante less valuable than the last product in the sense
that it has lower monopoly prices.1 To see the connec-
tion between the two results, consider again two prod-
ucts with values of 1 and 2. If q1 < 0:5 < q2, the optimal
monopoly price for the first product is 1, and the opti-
mal monopoly price for the second product is 2. In this
case, as shown in Figure 1, static mechanisms are sub-
optimal. Thus, the result for any number of products
and values partially generalizes the result for the case
of two values and two products. Under this condition,
the ability to bundle products is strictly less profitable
than the ability to screen types dynamically.

We study the robustness of our results to the case of
correlated values via numerical calculations with two
products and two values. These calculations suggest that
our main results extend if values are positively correlated
but fail if they are negatively correlated. In particular, if
values are positively correlated, separable mechanisms
remain optimal, and static mechanisms are suboptimal if
the first product has a lower monopoly price than the
second product. Both of these two conclusions fail if val-
ues are negatively correlated. We leave a thorough anal-
ysis of correlated values to future work.

1.1. Related Work
Closest to our work are the papers that consider selling
multiple products with ex post participation constraints.

Figure 1. Static vs. Optimal Mechanisms

Notes. The dark-shaded region is the set of (q1, q2) for which static
mechanisms are suboptimal. The right and bottom boundaries are
not in the set.
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These papers assume that the allocation of each product
must be specifiedwhen the product arrives (because the
product would perish otherwise). As a result, unlike
ours, these papers are not concerned with the perform-
ance of static bundling mechanisms. Papadimitriou
et al. (2016) show that when the buyer’s values are cor-
related, finding optimal mechanisms is computationally
hard. Mirrokni et al. (2016) characterize approximately
optimal mechanisms with multiple buyers recursively.
Mirrokni et al. (2020) consider the design of approxi-
mately optimal mechanisms when buyers have differ-
ent expectations of future distributions. Balseiro et al.
(2018) impose a martingale constraint on the buyer’s
utility and show that the seller’s profit approaches first
best (full surplus extraction) as the number of products
grows.

The ex post utility constraint is related to limited
liability constraints in dynamic principal agent mod-
els. Krishna et al. (2013), Krähmer and Strausz (2017),
and Grillo and Ortner (2018) study contracts in which
the agent’s stage utility is nonnegative. In our setting,
a mechanism with nonnegative stage utilities also
has nonnegative ex post utilities. Nonetheless, the two
constraints are equivalent when solving for optimal
mechanisms because a separable mechanism satisfies
the nonnegative stage utility constraint. Relatedly,
Sappington (1983), Clementi and Hopenhayn (2006),
and DeMarzo and Sannikov (2006) assume that the
agent cannot makemonetary transfers to the principal.

Ex post participation constraints have also been
studied for selling a single product. Krähmer and Strausz
(2015) consider a problem where the seller has a single
item to sell and the buyer sequentially receives signals
about her valuation. They show that assuming a mono-
tone hazard rate condition, static mechanisms are opti-
mal. Bergemann et al. (2017) consider the same setting
and provide necessary and sufficient conditions for opti-
mality of static mechanisms. Krähmer and Strausz (2016)
consider a multiunit extension of the problem.When the
buyer’s utility is linear in quantity but the seller’s costs
are nonlinear, static mechanisms are suboptimal. The
main question studied in these papers, namely optimal-
ity of static mechanisms, is similar to ours. Nevertheless,
the settings and results are different.

More broadly, our work relates to two well-studied
branches of literature onmechanismdesign, namelymul-
tiproduct bundling and dynamicmechanismdesign.

The literature on multiproduct bundling goes back
to Stigler (1963) and Adams and Yellen (1976). This lit-
erature considers static mechanisms. That is, the buyer
walks into the store knowing her values (alternatively,
the buyer learns no new information about her values).
McAfee et al. (1989) and Manelli and Vincent (2007)
show that optimal screening mechanisms typically
involve mixed bundling (i.e., offering a menu of bun-
dles and prices). More generally, the literature shows

that optimal mechanisms are complex. The optimal
menu may include unboundedly many randomized
bundles (Manelli and Vincent 2007). As such, charac-
terizations of optimal mechanisms are rare. Exceptions
exist, such as Rochet and Chone (1998) and Daskalakis
et al. (2017). Rochet and Chone (1998) characterize
optimal mechanisms via a sweeping procedure that
generalizes ironing. Daskalakis et al. (2017) character-
ize optimal mechanisms via a dual measure that satis-
fies certain stochastic dominance conditions. To apply
either characterization, one must be able to identify
sweeping procedure or the dual measure for which no
general construction is known. In contrast, optimal
mechanisms can be characterized recursively in our
dynamic setting.

The literature on dynamic mechanism design is sim-
ilarly broad. The main thrusts in this literature study
dynamic arrivals and departures of agents, such as in
Pai and Vohra (2008) and Gershkov and Moldovanu
(2009, 2010), and agents whose private informa-
tion evolves, such as in Courty and Li (2000), Eső
and Szentes (2007), Bergemann and Välimäki (2010),
Boleslavsky and Said (2012), Kakade et al. (2013), and
Pavan et al. (2014). Garrett (2016) combines these two
branches by considering a setting with dynamic arrival
and evolving values. A main difference with our paper
is in the ex post nonnegative utility constraint. Prior
literature, with the exceptions we discussed before,
considers weaker notions of individual rationality
requiring that in the beginning of each period, the
expected utility from all future periods must be
nonnegative.

2. The Model
A seller has k products to sell to a single buyer. The
cost of production is normalized to zero. The buyer’s
value for product i ∈ {1, : : : ,k} is vi ∈ Vi ⊆ R

+. Assume
that Vi is finite. Each value vi is drawn independently
from all other values with probability fi(vi) > 0. The
distributions f1 to fk are commonly known to the seller
and the buyer. We refer to v � (v1, : : : ,vk) as the ex
post type of the buyer. The utility of an ex post type v
for receiving a set of products S ⊆ {1, : : : ,k} and trans-
ferring t ∈ R units of money to the seller is

∑
i∈S vi( ) − t.

The buyer is risk neutral; that is, the utility of receiv-
ing each product i with probability ai and a random
monetary transfer with expectation t to the seller is
v · a− t � ∑

i viai( ) − t.
The buyer privately learns her values over time. In

particular, in each period i from one to k, vi is privately
revealed to the buyer. Thus, in period i, the buyer
knows values v1 to vi. Define Θi �∏i

j�1Vj. For a given

v, let vi � (v1, : : : ,vi) ∈Θi be the first i components of v.
If the buyer’s ex post type is v, her interim type in
period i is vi.
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We focus on direct incentive compatible mecha-
nisms. A (direct) mechanism (a, t) consists of an alloca-
tion rule ai :Θ1 × : : : ×Θk → [0, 1] for each i ∈ {1, : : : , k}
and a transfer rule t :Θ1 × : : : ×Θk → R. The interpre-
tation is that in each period i, upon realizing each
value vi, the buyer reports an interim type θi ∈Θi to
the mechanism. At the end of the last period k, the
buyer receives each product i with probability ai(θ1,
: : : ,θk) and transfers t(θ1, : : : ,θk) units of money to the
mechanism. Notice that our mechanisms allow the
buyer to “rereport” all the values she has observed so
far. The reason is that we would like to define the
class of all mechanisms generally so that it contains
several interesting classes as special cases. For in-
stance, as we see shortly, two special cases are static
mechanisms and ones in which the agent only reports
her value vi in each period i.

A mechanism is periodic incentive compatible (PIC)
if the agent maximizes her expected utility in each
period by reporting her type truthfully, regardless of
past reports. Formally, a mechanism (a, t) is PIC if for
each period i, interim type (v1, : : : ,vi), history of re-
ports θ1, : : : ,θi−1, and possible report θi in period i, we
have

E
vi+1, : : : ,vk

v · a θ1, : : : ,θi−1,vi,vi+1, : : : ,vk
( )[

− t θ1, : : : ,θi−1,vi,vi+1: : : ,vk
( )]

≥ E
vi+1, : : : ,vk

v · a θ1, : : : ,θi−1,θi,vi+1, : : : ,vk
( )[

− t θ1, : : : ,θi−1,θi,vi+1, : : : ,vk
( )]

:

(Recall that for a given v, vj � (v1, : : : ,vj).) The left-hand
side is the agent’s expected utility from reporting her
type truthfully in periods i to k, following the history
of reports θ1, : : : ,θi−1. The right-hand side is the ex-
pected utility from reporting θi in period i and report-
ing truthfully in periods i + 1 to k, following the history
of reports θ1, : : : ,θi−1. Notice that backward induction
implies that, regardless of what the agent reports in
period i, reporting truthfully in periods i + 1 to k is
indeed the optimal strategy in those periods. There-
fore, PIC implies that the agent maximizes her ex-
pected utility by reporting her types truthfully over all
possible strategies that may involve misreporting her
types in the future periods.

A mechanism is ex post individually rational (ex
post IR) if it guarantees nonnegative utility for the
buyer. Let us abuse notation and denote by a(v) and
t(v) the outcome of the mechanism if the buyer reports
all of her interim types consistent with an ex post type
v (that is, a(v) � a(v1,v2, : : : ,vk)) and similarly for t. A
mechanism (a, t) is ex post IR if at the end of period k,

given the buyer’s optimal strategy (reporting truth-
fully), the expected utility of the buyer is nonnegative,

v · a(v) − t(v) ≥ 0,

for all ex post types v. Note that ai denotes the proba-
bility of allocation. Thus, the ex post individual ration-
ality states that the utility of the buyer is nonnegative
for all ex post types v but in expectation over the ran-
dom choices of the mechanism. Even though the ex
post IR constraint is written in expectation, it is possi-
ble to guarantee nonnegative utility for all random
choices of the mechanism by appropriately correlating
transfers with allocation. We defer the argument to
Section A in the e-companion. Following that argu-
ment, we abuse terminology and refer to the con-
straint as the ex post IR constraint, even though it
is written in expectation over the randomization of
the mechanism. In addition, we refer to a(v), t(v), and
v · a(v) − t(v) as the buyer’s ex post allocation, transfer,
and utility, respectively.

The problem is to find a mechanism (a, t) that maxi-
mizes the (expected) revenue

Ev1,: : : ,vk t(v)[ ],
subject to the PIC and ex post IR constraints.

A special class of mechanisms is the class of static
mechanisms. A static mechanism is a mechanism
where the outcome depends only on the report in the
last period k. Formally, a mechanism (a, t) is static if

(a, t)(θ1, : : : ,θk) � (a, t)(θ̂1
, : : : , θ̂

k)whenever θk � θ̂
k
. We

can, therefore, represent such a mechanism more suc-
cinctly by its allocation rule aST :Θk → X and transfer
rule tST :Θk → R in the last period. The interpretation
is that in the last period k, having learned all her val-
ues, the buyer makes a report v to the mechanism. The
buyer then receives each product i with probability
aSTi (v) and transfers tST(v) to the mechanism. Because
the reports in the periods before k are irrelevant, a
static mechanism trivially satisfies all periodic incen-
tive compatibility constraints before the last period k.
Therefore, a static mechanism is PIC if it satisfies the
last period incentive compatibility condition,

v · aST(v) − tST(v) ≥ v · aST(v̂) − tST(v̂),
for all v, v̂ ∈Θk. Similarly, a static mechanism (aST, tST)
is ex post IR if

v · aST(v) − tST(v) ≥ 0:

This formulation is used in the multiproduct mecha-
nism design literature (e.g., in Manelli and Vincent
2007, Daskalakis et al. 2014). Thus, our model nests
the optimal mechanism design problem for selling k
products with static mechanisms as a special case.
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Another special case is when the agent only reports
vi in period i. This is captured by requiring the alloca-
tion and the transfer to depend on the report θi in
period i only through θi

i. That is, (a, t)(θ1, : : : ,θk) �
(a, t)(θ̂1

, : : : , θ̂
k) if θi

i � θ̂
i
i for all i. Even though this is a

very natural class of mechanisms, it does not contain
the class of all static mechanisms because the exten-
sive form games they represent are different. By defin-
ing the class of mechanisms generally so that the
agent reports her interim type in every period, we
ensure that both static mechanisms and ones where
the agent only reports her value are included as spe-
cial cases.

The optimal revenue among all mechanisms is at
least as high as the revenue from any static mechanism.
This observation immediately follows from the fact that
static mechanisms are a subclass of all mechanisms. A
question we ask is whether the optimal revenue is
strictly higher than that from static mechanisms. To this
end, we first identify the optimal revenue and then, ask
whether it can be achieved by a static mechanism.

3. Recursion, Separability, and
Promised Utility

The periodic incentive compatibility constraints are
complex. In each period, the buyer may misreport dif-
ferent dimensions of her interim type. Even for the
special case of static mechanisms where all incentive
constraints before the last period are trivially satisfied,
the incentive constraints are complex. Nevertheless,
we show that the optimization problem can be solved
by making two observations. First, to maximize reve-
nue, it is sufficient to focus on a simple class of separa-
blemechanisms. Second, it is possible to optimize over
separable mechanisms recursively.

A separable mechanism satisfies two properties.
First, no rereporting is required. That is, in each period
i, the buyer only reports her value vi for product i
(instead of her interim type). Second, the allocation
of product i is based on the reports made up to
(and including) period I but does not depend on
reports made in periods i + 1 to k. Formally, we have
Definition 1.

Definition 1. A mechanism (a, t) is separable if for all

θ1, : : : ,θk and θ̂
1
, : : : , θ̂

k
,

1. t(θ1, : : : ,θk) � t(θ̂1
, : : : , θ̂

k) if θi
i � θ̂

i
i for all i and

2. for all i, ai(θ1, : : : ,θk) � ai(θ̂1
, : : : , θ̂

k) if θ j
j � θ̂

j
j for

all j ≤ i.

The first property states that the payment rule
depends on the report θi in each period i only through
the value learned in that period θi

i. The second prop-
erty states that the allocation of product i depends on
the report θj in period j ≤ i only through the value

learned in that period θ
j
j and does not depend on the

report θj′ in period j′ > i. We will henceforth represent
a separable mechanism more succinctly with func-
tions aSPi :Θi → [0, 1] and tSP :Θk → R (as opposed to
ai :Θ1 × : : : ×Θk → [0, 1] and t :Θ1 × : : : ×Θk → R for
a general mechanism). The interpretation is that the
buyer reports vi in each period i. Given reports
(v1, : : : ,vk), product i is allocated with probability
aSPi (v1, : : : ,vi), and the transfer is tSP(v1, : : : ,vk).

We now show that to maximize revenue, it is with-
out loss of generality to restrict attention to separable
mechanisms. Notice that a separable mechanism is
handicapped. It does not have the ability to bundle
the products together because it cannot tie the alloca-
tion of a product to the allocation of future products
(and the buyer’s reports about those values). In con-
trast, a static mechanism does have the ability to bun-
dle (we later return to this comparison and provide
examples). As a result, it is a priori not clear that the
optimal separable mechanism obtains at least as much
revenue as all static mechanisms, let alone all mecha-
nisms (that include separable and static mechanisms
as special cases).

Example 1. There are two products, and the value for
each product is either 1 or 2. Consider a static mecha-
nism that only offers the bundle of both products for a
price of 3. The allocation probabilities and transfers
are shown in Table 1 for all types.

Notice that the allocation of product 1 depends on
the value for product 2, a1(1, 2)≠ a1(1, 1), and vice
versa for product 2. Thus, no separable mechanism
can implement this allocation.

To argue that restricting to separable mechanisms is
without loss of generality for maximizing revenue, we
convert any mechanism to a separable mechanism
with the same revenue (but with a different allocation
rule). In particular, given a mechanism (a, t), define its
induced separable mechanism (aISP, tISP) as follows. The
allocation probability aISPi is the expectation of the allo-
cation probability ai assuming truthful reporting in all
future periods. That is, for any v1, : : : ,vi,

aISPi (v1, : : : ,vi) :� Evi+1,: : : ,vk ai(v)[ ]: (1)

(Recall that ai(v) is the shorthand for the allocation
when the buyer reports (v1, : : : ,vj) in each period j.)

Table 1. The Static Mechanism in Example 1

v1 v2 a1 a2 t

1 1 0 0 0
1 2 1 1 3
2 1 1 1 3
2 2 1 1 3
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For v � (v1, : : : ,vk), define the transfer as follows:

tISP(v) :� t(v) − v · a(v) + v · aISP(v): (2)

(Recall similarly that t(v) is the shorthand for the
transfer when the buyer reports (v1, : : : ,vj) in each
period j.)

Let us verify properties of this construction. First, if
a mechanism is ex post IR, then so is its induced sepa-
rable mechanism. This is because the transfer rule of
the induced separable mechanism is defined such that
the two mechanisms have the same ex post utility.
That is, rearranging Equation (2), we have

v · aISP(v) − tISP(v) � v · a(v) − t(v) (3)

for all v. Second, the two mechanisms have the same
revenue. The reason is that the two mechanisms have
the same ex post utility and also, create the same sur-
plus. More precisely, take the expectation of Equa-
tion (2),

Ev tISP(v)[ ] � Ev t(v)[ ] + Ev v · aISP(v) − v · a(v)[ ]
� Ev t(v)[ ] +∑

i
Ev viaISPi (v1, : : : , vi) − viai(v)[ ]

� Ev t(v)[ ] +∑
i
Ev1,: : : ,vi vi(aISPi (v1, : : : , vi)[

−Evi+1,: : : ,vk ai(v)[ ])]
� Ev t(v)[ ], (4)

where the last equality follows from Equation (1). It
only remains to verify that these adjustments do not
violate the PIC constraints.

To see that the construction preserves incentive com-
patibility, let us first verify incentive compatibility on
path: that is, following a history of truthful reports. More
precisely, the PIC constraint for a separable mechanism
requires that for each period i, interim type (v1, : : : ,vi),
history (v̂1, : : : v̂i−1), and report v̂i in period i, we have

E
vi+1, : : : ,vk

v · aSP v̂1, : : : , v̂i−1,vi,vi+1, : : : ,vk( )[
− tSP v̂1, : : : , v̂i−1,vi,vi+1, : : : ,vk( )]

≥ E
vi+1, : : : ,vk

v · aSP v̂1, : : : , v̂i−1, v̂i,vi+1, : : : ,vk( )[
− tSP v̂1, : : : , v̂i−1, v̂i,vi+1, : : : ,vk( )]:

A mechanism satisfies PIC on path if the above
inequality holds for all i, (v1, : : : ,vi), (v̂1, : : : v̂i−1) �
(v1, : : : ,vi−1), and v̂i. Consider the utility of a buyer
with value vi from reporting v̂i. By Equation (3), the
expected utility of the buyer in the induced separable
mechanism is equivalent to the utility she would get
in mechanism (a, t) if she reports v̂i instead of vi in
every period i to k (recall that the buyer reports her full

interim type in each period and that a(v) and t(v)
stand for the outcome if the buyer reports v1, : : : ,vi in
each period i). However, by incentive compatibility of
(a, t), the buyer is better off if she reports vi instead of
v̂i in every period. Thus, the incentive constraint is
satisfied on path.

The equivalence discussed no longer holds off path
(i.e., following a history of nontruthful reports (v̂1,
: : : v̂i−1)≠ (v1, : : : ,vi−1)). To establish incentive compat-
ibility off path, we notice that a separable mechanism
is PIC if it is PIC on path. Indeed, in a separable mech-
anism, the report in period i does not affect the alloca-
tion of products 1 to i – 1. Thus, because future values
are independent of the interim type, the incentive con-
straint at period i for an interim type (v1, : : : ,vi) fol-
lowing a history of reports v̂1, : : : , v̂i−1 is identical, up
to a constant, to the incentive constraint for an interim
type (v̂1, : : : , v̂i−1,vi) following a history of truthful
reports (v̂1, : : : , v̂i−1). Thus, if a separable mechanism is
incentive compatible for all histories of truthful
reports, then it is incentive compatible for all histories.
Formally, we have the following lemma.

Lemma 1. A separable mechanism (aSP, tSP) is PIC if it is
PIC on path.

Proof. The PIC constraint in period i is that for an
interim type v1, : : : ,vi−1 and following a history of
reports v̂1, : : : , v̂i−1, the expected utility of the buyer

E v · aSP v̂1, : : : , v̂i−1, v̂i,vi+1, : : : ,vk( )[
− tSP v̂1, : : : , v̂i−1, v̂i,vi+1, : : : ,vk( )]

is maximized over all reports v̂i by setting v̂i � vi. Sep-
arability implies that the utility of the buyer from the
allocation of products 1 to i – 1,

∑
j<i vjaSPj (v̂1, : : : , v̂j),

does not depend on the report in period i. Therefore,
the report that maximizes the expected utility does
not change if

∑
j<i vjaSPj (v̂1, : : : , v̂j) is replaced by

∑
j<i v̂j

aSPj (v̂1, : : : , v̂j), which also does not depend on v̂i. As a
result, the incentive constraint holds if

E (v̂1, : : : , v̂i−1,vi, : : : ,vk) · aSP(v̂1, : : : , v̂i−1, v̂i,vi+1, : : : ,vk)
[
− tSP(v̂1, : : : , v̂i−1, v̂i,vi+1, : : : ,vk)

]
is maximized over all v̂i by setting v̂i � vi. This con-
straint is the PIC constraint of interim type (v̂1, : : : ,
v̂i−1,vi) following a truthful history of reports
v̂1, : : : , v̂i−1. Notice that this proof uses the assumption
that values are independent. Without it, the two
expectations should be conditioned on the interim
type (v1, : : : ,vi), and so, the last expectation does not
represent the PIC constraint of interim type (v̂1, : : : ,
v̂i−1,vi), which needs to be conditioned on (v̂1, : : : ,
v̂i−1,vi). w
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The following proposition summarizes the argu-
ments made so far.

Proposition 1. The revenue of any mechanism is equal to
the revenue of its induced separable mechanisms. If a mech-
anism is PIC and ex post IR, then so is its induced separable
mechanism.

The PIC constraint for a separable mechanism is
simpler than the PIC constraint for a general mecha-
nism. Consider the incentive compatibility constraint at
a period i. By Lemma 1, we need to only consider the
PIC constraints on path. In a separable mechanism,
the allocation of products 1 to i – 1 does not depend on
the report at period i. Therefore, to choose her report in
period i, the buyer only takes into account the alloca-
tions of products i to k and the transfer. For reports
(v1, : : : ,vi), define the continuation utility CUi of the
buyer to be the expected utility from the allocation of
products i + 1 to k and the transfer, assuming truthful
reporting in future periods:

CUi(v1, : : : ,vi) � Evi+1,: : : ,vk
∑
j>i

vjaj(vj)
( )

− t(v)
[ ]

:

Note also that the continuation utility does not de-
pend on the buyer’s interim type in period i and
instead, is only a function of the reports that the buyer
makes. The PIC constraint on path at every period i is
that for all v1, : : : ,vi and v̂i, the buyer maximizes the
sum of her stage utility in period i plus her continua-
tion utility from the future periods by reporting her
value truthfully:

viai(v1, : : : ,vi−1,vi) +CUi(v1, : : : ,vi−1,vi)
≥ viai(v1, : : : ,vi−1, v̂i) +CUi(v1, : : : ,vi−1, v̂i): (5)

This simplification allows us to recursively optimize
over separable mechanisms, as discussed next.

3.1. Recursive Optimization: Separability and
Promised Utility

We now present a recursive characterization of optimal
separable mechanisms. In particular, we define a class
of promised utility mechanisms and show that they are
optimal. These promised utility mechanisms are sepa-
rable mechanisms that maintain a scalar state variable,
the promised utility to the agent. This state variable
affects the allocation in each period and is updated in
each period based on the report of the agent. Promised
utility mechanisms are defined given solutions to a cer-
tain one-product mechanism design problem. We start
by defining these one-product mechanism design prob-
lems recursively.

Definition 2 (The Continuation Revenue Problem). De-
fine the seller’s continuation revenue functions CRk+1,
: : : ,CR1 recursively as follows. Let CRk+1(EU) � −EU

for EU ∈ R
+. For all i ≤ k and EU ∈ R

+,

CRi(EU)
:� max

a:Vi→[0,1], t:Vi→R

Evi via(vi) +CRi+1(via(vi) − t(vi))[ ],
(6)

s:t: via(vi) − t(vi) ≥ via(v̂i) − t(v̂i); ∀vi, v̂i ∈ Vi,

(7)

via(vi) − t(vi) ≥ 0; ∀vi ∈ Vi, (8)

Evi via(vi) − t(vi)[ ] � EU: (9)

Define (AEU
i ,T EU

i ) to be the set of optimal solutions to
this problem.

The continuation revenue problem in each period i
is the problem of optimizing over one-product mecha-
nisms (a, t) that map the report in period i to an alloca-
tion for that product and a transfer. Constraints (7) and
(8) are the standard incentive compatibility and indi-
vidual rationality constraints for a one-product mecha-
nism. However, this problem has two nonstandard
features. First, there is an expected utility Constraint
(9). It requires that the expected utility of the agent is
equal to a given constant EU. Second, the objective is
to maximize the expected surplus from allocation in
period i plus the continuation revenue from period
i + 1 (instead of the standard objective of maximizing
revenue). We next use the solutions to the continuation
revenue problem to define promised utility mecha-
nisms. Because there may be multiple optimal solu-
tions to the continuation revenue problem, there may
bemultiple promised utility mechanisms.

Definition 3 (The Promised Utility Mechanism). A pro-
mised utility mechanism is parameterized by any pro-
file of optimal solutions (aEUi , tEUi ) ∈ (AEU

i ,T EU
i ) to the

continuation revenue problem (Definition 2) for all i
and EU ∈ R

+. Set the initial promised utility PU1 equal
to anymaximizer ofCR1(EU), and set the agent’s trans-
fer T � 0. At each period i, given the current promised
utility PUi and report vi,

• the buyer gets product iwith probability aPUi
i (vi),

• the transfer is updated by setting T :� T+ viaPUi
i (vi),

and
• the promised utility is updated by setting PUi+1 :�

viaPUi
i (vi) − tPUi

i (vi).
At the end of the last period, the buyer pays T−

PUk+1.

A promised utility mechanism maintains a scalar
state variable PUi, which is the agent’s promised
(expected) utility in period i. When the agent reports vi
in period i, she gets product i with probability aPUi

i (vi),
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and her final transfer T increases by a certain amount.
An important feature is that this extra transfer is the
surplus of allocation viaPUi

i (vi) and is not tPUi
i (vi). This

means that the agent’s stage utility from being truthful
is zero. To incentivize truthfulness, the agent’s prom-
ised utility is adjusted to viaPUi

i (vi) − tPUi
i (vi). This fea-

ture of the promised utility mechanism explains
Objective (6) of the continuation revenue problem. The
objective is the extra transfer from the current period,
which is equal to the surplus of allocation in that
period plus the continuation revenue given the prom-
ised utility in the future periods.

To see that promised utility mechanisms satisfy
PIC, consider any report v̂i. The agent gets the prod-
uct with probability aPUi

i (v̂i), her payment increases by
v̂iaPUi

i (v̂i), and her promised utility becomes v̂iaPUi
i (v̂i)

− tPUi
i (v̂i). So, she maximizes

via
PUi
i (v̂i) − v̂ia

PUi
i (v̂i) + v̂ia

PUi
i (v̂i) − tia

PUi
i (v̂i)

� viaPUi
i (v̂i) − tiaPUi

i (v̂i),
which is achieved by reporting truthfully, v̂i � vi, by
the incentive constraint of the continuation revenue
Problem (7). After the last period, themechanism gives
the agent a discount of PUk+1 on her final transfer. That
is, the mechanism fulfills the final promised utility to
the agent by paying her cash.

Giving the agent zero stage utility in all periods
(except last) is useful because it means that a nonnega-
tive promised utility is sufficient to ensure that the
agent’s ex post IR constraint is satisfied. This is because
the agent’s ex post utility is the cash she is offered
PUk+1 at the end of the last period. So, ex post IR is sat-
isfied if and only if the promised utility at the end of
the last period is nonnegative.

The proposition shows that promised utility mecha-
nisms are optimal.

Proposition 2. A mechanism is optimal if and only if
its induced separable mechanism is a promised utility mechanism.

The main observation in the proof of Proposition 2 is
that in an optimal separable mechanism, following any
history, the “continuationmechanism”must be optimal
over all possible continuation mechanisms with the
same continuation utility. In particular, fix a history
(v1, : : : ,vi). Consider the continuation mechanism (that
is, a mechanism that maps reports in periods after i,
(vi+1, : : : ,vk), to allocations for those products and a
transfer). Notice that if we replace this continuation
mechanismwith another one that has the same continu-
ation utility, then the PIC Constraint (5) in period i will
remain satisfied. Thus, in an optimal mechanism, the
continuation mechanism following the history must
be optimal over all continuation mechanisms with the
same continuation utility. Otherwise, the continuation

mechanism can be replaced with one with higher reve-
nue. We can thus maintain the “promised utility” PUi �
CUi(v1, : : : ,vi) as a scalar state variable that summarizes
the history. We can use this observation to recursively
characterize the optimal continuation revenue for a
given promised utility.

4. Optimality of Static Mechanisms
The fact that separable mechanisms are optimal does
not necessarily mean that static mechanisms are subop-
timal because there may be multiple optimal mecha-
nisms. We now study whether static mechanisms can
be optimal. To answer this question, we use Proposi-
tion 2 to identify optimal revenue and then, verify
whether a static mechanism exists that achieves that
optimal revenue. The interpretation of these results is
that, under the specified conditions for suboptimality
of static mechanisms, the ability to screen types
dynamically is strictly more profitable for the seller
than the ability to bundle products, even if we take
away the seller’s ability to charge advance payments
(because of the ex post IR constraint).We start by provid-
ing necessary and sufficient conditions for optimality of
staticmechanismswith two products and two values.We
then provide sufficient conditions for suboptimality of
static mechanisms with any number of products and
values.

4.1. Tight Conditions for Two Products and
Two Values

Suppose that there are two products and two values,
V1 � V2 � {v,v}, where v < v. The proposition specifies
two conditions that are together necessary and suffi-
cient for suboptimality of static mechanisms. For this
result, let q1 � f1(v) and q2 � f2(v) denote the probabil-
ity of high value in each period.

Proposition 3. Assume that k � 2 and V1 � V2 � {v,v},
where v < v. Any static mechanism is suboptimal if and
only if q1 < v=v and q2 > v(1− q1)=(v − q1v).

The set of parameters q1 and q2 for which static
mechanisms are suboptimal is drawn in Figure 2.
Notice that the condition q1 < v=v or equivalently,
vq1 < v states that the unique optimal monopoly price
for the first product is v. That is, for selling only the
first product, the seller obtains a strictly higher reve-
nue by choosing a low price compared with a high
price. The condition q2 > v(1− q1)=(v − q1v) is more
complex. Nevertheless, because v(1− q1)=(v − q1v) is
decreasing in q1, it is sufficient that q2 > v=v or equiva-
lently, vq2 > v. That is, the unique optimal monopoly
price for the second product is v. To summarize, static
mechanisms are suboptimal if (but not only if) the
optimal monopoly price for product 1 is strictly less
than the optimal monopoly price for product 2. In the
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next section, we show that this statement generalizes
to any number of products and values.

To prove Proposition 3, we provide a characteriza-
tion of the optimal mechanisms stated. There are five
cases. In four cases, a static mechanism is optimal. The
four static mechanisms are simple. Three of them sell
the products separately. That is, each product has a
price, and the buyer can buy each product by paying
its price. The fourth static mechanism is a bundling
mechanism that only offers the two products as a bun-
dle. The fifth mechanism is separable. This mecha-
nism sells the second product via a take it or leave it
price that depends on the reported value in the first
period. The conditions of Proposition 3 for subopti-
mality of static mechanisms are precisely those under
which this separable mechanism outperforms all four
static mechanisms.

To state the proposition, recall that q1 � f1(v) and
q2 � f2(v). Define the price p∗ � v− (1− q2)(v − v). The
price p∗ is constructed such that the expected utility of
the buyer from being offered a take it or leave it price
p∗ for the second product is equal to v − v. This price is
low enough (below v) to be accepted by both possible
values.

Proposition 4. Assume that k � 2 and V1 � V2 � {v,v},
where v < v. At least one of the following five mechanisms
is optimal.

1. Sell each product separately at price v.
2. Sell each product separately at price v.
3. Sell each product separately at price v for the first prod-

uct and v for the second product.
4. Sell only the grand bundle at price v+ v.
5. In the first period, the buyer reports v1 and receives the

first product with probability one. In the second period, the

buyer pays v1, and in addition, she is offered the second prod-
uct at price v if v1 � v and at price p∗ if v1 � v.

If q1 < v=v and q2 > v(1− q1)=(v − q1v), then the fifth
mechanism is the unique optimal separable mechanism.
Otherwise, that is if q1 ≥ v=v or q2 ≤ v(1− q1)=(v − q1v),
then at least one of the first four mechanisms is optimal.

Given Proposition 4, to identify an optimal mecha-
nism, one needs only to compare the revenue of the
five mechanisms. The revenue of each mechanism can
be written in closed form. For the first four mecha-
nisms, revenue is simply the prices times the probabil-
ity of purchase. To calculate the revenue of the fifth
mechanism, notice that the buyer pays her expected
value of the first product, and she is in addition offered
the second product at price v with probability 1− q1 (if
v1 � v) and at price p∗ with probability q1 (if v1 � v).
Thus, revenue is

E v1[ ] + (1− q1)q2v + q1p∗:

The comparisons between the revenues of these mech-
anisms are provided in the proof of Proposition 4 in
the e-companion. The conditions of Proposition 3 are
precisely those under which this dynamic mechanism
outperforms all four static mechanisms identified in
Proposition 4.

Proposition 4 is independently useful because it can
be used to identify optimal static screening mecha-
nisms. In particular, if q1 ≥ v=v or q2 ≤ v(1− q1)=(v−
q1v), then one of the four static mechanisms identified
in Proposition 4 is optimal among all static mechanisms.
This is simply because under these conditions, one
of these mechanisms is optimal in the larger class of
all mechanisms (static or not). This suggests that our
approach may be more generally useful for solving,
either exactly or approximately, the notoriously diffi-
cult problem of selling multiple products using static
mechanisms. In general even verifying the optimality
of a given static mechanism is not straightforward
because it requires the construction of appropriate dual
certificates (Daskalakis et al. 2017, Carroll 2017, Cai et al.
2019). Additionally, even though the case of two prod-
ucts and two values can be solved in a static setting via
case analysis, such analyses are typically tedious. For
instance, Armstrong and Rochet (1999) solve a screen-
ing problem with four types. They consider all possible
ways to relax subsets of the incentive constraints, and
they identify conditions under which the solution to
each relaxation satisfies all the constraints and there-
fore, is optimal. In comparison, our recursive formula-
tion allows the incentive constraints in the two periods
to be separated and solved using standard tools.

The proof of Proposition 4 relies on a characterization
of the continuation revenueproblem(inDefinition2) in the
last period k. We provide this characterization generally
with any number of values in the e-companion and use

Figure 2. Static vs. Optimal Mechanisms

Note. The dark-shaded region is the set of (q1, q2) for which static
mechanisms are suboptimal.
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it also in the next section. The characterization shows that
it is optimal to choose one of atmost two prices at random
and sell the product at that price as a take it or leave
it offer. These prices are obtained from “concavifying”
an appropriately constructed revenue function shown in
Figure 3. The revenue function plots the expected utility to
the buyer fromposting any price p ∈ Vk, E max(vk − p, 0)[ ]
against the revenue that the seller obtains from that price
p ·Pr[vk ≥ p].

4.2. Sufficient Conditions for Any Number of
Products and Values

In this section, we identify sufficient conditions for the
suboptimality of static mechanisms with any number
of products and values. We show that static mecha-
nisms are suboptimal if the first product has lower
monopoly prices than the second product, partially
generalizing Proposition 3 to any number of values.
To do so, we use the recursive characterization of opti-
mal mechanisms in Proposition 2. To simplify exposi-
tion, we assume that V1 � : : : � Vk.

We start with defining the main condition of the
result. For each i, let Pi be the set of optimal monopoly
prices for selling product i. That is, Pi � argmaxp p·
Pr[vk ≥ p]. Let pi and pi be the largest and smallest
such prices. We say that product 1 has lower monopoly
prices than product k if p1 < pk. If the optimal mo-
nopoly prices are unique, the condition simply means
that the monopoly price for product 1 is lower than
the monopoly price for product k. Notice that if there
are two products and V1 � V2 � {v,v}, then product 1
has lower monopoly prices than product j if and only
if P1 � {v} and P2 � {v}. Thus, the condition is weaker
than the conditions of Proposition 3 but allows for a
generalization to any number of products and values.

Proposition 5. Assume that V1 � : : : � Vk. Any static
mechanism is suboptimal if product 1 has lower monopoly
prices than product k.

To outline the proof, suppose for simplicity that
there are only two products and the optimal monopoly
prices p1 and p2 are unique. Assume that p1 < p2.
Assume for contradiction that a static mechanism (a, t)
is optimal. By Proposition 1, its induced separable
mechanism (aISP, tISP) must also be optimal. We show
that this observation implies that a(p1,v2) � (1, 1) for all
v2. The intuition is that the optimal allocation in the
continuation revenue problem is more efficient than in
the standard problem of maximizing revenue for sell-
ing only product 1. This is because in the continuation
revenue problem, the seller obtains some profit from
giving information rents to the agent. So, any type
with value v1 ≥ p1 must receive product 1 with proba-
bility one, and we show that this implies that such a
type must also receive product 2 with probability one.
The fact that a(p1,v2) � (1, 1) for all v2 means that the
grand bundle is offered at a relatively low price. This
implies that in the optimal separable mechanism,
the promised utility to even the lowest interim type in
the first period is relatively high. Then, we show that
we can lower the promised utility to all types by the
same amount and increase revenue, contradicting the
optimality of the static mechanism.

5. Correlated Values
Extending our formal analysis to allow for correlated
values requires a significantly different set of tools
from those developed in this paper. Instead, we here
use numerical calculations to study the robustness of
our two main insights, namely the optimality of sepa-
rable mechanisms and the conditions for suboptimal-
ity of static mechanisms. Our main finding is that these
two insights extend with positively correlated values
but fail with negatively correlated values. Throughout
this section, we focus on two products and binary val-
ues whereV1 � V2 � {1, 2}.

5.1. Our Parametrization
We start by discussing how we parameterize distribu-
tions. In order to facilitate comparisonwith the results in
Section 4, we use q1 � Pr[v1 � 2] and q2 � Pr[v2 � 2] to
denote the probabilities of high values. A third parame-
ter λ ∈ [−1, 1] pins down Pr[v1 � 2,v2 � 2] and thus, the
whole distribution. This parameter λ measures the
degree of correlation. For λ ≥ 0, Pr[v1 � 2,v2 � 2] is a
convex combination of this probability if values were
independent, q1q2, and the highest possible value it can
take, min(q1,q2) (otherwise, either Pr[v1 � 2,v2 � 1] or
Pr[v1 � 1,v2 � 2] becomes negative):

Pr[v1 � 2,v2 � 2] � (1−λ)q1q2 +λmin(q1,q2):

Figure 3. The Continuation Revenue Function

Note. The continuation revenue function in the last period CUk

is the concavification of a function that maps the expected utility
E max(vk − p, 0)[ ]

from Posting Any Price p ∈ Vk to the Revenue of
That Price p ·Pr[vk ≥ p]
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Thus, λ � 0 represents the independent distribution,
and λ � 1 represents the highest positive correlation
(perfect positive correlation if λ � 1 and q1 � q2). For
λ ≤ 0, Pr[v1 � 2,v2 � 2] is a convex combination of this
probability if values were independent, q1q2, and the
lowest possible value it can take, max(0,q1 + q2 − 1)
(otherwise, either Pr[v1 � 2,v2 � 2] or Pr[v1 � 1,v2 � 1]
becomes negative):

Pr[v1 � 2,v2 � 2] � (1+λ)q1q2 −λmax(0,q1 + q2 − 1):

Thus, λ � 0 represents the independent distribution,
and λ � −1 represents the highest negative correlation
(perfect negative correlation if λ � −1 and q1 + q2 � 1).

To interpret λ, notice that λ ≥ 0 means that values
are positively correlated, E v1v2[ ] ≥ E v1[ ]E v2[ ] (equiva-
lently, the Pearson correlation coefficient is nonnega-
tive), and λ ≤ 0 means that values are negatively
correlated, E v1v2[ ] ≤ E v1[ ]E v2[ ]. Further, the probabil-
ity Pr[v1 � v2] that the two values are equal is increas-
ing in λ. We thus interpret λ as a measure of
correlation and use (q1,q2,λ) ∈ [0, 1] × [0, 1] × [−1, 1] to
parameterize distributions. We use λ to measure cor-
relation because it is orthogonal to q1, q2. That is, for
any given λ ∈ [−1, 1], any q1,q2 ∈ [0, 1] × [0, 1] specifies
a distribution. For other measures of correlation we
are aware of, including the Pearson correlation coeffi-
cient, the possible values of q1, q2 depend on the value
of the correlation measure. We now separately discuss
positive and negative correlations.

5.2. Positive Correlation l ‡ 0
Our first observation is that, perhaps surprisingly,
separable mechanisms seem to remain optimal with
positive correlation. The intuition is that the PIC con-
straints for separable mechanisms become easier to
satisfy with positive correlation. Indeed, an interim

type v1 � 2 assigns a higher conditional probability to
v2 � 2 than does v1 � 1, and so, the interim type v1 � 2
assigns a higher benefit to being offered a discounted
price in the second period. Our second observation is
that static mechanisms seem to remain suboptimal if
product 1 has lower monopoly prices than product 2,
q1 ≤ 0:5 and q2 ≥ 0:5. This is shown in Figure 4 for
three nonnegative values of λ. A black circle corre-
sponds to a distribution where separable mechanisms
outperform static ones. The intuition is that with posi-
tive correlation, the value to the seller of being able to
bundle the products decreases, hence reducing the
value of the bundling instrument relative to the
dynamic screening instrument. As we see next, this
second observation no longer holds with negative
correlation.

5.3. Negative Correlation l£0
With negative correlation, both of our main results fail,
surprisingly quickly in the degree of correlation. In
particular, first, separable mechanisms may be subop-
timal. Second, static mechanisms may outperform sep-
arable mechanisms even if q1 ≤ 0:5 and q2 ≥ 0:5. These
findings are shown in Figure 5 for three nonpositive
values of λ. A black circle corresponds to a distribution
where separable mechanisms outperform static ones,
and a white circle corresponds to a distribution where
static mechanisms outperform separable ones. These
findings suggest that the value of the bundling instru-
ment increases relative to the dynamic screening
instrument with negatively correlated values. The fol-
lowing example explores this intuition further.

Example 2. There are two products, and the value for
a product is either 1 or 2. The probabilities of profiles
(1, 2) and (2, 1) are 0.5 each, and the probabilities of
profiles (1, 1) and (2, 2) are 0 each. Similar examples

Figure 4. Positively Correlated Values

Notes. Values of q1 are on the horizontal axis, and values of q2 are on the vertical axis. Black circles indicate that separable mechanisms outper-
form static ones.
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can be constructed wherein the probabilities of profiles
(1, 1) and (2, 2) are nonzero but small so that all four
type profiles are in the support of the distribution.

The optimal mechanism is static. It extracts the full
surplus by offering the bundle for a price of 3, thus
obtaining a revenue of 3. However, we show that no
separable mechanism has revenue of 3 as we show.

First consider a naive generalization of the construc-
tion in Section 3, where the expected allocation proba-
bilities and the ex post utilities of the separable
mechanism are equal to those of the static mechanism.
Conditioned on v1 � 1, v2 is equal to 2 with probability
one. Thus, a1(1) � 1. Similarly, we have a1(2) � 1. By
definition, the allocation probabilities of product 2 are
equal to those of the static mechanism. The separable
mechanism is shown in Table 2.

Notice that the revenue of the separable mechanism
is indeed 3. However, the separable mechanism is not
PIC. Indeed, the expected utility of an interim type
v1 � 2 from truthfulness is zero because conditioned
on v1 � 2, v2 � 1 with probability one. On the other
hand, the expected utility from reporting v̂1 � 1 is 1
because by doing so, the buyer receives product 1 and
pays 1.

We now argue that indeed no separable mechanism
can obtain a revenue of 3. By ex post IR, for the revenue
to be 3, both types (1, 2) and (2, 1) must receive both
products and pay 3. Thus, in a separable mechanism,
a1(v1) � 1 for all v1. Further, the incentive compatibility

constraint in the second period requires that the proba-
bility of allocation of product 2 for type (2, 2) must be
no lower than that for type (2, 1). Thus, a2(2, 2) ≥ a2(2, 1)
� 1, and so, a2(2, 2) � 1. Because in the second period,
the allocations of the types (2, 2) and (2, 1) are the same,
their payments must be the same by incentive compat-
ibility, and so, t(2, 2) � t(2, 1) � 3. We summarize our
discussion in Table 3, in which the only free parameters
are a2(1, 1) and t(1, 1).

The ex post IR constraint for type (1, 1) is

1 + a2(1, 1) − t(1, 1) ≥ 0:

Now consider the PIC constraint in period 2 for ex
post type (1, 2) following a history of truthful report
v1 � 1. The constraint is

0 ≥ 1+ 2a2(1, 1) − t(1, 1):
Given the two constraints, we must have a2(1, 1) � 0
and t(1, 1) � 1. Thus, the mechanism is equal to the
induced separable mechanism of the static mechanism
that sells the bundle at price 3. As we argued, the sep-
arable mechanism is not incentive compatible.

6. Concluding Remarks
We study the problem of designing optimal ex post IR
mechanisms for selling multiple products to a single
buyer who learns her values sequentially. The ex post
IR constraint takes away the seller’s ability to charge
advance payments and thus, allows us to compare static

Figure 5. Negatively Correlated Values

Notes. Values of q1 are on the horizontal axis, and values of q2 are on the vertical axis. Black circles indicate that separable mechanisms outper-
form static ones. White circles indicate that static mechanisms outperform separable ones.

Table 2. The Static Mechanism in Example 1

v1 v2 a1 a2 t

1 1 1 0 1
1 2 1 1 3
2 1 1 1 3
2 2 1 1 3

Table 3. The Static Mechanism in Example 1

v1 v2 a1 a2 t

1 1 1 a2(1, 1) t(1, 1)
1 2 1 1 3
2 1 1 1 3
2 2 1 1 3
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and dynamic mechanisms on an equal footing. We find
that separable mechanisms are optimal and characterize
optimal mechanisms via a recursive formulation. We
find conditions under which static mechanisms are sub-
optimal. Interestingly, with two products and two val-
ues, static mechanisms are optimal for a relatively large
set of distributions, even though the seller may use
dynamic mechanisms. Obtaining sufficient conditions
for optimality of static mechanisms beyond the case of
two products and two values may help rationalize their
widespread use.

Our analysis takes the arrival of information as
given. In particular, the buyer learns her values in a
fixed order. In many settings, sellers may be able to
affect how information arrives to the buyer. For exam-
ple, the seller may be able to choose the order in
which the buyer learns the values of products. Even
though this is not the focus of our paper, our results
partially speak to this problem. In particular, consider
two products A and B with possible values VA � VB �
{1, 2} such that Pr[vA � 2] < 0:5 and Pr[vB � 2] > 0:5. If
the seller could choose the order with which the buyer
learns the values, what should he do? Proposition 3
implies that if the buyer learns the value of A first,
then static mechanisms are suboptimal, but if the
buyer learns the value of B first, then static mecha-
nisms are optimal. Because the set of static mecha-
nisms is the same in either case, we conclude that
the seller strictly prefers to reveal the value of prod-
uct A, the one that is ex ante less valuable, to the
buyer first.

Our analysis mostly assumes that the values are
independent. This assumption is made for tractability
and is in line with much of the literature on multi-
product mechanisms. Extending our analysis to allow
for correlated values requires significantly different
tools from those developed in this paper, and it is left
for future work. Our numerical analysis suggests that
our main results may hold with positively correlated
values but fail with negatively correlated values.
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Endnote
1 An optimal monopoly price for a product is an optimal take it or
leave it price for selling that product.
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