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The Limits of Multiproduct Price Discrimination†

By Nima Haghpanah and Ron Siegel*

We consider a multiproduct seller who has access to informa-
tion about consumer preferences that he can use for second- and 
third-degree price discrimination. We characterize markets for which 
such information can lead to the efficient allocation with consumers 
obtaining the entire surplus gain relative to the profit-maximizing 
allocation without the additional information. This benchmark 
is achievable for all markets with a given set of consumer types if 
and only if it is optimal for the seller to offer only the best product 
in each market. Analogous results characterize when the “surplus 
triangle” of Bergemann, Brooks, and Morris (2015) is achievable.  
(JEL D11, D21, D42, D83)

Understanding the welfare effects of price discrimination in a monopoly setting 
is a basic economics question. These effects are easy to see with first-degree price 
discrimination, which leads to efficiency and eliminates all consumer surplus. But 
with coarser market segmentations based on age, location, or other data, followed by 
profit-maximizing pricing in each segment, the effects are less clear. Such segmen-
tations may not achieve efficiency and consumer surplus may be positive, but pre-
cisely how much total surplus is generated and how it is divided between consumers 
and the seller is not immediately obvious.

A breakthrough in understanding these effects was achieved by Bergemann, 
Brooks, and Morris (2015). They showed that with a single product, any amount of 
total surplus and any division of the total surplus between consumers and the seller 
can be achieved by some segmentation, provided that total surplus is not higher 
than the efficient surplus, consumer surplus is nonnegative, and the seller’s surplus 
is no lower than in the unsegmented market. These constraints form a “surplus tri-
angle” of achievable consumer-producer surplus pairs. In particular, efficiency can 
be achieved with consumers obtaining all of the surplus gains relative to the unseg-
mented market. We refer to this outcome as “first-best consumer surplus.”
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We consider a multiproduct setting and investigate the achievability of first-best 
consumer surplus and the surplus triangle when the seller may offer more than one 
product in each segment.1 Our environment thus combines second- and third-degree 
price discrimination.2 Each consumer is characterized by his valuations for the var-
ious products (his type), and a market is a distribution over consumer types. To 
facilitate the comparison with the single-product case, we assume that there is a 
“best product,” it is efficient to allocate this product to all consumers, and consumer 
types are ranked so that for each product, the valuation of any consumer type is 
higher than the valuations of lower types. We also assume zero production costs. A 
leading example is digital goods, such as streaming services, where the best product 
corresponds to the “premium” or “full-feature” version of the service.

Our first result is that first-best consumer surplus and the surplus triangle are not 
achievable for any market in which the seller finds it optimal to sell more than one 
product. Of course, such “screening” implies inefficiency because it is efficient for 
all consumers to obtain the best product; the result shows that it is impossible to 
achieve efficiency via segmentation without the seller appropriating some of the 
surplus gains. In contrast, if the inefficiency is only caused by the seller exclud-
ing some consumers, then efficiency can be achieved via segmentation without the 
seller appropriating any of the surplus gains, as in the single-product case. Thus, the 
source of inefficiency matters for the achievable divisions of the efficient surplus.

Our second result, which follows from the first, is that given the set of consumer 
types, first-best consumer surplus and the surplus triangle are achievable for all 
markets if and only if screening is not optimal for any market. In contrast, our third 
result shows that achievability fails for all nontrivial markets with a given set of con-
sumer types if and only if for any market for which the seller finds it optimal to sell 
only the best product, there is a single optimal price for the product. These results 
imply that with two consumer types, either achievability holds for all markets or 
for no nontrivial market. With three or more types, achievability may hold for some 
markets and fail for others.

Taken together, our results show that screening interferes with the achievability 
of first-best consumer surplus and make progress toward understanding the welfare 
effects of price discrimination in multiproduct settings.

I.  Model

There is a monopolistic seller, a mass ​1​ of consumers, and a set ​T  =  1,  …, n​ 
of consumer types. There is a set ​A  =  0, 1,  …, k​ of products, where ​k  ≥  1​ and 

1 Bergemann, Brooks, and Morris (2015) provide a parametric example with two types and nonlinear valuations 
in which the seller offers more than one product in a single market. Ichihashi (2020) and Hidir and Vellodi (2021) 
consider maximum consumer surplus when a multiproduct seller offers only one product in each market (but pos-
sibly different products in different markets).

2 In Haghpanah and Siegel (forthcoming), we also study market segmentation with multiple products but focus 
on segmentations that benefit every consumer and the seller. Such Pareto-improving segmentations do not achieve 
first-best consumer surplus because the seller’s profit increases and the outcome need not be efficient. Identifying 
Pareto-improving segmentations raises different challenges and requires different techniques from the ones in this 
paper. Daskalakis, Papadimitriou, and Tzamos (2016) and Cai et al. (2020) also study information provision in a 
multiproduct setting. But in their settings, the consumer (not the seller) receives information about products, so 
there is no third-degree price discrimination.
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product ​0​ is the outside option. A product can correspond to a particular quantity or 
quality of a good or service or to a bundle of goods or services. For example, if a 
streaming service offers a movie subscription, a series subscription, and a full-access 
subscription that combines both, then there are four products (including the outside 
option). The cost of production is ​0​. Type ​i​’s valuation for a product ​a​ is ​​v​ a​ i ​  ≥  0​,  
with ​​v​ 0​ i ​  =  0​. We assume that some product ​​a – ​​ is the “best product” that all consum-
ers prefer—that is, ​​v​ ​a ¯ ​​ i ​  > ​ v​ a​ i ​​ for all types ​i​ and products ​a  ≠ ​ a –​​. In the streaming set-
ting, the best product would be the full-access subscription. We place no restrictions 
on how the other products are ranked by different types. We assume that types are 
ranked so that a higher type has a higher valuation for any product—that is, ​​v​ a​ 1​  < ​
v​ a​ 2​  <  …  < ​ v​ a​ n​​ for any product ​a  ≠  0​. In the streaming setting, the higher the 
consumer’s type, the more he likes to watch shows and movies, so the higher is his 
valuation for every kind of subscription. But some types of consumers may prefer a 
movie subscription to a series subscription while other types may have the opposite 
preference.

An allocation ​x  ∈  X  =  Δ​(A)​​ is a distribution over products, where ​​x​a​​​ denotes 
the probability of product ​a​. An allocation ​x​ is empty if ​​x​0​​  =  1​ and is nonempty 
otherwise. For each type, the efficient allocation ​x​ satisfies ​​x​​a ¯ ​​​  =  1​. The (expected) 
utility of a type ​i​ consumer from an allocation ​x​ and a payment ​p​ is ​​v​​ i​ · x − p  =  
​(​∑ a​   ​​​v​ a​ i ​ ​x​a​​)​ − p​.

A mechanism consists of an allocation rule ​x : T  →  X​ and a payment rule ​
p : T  →  R​. Mechanism ​M  = ​ (x, p)​​ is incentive compatible (IC) if for all types ​i​ 
and ​j​,

	​ ​v​​ i​ · x​(i)​ − p​(i)​  ≥ ​ v​​ i​ · x​( j)​ − p​( j)​.​

Mechanism ​M​ is individually rational (IR) if for all types ​i​,

	​ ​v​​ i​ · x​(i)​ − p​(i)​  ≥  0.​

Henceforth, “mechanism” will refer to an IC and IR mechanism unless otherwise 
stated.

We often represent a mechanism indirectly by a menu of allocation-price pairs, 
where each type chooses a pair that maximizes his utility. If a type is indifferent 
between two allocation-price pairs, he chooses the one with a higher price. If, fur-
ther, the prices are identical, then the tiebreaking can be arbitrary.

A mechanism is a nonscreening mechanism if it can be represented by a menu 
with a single allocation-price pair, in addition to the outside option at price ​0​. Of 
particular interest is the set of nonscreening mechanisms ​​​{​N​​ i​}​​i∈T​​​, where mechanism ​​
N​​ i​​ offers the best product ​​a –​​ at price ​​v​ ​a –​​ i ​​. Types ​j  <  i​ are excluded (​​x​0​​​( j)​  =  1​ and  
​p​( j)​  =  0​) by ​​N​​ i​​, and types ​j  ≥  i​ obtain the best product and pay ​​v​ ​a –​​ i ​​. A mechanism 
is a screening mechanism if it is not a nonscreening mechanism—that is, every 
menu that represents it includes at least two positive allocation-price pairs.

A market ​f  ∈  Δ​(T)​​ is a distribution over types, where ​​f​i​​​ denotes the fraction 
of consumers with type ​i​. The consumer surplus in market ​f​ with mechanism  
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​M  = ​ (x, p)​​ is ​CS​(f, M)​  = ​ E​i∼f​​​[​v​​ i​ · x​(i)​ − p​(i)​]​​. A mechanism ​​(x, p)​​ is optimal for 
market ​f​ if it maximizes revenue

	​ ​E​i∼f​​​[p​(i)​]​​

across all mechanisms. For a market ​f​, let ​ER​( f )​​ be the revenue in an optimal mech-
anism, ​​( f )​​ be the set of optimal mechanisms, and ​CS​( f )​​ be the highest consumer 
surplus across all optimal mechanisms,

	​ CS​( f )​  = ​  max​ 
M∈​( f )​

​​ CS​( f, M)​.​

Market ​f​ is a nonscreening market if for some ​i​, mechanism ​​N​​ i​​ is optimal for ​f​. 
Otherwise, ​f​ is a screening market, for which every optimal mechanism is a screen-
ing mechanism. Market ​f​ is efficient if ​​N​​ ​ i ¯ ​​( f )​​​ is an optimal mechanism for the market, 
where ​​ i 

¯
 ​​( f )​​ is the lowest type in the support of ​f​. Otherwise, the market is inefficient.

A segmentation ​μ  ∈  Δ​(Δ​(T)​)​​ of a market ​f​ is a distribution over markets that 
average to ​f​—that is, ​​E​f ′∼μ​​​[ f ′]​  =  f​. A market ​f ′​ in the support of a segmentation ​μ​ 
is a market segment (or simply a segment). Abusing notation, let ​CS​(μ)​​ be the con-
sumer surplus in segmentation ​μ​,

	​ CS​(μ)​  = ​ E​f∼μ​​​[CS​( f )​]​.​

When discussing segmentations of some market ​f​, we refer to ​f​ as the unsegmented 
market.

Another interpretation of the model is that there is a single consumer and the 
seller’s prior over the consumer’s type is ​f​. The seller receives information about the 
consumer’s type, and ​μ​ represents the distribution over the seller’s posterior beliefs.

A. Upper Bound on the Maximum Consumer Surplus

Given a market ​f​, the maximum consumer surplus across all segmentations of ​f​ is 
at most the expected surplus of an efficient allocation minus the seller’s revenue in ​f​.  
This is because for any segmentation, the seller can offer a mechanism in ​​( f )​​ in 
all market segments. The following lemma formalizes this observation.

LEMMA 1: For any segmentation ​μ​ of a market ​f​, ​CS​(μ)​  ≤ ​ E​i∼f​​​[​v​ ​a – ​​ i
 ​]​ − ER​( f )​​.

We study the conditions under which this bound is achieved.

DEFINITION 1: A segmentation ​μ​ of market ​f​ achieves first-best consumer surplus 
if ​CS​(μ)​  = ​ E​i∼f​​​[​v​ ​a – ​​ i

 ​]​ − ER​( f )​​. If such a segmentation exists, then first-best con-
sumer surplus is achievable for market ​f​.

By definition, first-best consumer surplus is achievable for any efficient market.
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B. The Surplus Triangle

Given a segmentation ​μ​ and a selection ​S​ of an optimal mechanism  
​S​(f ′)​  ∈  ​(f ′)​​ for each market segment ​f ′​, we denote the resulting consumer sur-
plus by ​CS​(μ, S)​​. Given a market ​f​, denote by ​Γ​( f )​​ the set of consumer-producer  
surplus pairs resulting from all possible segmentations of ​f​ and selections of an optimal 
mechanism for each segment. Abusing notation, let ​ER​(μ)​  = ​ E​f∼μ​​​[ER​( f )​]​​ be the 
producer surplus resulting from segmentation ​μ​, and consider a consumer-producer 
surplus pair ​​(CS​(μ, S)​, ER​(μ)​)​​. Since ​CS​(μ, S)​  ≥  0​, ​ER​(μ)​  ≥  ER​( f )​​, and  
​CS​(μ, S)​ + ER​(μ)​  ≤ ​ E​i∼f​​​[​v​ ​a – ​​ i

 ​]​​, the set ​Γ​( f )​​ is a subset of the “surplus triangle”

	​ Δ​( f )​  = ​ {​(a, b)​ : a  ≥  0, b  ≥  ER​( f )​,  a + b  ≤ ​ E​i∼f​​​[​v​ ​a – ​​ i
 ​]​}​.​

If ​Γ​( f )​​ coincides with the surplus triangle, we say that the surplus triangle is achiev-
able for ​f​.

Bergemann, Brooks, and Morris (2015) showed that the surplus triangle is achiev-
able for any market ​f​ with a single product. The surplus triangle is also obviously 
achievable for any “singleton market,” which consists only of consumers of some 
single type ​i​. In this case, the surplus triangle is ​​{​(0, ​v​ ​a – ​​ i

 ​)​}​​.
To determine whether the surplus triangle is achievable for a nonsingleton mar-

ket, it is enough to determine whether each of its vertices is generated by some seg-
mentation. The vertex ​​(0, ​E​i∼f​​​[​v​ ​a – ​​ i

 ​]​)​​ is generated by first-degree price discrimination. 
The vertex ​​(​E​i∼f​​​[​v​ ​a – ​​ i

 ​]​ − ER​( f )​, ER​( f )​)​​ is generated by segmentations that achieve 
first-best consumer surplus. The vertex ​​(0, ER​( f )​)​​ generates the lowest possible total 
surplus of ​ER​( f )​​.

DEFINITION 2: A segmentation ​μ​ of market ​f​ achieves the lowest possible total 
surplus if for some selection of an optimal mechanism for each segment, the result-
ing consumer-producer surplus pair is ​​(0, ER​( f )​)​​. If such a segmentation exists, 
then the lowest possible total surplus is achievable for market ​f​.

The discussion above shows the following.

LEMMA 2: The surplus triangle is achievable for a market if and only if first-best 
consumer surplus and the lowest possible total surplus are achievable for the market.

C. Conditions for Achieving First-Best Consumer Surplus

We specify two conditions that are together necessary and sufficient for a segmen-
tation to achieve first-best consumer surplus. First, because the resulting allocation 
is efficient, every segment must be efficient. Second, the seller should not benefit 
from the segmentation; that is, every optimal mechanism for the unsegmented mar-
ket must be optimal for every segment.3

3 Otherwise, there is a segment ​f​ ′ such that the seller can benefit by offering in ​f ′​ an optimal mechanism for ​f​ ′ 
and offering in all other segments an optimal mechanism for the unsegmented market.
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LEMMA 3: For any segmentation ​μ​ of a market ​f​, the following are equivalent:

	 (i)	​ μ​ achieves first-best consumer surplus.

	 (ii)	 For some optimal mechanism ​M​ for ​f​ and every segment ​f​ ′ of ​μ​, ​f​ ′ is efficient 
and ​M​ is optimal for ​f ′​.

	 (iii)	 For every optimal mechanism ​M​ for ​f​ and every segment ​f​ ′ of ​μ​, ​f ′​ is efficient 
and ​M​ is optimal for ​f ′​.

II.  Two Types

We first consider markets with two types of consumers (and any number of prod-
ucts) and identify each market by its fraction ​q  ∈ ​ [0, 1]​​ of type ​2​ consumers. The 
following lemma divides the set of markets ​​[0, 1]​​ into at most three regions. The 
first region includes markets in which the fraction of type 1 consumers is high, so 
mechanism ​​N​​ 1​​ is optimal for these markets and they are efficient. The second region 
includes markets in which the fraction of type 2 consumers is high, so mechanism ​​
N​​ 2​​ is optimal for these markets and they are inefficient (except for market ​1​). The 
third region, which may be empty, includes the remaining, intermediate markets. 
These markets are screening markets; that is, the allocations of the two types are dif-
ferent and nonempty. Moreover, the optimal mechanisms may vary across markets 
in this region. To formalize this, denote by ​​(M)​​ the (possibly empty) set of markets 
for which a particular mechanism ​M​ is optimal.

LEMMA 4: There exist ​​q​1​​​ and ​​q​2​​​, ​0  ≤ ​ q​1​​  ≤ ​ q​2​​  ≤  1​, such that ​​(​N​​ 1​)​  = ​ [0, ​q​1​​]​,  
​(​N​​ 2​)​  = ​ [​q​2​​, 1]​​, and ​​(M)​  ⊆ ​ [​q​1​​, ​q​2​​]​​ for any mechanism ​M  ≠ ​ N​​ 1​, ​N​​ 2​​.

PROOF:
We first show that for any mechanism ​M​, ​​(M)​​ is a closed interval. Indeed, if ​

M​ is optimal for two markets ​q, q′​, then it is also optimal for any convex combina-
tion ​q″​ of these markets because for any mechanism, the revenue in ​q″​ is the same 
convex combination of the revenues in ​q​ and in ​q′​. And ​​(M)​​ is closed because the 
revenue from any mechanism is continuous in the market ​q​. We now argue that ​​q​1​​  ≤ ​
q​2​​​ and for any ​M  ≠ ​ N​​ 1​, ​N​​ 2​​, we have ​​(M)​  ⊆ ​ [​q​1​​, ​q​2​​]​​. To see this, consider any 
two mechanisms ​M, M′​ with payment rules ​p  ≠  p′​. Then there is at most a single 
market ​q​ where the two mechanisms have the same revenue, ​qp​(1)​ + ​(1 − q)​p​(2)​  
=  qp′​(1)​ + ​(1 − q)​p′​(2)​​. Therefore, the intersection of ​​(M)​​ and ​​(M′)​​ is at most 
a single market. The claim now follows from observing that for any mechanism ​
M  ≠ ​ N​​ 1​, ​N​​ 2​​, the payment rules of ​M​, ​​N​​ 1​​, and ​​N​​ 2​​ are all different. ∎

If ​​q​1​​  = ​ q​2​​​, then all markets are nonscreening markets, as shown in Figure 1, 
panel A. Since the seller offers only the best product in each market, the setting is 
equivalent to one with a single product. Bergemann, Brooks, and Morris’s (2015) 
result then shows that the surplus triangle, and first-best consumer surplus in par-
ticular, is achievable for all markets. The proposition below shows that if ​​q​1​​  < ​ q​2​​​,  
which is shown in Figure 1, panel B, then first-best consumer surplus is unachievable 
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for any inefficient market (the markets in ​​(​q​1​​, 1)​​).4 As mentioned in Section  I, 
first-best consumer surplus is achievable for any efficient market. We thus obtain a 
characterization of the achievability of first-best consumer surplus.

PROPOSITION 1: For any inefficient market ​q​, first-best consumer surplus is 
achievable if and only if ​​q​1​​  = ​ q​2​​​.

PROOF:
Suppose that ​​q​1​​  = ​ q​2​​​. For completeness, we replicate Bergemann, Brooks, and 

Morris’s (2015) result that first-best consumer surplus is achievable for all markets. 
This is true for markets in ​​[0, ​q​1​​]​ ∪ ​{1}​​ because they are efficient. Consider a market ​
q  ∈ ​ [​q​2​​, 1]​​, so mechanism ​​N​​ 2​​ is optimal for ​q​, and a segmentation of ​q​ into ​q′  =  1​ 
and ​q″  = ​ q​1​​  = ​ q​2​​​.5 Both ​q​′ and ​q″​ are efficient and have ​​N​​ 2​​ as an optimal mecha-
nism, so the segmentation achieves first-best consumer surplus by Lemma 3.

Now suppose that ​​q​1​​  < ​ q​2​​​, and suppose that some segmentation ​μ​ of a market ​
q​ achieves first-best consumer surplus. We show that ​q​ is efficient; that is, ​q​ is in 
​​[0, ​q​1​​]​ ∪ ​{1}​​. By Lemma 3, every segment in ​μ​ is efficient and any optimal mechanism 

4 A market ​q  <  1​ is efficient if and only if ​​N​​ 1​​ is optimal for the market, and these inefficient markets are 
​​[0, ​q​1​​]​​. Market ​1​ is clearly efficient.

5 The segmentation assigns probability ​α​ to ​q′​ and probability ​1 − α​ to ​q″​, where ​α  =  ​ q − ​q​2​​ _ 1 − ​q​2​​
 ​​.

Figure 1

Notes: Panel A: ​​q​1​​  = ​ q​2​​​. For any market, either ​​N​​ 1​​ or ​​N​​ 2​​ is optimal. Panel B: ​​q​1​​  < ​ q​2​​​. Neither ​​N​​ 1​​ nor ​​N​​ 2​​ is opti-
mal for markets in the interval ​​(​q​1​​, ​q​2​​)​​. Panel C: ​​r​ a​ 1​  ≤ ​ r​ a​ 2​​. Panel D: ​​r​ a​ 1​  > ​ r​ a​ 2​​.
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for ​q​ is optimal for every segment. The only optimal mechanism for market ​1​ is 
mechanism ​​N​​ 2​​. But since ​​q​1​​  < ​ q​2​​​ and ​​(​N​​ 2​)​  = ​ [​q​2​​, 1]​​, ​​N​​ 2​​ is not optimal for any 
market in ​​[0, ​q​1​​]​​. Therefore, either every segment of ​μ​ is equal to ​1​, in which case ​
q  =  1​, or every segment is in ​​[0, ​q​1​​]​​, in which case ​q  ∈ ​ [0, ​q​1​​]​​. Therefore, ​q​ is 
efficient. ∎

We now turn to the achievability of the surplus triangle. As discussed in Section I, 
the surplus triangle is a singleton and is achievable for any singleton market (markets ​
0​ and ​1​). The following result provides a characterization for nonsingleton markets.

PROPOSITION 2: For any nonsingleton market q, the surplus triangle is achievable 
if and only if ​​q​1​​  = ​ q​2​​​.

PROOF:
Suppose that ​​q​1​​  = ​ q​2​​​. As noted by Bergemann, Brooks, and Morris (2015), the 

same segmentation that achieves first-best consumer surplus also achieves the sur-
plus triangle.

Now suppose that ​​q​1​​  < ​ q​2​​​. By Proposition 1, first-best consumer surplus, and 
therefore the surplus triangle, is unachievable for any inefficient market ​q  > ​ q​1​​​. 
Now consider an efficient nonsingleton market ​q  ≤ ​ q​1​​​, so mechanism ​​N​​ 1​​ is opti-
mal for ​q​. In this case, the lowest possible total surplus is unachievable. This is 
because if consumer surplus is ​0​ in some segment ​q′  ≠  0​, mechanism ​​N​​ 2​​ must be 
optimal for ​q′​. Then mechanism ​​N​​ 1​​ is not optimal for ​q′  ≠  0​ and the segmentation 
increases producer surplus. ∎

Haghpanah and Hartline (2021) characterize the two cases, ​​q​1​​  = ​ q​2​​​ or ​​q​1​​  < ​ q​2​​​, 
in terms of the valuations of the two types, which are a primitive of the model. The 
characterization shows that ​​q​1​​  = ​ q​2​​​ if and only if for any product ​a​, type 2 has a 
higher ratio of valuations of product ​a​ to ​​a – ​​; that is, ​​r​ a​ 1​  ≤ ​ r​ a​ 2​​, where ​​r​ a​ i ​  = ​ v​ a​ i ​/​v​ ​a – ​​ i

 ​​. 
Figure 1, panels C and D illustrate this inequality and the reverse inequality for the 
case of two products.

III.  More than Two Types

We now consider markets with any number of types and products. The logic 
of Bergemann, Brooks, and Morris (2015) shows that if for a given set of types 
all markets are nonscreening markets, then the surplus triangle, and thus first-best 
consumer surplus, is achievable for every market with this set of types. We will 
show that this condition is in fact necessary by proving that first-best consumer 
surplus, and thus the surplus triangle, is not achievable for any screening market. Of 
course, a screening mechanism is inefficient; the result will show that if a market 
is inefficient because it is a screening market (and not only because some types are 
excluded), then it is impossible to achieve efficiency via segmentation without the 
seller appropriating some of the surplus gains.

THEOREM 1: First-best consumer surplus is not achievable for any screening 
market.
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Similarly to the proof of Proposition 1, the proof of Theorem 1 shows that if a 
screening market with a particular optimal mechanism is segmented into efficient 
markets, then this mechanism is not optimal for all segments. Combining this obser-
vation with Lemma 3 proves Theorem  1. This is straightforward when there are 
only two types because as we have seen, with two types the only efficient market for 
which a screening mechanism may be optimal is the nonscreening market ​​q​1​​​. But 
with more than two types, the convex hull of the set of efficient markets for which 
a screening mechanism is also optimal may include screening markets. In Figure 2, 
this set is depicted in green and its convex hull is the shaded region, which includes 
screening markets. Such screening markets could thus conceivably be segmented in 
a way that achieves first-best consumer surplus.

Theorem 1 rules this out. Applied to Figure 2, Theorem 1 shows that any segmen-
tation of a market in the shaded region that involves segment ​​f​​ 2​​ and some segment ​​
f​​ 1​​ in the green curve increases the seller’s revenue.

To prove Theorem  1, suppose that some screening market ​f​ with an optimal 
screening mechanism ​M​ is segmented into efficient markets. By definition, no 
nonscreening mechanism is optimal for ​f​ and, in particular, mechanism ​​N​​ j​​ is not 
optimal for ​f​, where ​j​ is the lowest type not excluded in ​M​. That ​​N​​ j​​ is not optimal 
for ​f​ implies that ​​N​​ j​​ is not optimal for some segment ​f​ ′ because the set of markets 
for which a given mechanism is optimal is convex.6 The following lemma, which 
completes the proof of Theorem 1, shows that mechanism ​M​ is not optimal for ​f ′​.

LEMMA 5: Consider an efficient market ​f ′​ and a mechanism ​M​ in which the lowest 
type that is not excluded is ​j​. If ​​N​​ j​​ is not optimal for ​f ′​, then ​M​ is not optimal for ​f ′​.

To see how Lemma 5 works in Figure 2, notice that any segmentation of a screen-
ing market in the shaded region into efficient markets must include ​​f​​ 2​​ and one or 
more markets ​​f​​ 1​​ in the green curve as segments. And since each of ​​N​​ 1​​, ​​N​​ 2​​, and ​​N​​ 3​​ is 
not optimal for either ​​f​​ 2​​ or ​​f​​ 1​​ (or both), Lemma 5 shows that the optimal screening 
mechanism for the screening market is not optimal for at least one segment.

The proof of Lemma 5 is provided below. For some intuition for why Lemma 5 
holds, suppose first that ​M​ does not exclude any type (so ​j  =  1​). If the support of  
​f ′​ does not include type ​1​, then ​M​ is not optimal for ​f ′​ because every type in the 
support of ​f​ ′ obtains positive utility in ​M​ (since these types can mimic type ​1​). If the 
support of ​f​ ′ includes type ​1​, then ​​N​​ j​  = ​ N​​ 1​​ is optimal for ​f ′​ (because ​f ′​ is efficient), 
so the lemma holds trivially. Now suppose that ​M​ excludes at least one type (so ​
j  >  1​). If the lowest type in the support of ​f ′​ is at least ​j​, then a modified version of 
the argument for ​j  =  1​ applies. If the lowest type in the support of ​f ′​ is lower than ​
j​, a more elaborate argument is needed. We use the fact that ​​N​​ j​​ is not optimal for ​f ′​ 
to modify ​M​ and obtain a mechanism ​M′​ that improves upon ​M​ in ​f ′​. Mechanism ​M′​ 
“screens more” than ​M​ by having a nonempty, inefficient allocation for some types 
that are excluded in ​M​.

6 Take a mechanism, a set of markets for which the mechanism is optimal, and a convex combination of these 
markets. Any mechanism that generates more revenue for the convex combination must increase the revenue for at 
least one of the markets.
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PROOF OF LEMMA 5:
Denote by ​i​ the lowest type in the support of ​f ′​. If ​i  >  j​, then mechanism ​M​ is 

not optimal for ​f ′​ because every type in the support of ​f ′​ obtains positive utility in ​
M​ (because these types can mimic type ​j​). If ​i  =  j​, then efficiency means that ​​N​​ j​​ is 
optimal for ​f​ ′ so the lemma holds trivially.

Suppose that ​i  <  j​  and ​​N​​  j​​ is not optimal for f ′. Since ​f ′​ is efficient, ​​N​​ i​​ is optimal 
for ​f ′​. We construct a mechanism ​M′​ that generates a higher revenue than ​M​ in ​f ′​. In ​
M′​, types below ​i​ get an empty allocation. Types ​i​ to ​j − 1​ get product ​​a –​​ with a small 
probability ​ϵ  >  0​ and the outside option with probability ​1 − ϵ​ and pay ​ϵ​v​ ​a –​​ i ​​. Types ​
j​ to ​n​ get the same allocation as in ​M​, but their payment is decreased by ​ϵ​(​v​ ​a –​​ j ​ − ​v​ ​a –​​ i ​)​​ 
relative to their payment in ​M​. This is depicted in Figure 3.

Mechanism ​M′​ generates a higher revenue than mechanism ​M​ in ​f ′​. Compared to ​
M​, ​M′​ gains ​ϵ​v​ ​a –​​ i ​​ from every type ​i′  ≥  i​ and loses ​ϵ​v​ ​a –​​ j ​​ from every type ​i′  ≥  j​. The 
difference in revenue is ​ϵ​v​ ​a –​​ i ​ Pr​[i′  ≥  i]​ − ϵ​v​ ​a –​​ j ​ Pr​[i′  ≥  j]​​, which is ​ϵ​ times the differ-
ence between the revenue of mechanism ​​N​​ i​​ and the revenue of mechanism ​​N​​ j​​. This 
difference is strictly positive because ​​N​​ i​​ is optimal but ​​N​​ j​​ is not. It remains to show 
that ​M′​ is IR and IC for small enough ​ϵ  >  0​.

IR holds for types ​1,  …, i − 1​ because they are excluded in ​M′​. A type ​
i′  =  i,  …, j − 1​ has utility ​ϵ​v​ ​a ¯ ​​ ​i ′ ​ ​ − ϵ​v​ ​a ¯ ​​ i ​  ≥  0​, and a type ​i′  ≥  j​ has a higher utility in ​
M′​ than in ​M​. Thus, IR holds for any ​ϵ  >  0​.

Figure 2

Notes: This figure shows the set of markets with three types and the screening and nonscreening regions. The con-
vex hull (shaded gray) of the set of efficient markets for which a screening mechanism is also optimal (in green) 
includes some screening markets.
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For IC, observe that ​M′​ coincides with ​M​ in the limit as ​ϵ​ goes to ​0​. Thus, if an IC 
constraint holds strictly in ​M​, then it is satisfied in ​M′​ for small enough ​ϵ  >  0​. In 
mechanism ​M​, a type ​i′​ strictly prefers not to mimic another type ​i″​ in two cases: (1) 
if ​i′  >  j​ and ​i″  <  j​ and (2) if ​i′  <  j​ and ​i″  ≥  j​. In case 1, type ​i′​ has a strictly pos-
itive utility in ​M​ because he can mimic type ​j​. Thus, ​i′​ strictly prefers not to mimic 
type ​i″​ (and get utility ​0​) in ​M​. In case 2, type ​i​′ gets a strictly negative utility from 
mimicking ​i​″ because ​​v​​ ​i ′ ​​ · x​(i″)​ − p​(i″)​  < ​ v​​ j​ · x​(i″)​ − p​(i″)​  ≤  0​, where the last 
inequality follows since the utility of type ​j​ is ​0​ and incentive compatibility of mech-
anism ​M​ implies that the utility of type ​j​ from mimicking type ​i​″ cannot be positive.

We next verify the remaining IC constraints in mechanism ​M​′. Consider a type ​
i′  <  j​. As discussed in case 2 above, such a type ​i​′ does not benefit from mimicking 
types ​i″  ≥  j​. Type ​i′​ prefers the allocation of types ​1,  …, i − 1​ (the outside option) 
to the allocation of types ​i,  …, j − 1​ if and only if ​ϵ​(​v​ ​a ¯ ​​ ​i ′ ​ ​ − ​v​ ​a ¯ ​​ i ​)​  ≤  0​; that is, ​i′  ≤  i​. 
Thus, truth-telling maximizes the utility of every type ​i′  <  j​. For a type ​i′  ≥  j​, note 
that mimicking a type ​j,  …, n​ is not beneficial since ​M​ is IC and all such types get 
the same additional payment in ​M′​. From case 1 above, a type ​i′  >  j​ does not ben-
efit from mimicking types ​1,  …, j − 1​. Finally, the utility of type ​j​ in ​M′​ is at least ​
ϵ​(​v​ ​a ¯ ​​ j ​ − ​v​ ​a ¯ ​​ i ​)​  >  0​, which is the utility it would get by mimicking types ​i,  …, j − 1​ 
and is no lower than the utility of ​0​ it would get by mimicking types ​1,  …, i − 1​. ∎

A. Achievability of First-Best and the Surplus Triangle

Theorem 1 and the logic of Bergemann, Brooks, and Morris (2015) imply that 
first-best consumer surplus and the surplus triangle are achievable for all markets 
with a given set of types ​T​ if and only if all markets with that set of types are 
nonscreening markets; that is, ​​∪​i​​ ​(​N​​ i​)​  =  Δ​(T)​​. Whether nonscreening is optimal 
for a given market is in general difficult to ascertain. But Haghpanah and Hartline 
(2021) show that nonscreening is optimal for all markets with a given set of types 
if and only if the ratio ​​r​ a​ i ​  = ​ v​ a​ i ​ / ​v​ ​a – ​​ i

 ​​ is nondecreasing in ​i​ for every product ​a​. This 
characterization is illustrated in Figure 4, panels A and B. This characterization and 
Theorem 1 lead to the following result.

THEOREM 2: For any set of types ​T​, the following are equivalent:

	 (i)	 First-best consumer surplus is achievable for every market.

	 (ii)	 The surplus triangle is achievable for every market.

Figure 3. Construction of Mechanism ​M′​ from Mechanism ​M​ in the Proof of Lemma 5
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	 (iii)	 Every market is a nonscreening market.

	 (iv)	 The ratio ​​r​ a​ i ​​ is nondecreasing in ​i​ for all ​a​.

PROOF:
(ii) ​→​ (i): By definition.
(iii) ​→​ (i) and (ii): If offering only ​​a – ​​ is optimal for all markets, the setting is 

equivalent to one with a single product ​​a – ​​. The results of Bergemann, Brooks, and 
Morris (2015) then imply (i) and (ii).

(i) ​→​ (iii): Immediate from Theorem 1.
(iii) ​→​ (iv) and (iv) ​→​ (iii): From Proposition 1 of Haghpanah and  Hartline 

(2021). ∎

Figure 4

Notes: Panel A: Every market is a nonscreening market (statement (iii) of Theorem 2). Panel B: The ratio of valua-
tions increases in the valuation for the best product (statement (iv) of Theorem 2). Panel C: Regions ​​(​N​​ 1​)​​, ​​(​N​​ 2​)​​,  
and ​​(​N​​ 3​)​​ do not intersect (statement (iii) of Theorem 3). Panel D: The ratio of valuations decreases in the valua-
tion for the best product (statement (iv) of Theorem 3).
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Using the notation from Section II, Theorem 2 states that with two types, first-best 
consumer surplus and the surplus triangle are achievable for every market if and only 
if ​​q​1​​  = ​ q​2​​​. Thus, Theorem 2 generalizes parts of Proposition 1 and Proposition 2. 
However, Proposition 1 and Proposition 2 show that if ​​q​1​​  < ​ q​2​​​, then first-best con-
sumer surplus is unachievable for all inefficient markets and the surplus triangle 
is unachievable for all nonsingleton markets. With more than two types, it may be 
that some markets are screening markets and yet first-best consumer surplus and the 
surplus triangle are achievable for some inefficient and nonsingleton nonscreening 
markets with the same set of types.

B. Unachievability of First-Best and the Surplus Triangle

We identify a condition for unachievability of first-best consumer surplus and the 
surplus triangle for all inefficient and nonsingleton markets. For this, let us interpret 
the condition ​​q​1​​  < ​ q​2​​​ in Proposition 1 and Proposition 2 as stating that the set of 
screening markets, ​​(​q​1​​, ​q​2​​)​​, separates the sets ​​[0, ​q​1​​]​​ and ​​[​q​2​​, 1]​​ of nonscreening mar-
kets. Our second main result shows that this is the correct condition for any number 
of types. The result is illustrated in Figure 4, panels C and D.

THEOREM 3: For any set of types ​T​, the following are equivalent:

	 (i)	 First-best consumer surplus is unachievable for every inefficient market.

	 (ii)	 The surplus triangle is unachievable for every nonsingleton market.

	 (iii)	 For every market, ​​N​​ i​​ is optimal for at most one ​i​.

	 (iv)	 For every pair of types ​i  <  j​, there exists some product ​a​ such that ​​r​ a​ i ​  > ​ r​ a​ j ​​.

To see why statement (iii) implies statement (i) in Theorem  3, suppose that 
that first-best consumer surplus is achievable for some inefficient market ​f​. By 
Theorem 1, market ​f​ is a nonscreening market, so for some ​i  > ​  i ¯ ​​( f )​​, mechanism ​​N​​ i​​ 
is optimal for ​f​, where ​​ i ¯ ​​( f )​​ is the lowest type in the support of ​f​. At least one segment 
in any segmentation of ​f​ into efficient markets must include consumers of type ​​ i ¯ ​​( f )​​.  By Lemma 3, both ​​N​​ ​ i ¯ ​​( f )​​​ and ​​N​​ i​​ are optimal for that segment, so statement (iii) does 
not hold.

To show that statement (iv) implies statement (iii) in Theorem 3, we cannot apply 
the results of Haghpanah and Hartline (2021) as we did in the proof of Theorem 2. 
Instead, we develop a new result that relates properties of type ratios to the set of 
nonscreening mechanisms that may be optimal for any market. This is the content 
of the following lemma.

LEMMA 6: Consider a pair of types ​i  <  j​ such that ​​r​ a​ i ​  > ​ r​ a​ j ​​ for some ​a​. Then, for 
any market ​f​, mechanisms ​​N​​ i​​ and ​​N​​ j​​ are not both optimal.

The proof of Lemma 6 shows that given a pair of types ​i  <  j​ such that ​​r​ a​ i ​  >  
​r​ a​ j ​​ for some product ​a​, if both ​​N​​ i​​ and ​​N​​ j​​ are assumed optimal, then there exists a 
mechanism that outperforms ​​N​​ j​​.
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PROOF:
Assume for contradiction that ​​r​ a​ i ​  > ​ r​ a​ j ​​ for some ​i  <  j​ and ​a​ and that ​​N​​ i​​ and ​​N​​ j​​ 

are both optimal for market ​f​. Denote by ​​q​i​​​ the fraction of types ​i​ and higher in mar-
ket ​f​ and by ​​q​j​​​ the fraction of types ​j​ and higher in market ​f​. For both ​​N​​ i​​ and ​​N​​ j​​ to be 

optimal, we must have ​​v​ ​a – ​​ i
 ​ ​q​i​​  = ​ v​ ​a – ​​ j

 ​ ​q​j​​​; that is, ​​q​i​​  = ​ 
​v​ ​a ¯ ​​ j ​ ​q​j​​ ___ 
​v​ ​a – ​​ i

 ​
  ​​. Thus, we can write

(1)	​ ​v​ a​ i ​ ​q​i​​  = ​ v​ a​ i ​​(​ 
​v​ ​a – ​​ j

 ​ ​q​j​​ ___ 
​v​ ​a – ​​ i

 ​
 ​ )​  = ​ (​ ​v​ ​a – ​​ j

 ​ ​v​ a​ i ​ ____ 
​v​ ​a – ​​ i

 ​
 ​ )​ ​q​j​​  > ​ v​ a​ j ​ ​q​j​​,​

where the inequality followed from the assumption that ​​r​ a​ i ​  > ​ r​ a​ j ​​ (that is, ​​v​ a​ i ​ / ​v​ ​a ¯ ​​ i ​  > ​
v​ a​ j ​ / ​v​ ​a – ​​ j

 ​​).
We construct a mechanism ​M​ that improves upon ​​N​​ j​​ as follows. Types ​i,  …,  

j − 1​ get product ​a​ with probability ​ϵ​ and pay ​ϵ ​v​ a​ i ​​. Types ​j,  …, n​ get product ​​a – ​​ and 
pay ​​v​ ​a ¯ ​​ j ​ − ϵ​(​v​ a​ j ​ − ​v​ a​ i ​)​​.

Let us compare the revenue of ​M​ with the revenue of ​​N​​ j​​. Types ​i,  …, j − 1​ pay  
​ϵ​v​ a​ i ​​ more in ​M​ than in ​​N​​ j​​. Types ​j​ and higher pay ​ϵ​(​v​ a​ j ​ − ​v​ a​ i ​)​​ less in ​M​ than in ​​N​​ j​​. 
The difference in expected revenue is

	​ ϵ ​v​ a​ i ​​(​q​i​​ − ​q​j​​)​ − ϵ​(​v​ a​ j ​ − ​v​ a​ i ​)​ ​q​j​​  =  ϵ​(​v​ a​ i ​ ​q​i​​ − ​v​ a​ j ​ ​q​j​​)​  >  0,​

where the inequality followed from (1). To complete the proof, we show that ​M​ is 
IC and IR, which contradicts the assumption that ​​N​​ j​​ is optimal.

We begin by showing that mechanism ​M​ is IR. Types lower than ​i​ are excluded. 
Any type ​i′​ from ​i​ to ​j − 1​ has utility ​ϵ​(​v​ a​ ​i ′ ​ ​ − ​v​ a​ i ​)​  ≥  0​. Types ​j​ and higher have a 
higher utility in ​M​ than in ​​N​​ j​​.

For IC, observe similarly to the proof of Lemma 5 that if an incentive constraint 
holds strictly in ​​N​​ j​​, then it is satisfied in ​M​ for small enough ​ϵ  >  0​. In particular, a 
type ​i′  >  j​ does not benefit from mimicking a type ​i″  <  j​ and a type ​i′  <  j​ does 
not benefit from mimicking a type ​i″  ≥  j​.

We now verify the remaining incentive constraints. A type ​i′  <  j​ prefers the allo-
cation of types ​i,  …, j − 1​ to the outside option if and only if ​ϵ​(​v​ a​ i′ ​ − ​v​ a​ i ​)​  ≥  0​; that 
is, ​i′  ≥  i​. Thus, the incentive constraints are satisfied for types ​i′  <  j​. For types ​
i′  ≥  j​, note that mimicking any type ​j,  …, n​ is not beneficial since all such types 
have the same allocation and payment. Finally, the utility of type ​j​ in ​M​ is ​ϵ​(​v​ a​ j ​ − ​v​ a​ i ​)​​,  
which is the utility it would receive by mimicking types ​i,  …, j − 1​ and is strictly 
higher than the utility it would receive by mimicking types ​1,  …, i − 1​. ∎

We now use Lemma 6 to prove Theorem 3.

PROOF OF THEOREM 3:
​​(iii)​  → ​ (i)​​: Argued above.
​​(iii)​  → ​ (ii)​​: That (iii) implies (i) also shows that if (iii) holds, then the surplus 

triangle is not achievable for any inefficient market. It remains to show that the 
surplus triangle is not achievable for any nonsingleton efficient market. Consider a 
nonsingleton efficient market ​f​, and suppose that a segmentation ​μ​ achieves the low-
est possible total surplus. Consider a segment ​f​ ′ whose support includes type ​​ i 

–
​​( f )​​,  

the highest type in the support of ​f​. Because ​μ​ achieves the lowest possible total 
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surplus, consumer surplus in ​f ′​ is ​0​, so ​​N​​ ​ i 
–
​​( f )​​​ is optimal for ​f​ ′. And since ​f​ is efficient, ​​

N​​ ​ i ¯ ​​( f )​​​ is optimal for ​f​, where ​​ i ¯ ​​( f )​​ is the lowest type in the support of ​f​. By Lemma 3, ​​
N​​ ​ i ¯ ​​( f )​​​ is also optimal for ​f ′​.

​​(iv)​  → ​ (iii)​​: Directly from Lemma 6.
​​(i)​  → ​ (iv)​​ and ​​(ii)​  → ​ (iv)​​: Suppose for contradiction that for some ​i  <  j​, ​​

r​ a​ i ​  ≤ ​ r​ a​ j ​​ for all ​a​. Haghpanah and Hartline (2021) show that either ​​N​​ i​​ or ​​N​​ j​​ is 
optimal for any market with support in ​​{i, j}​​. By Proposition 1 and Proposition 2, 
first-best consumer surplus and the surplus triangle are achievable for every market 
with support in ​​{i, j}​​. ∎

IV.  Concluding Remarks

Our analysis relies on two main assumptions. The first assumption is that con-
sumer types are ranked, so for each product, a higher type’s valuation is higher than 
that of any lower type. This assumption implies that if a type is allocated a product, 
then all higher types obtain information rents. This property is crucial for our key 
Lemma 5 and therefore for our key finding that first-best consumer surplus is not 
achievable for screening markets. The second assumption is that it is efficient to 
allocate a particular “best product” to all types and that production is costless. This 
assumption is convenient because given the first assumption, it makes the definition 
of screening simple. One policy implication of these assumptions is that by prohib-
iting screening, a regulator can make first-best consumer surplus achievable for all 
markets (even screening markets) since the seller would then find it optimal to offer 
only the best product in each market.

In the online Appendix, we consider a relaxation of our second assumption by 
studying a setting with linear utility and positive production costs as in Mussa and 
Rosen (1978). In this setting, it is efficient to allocate different quantities to differ-
ent types. Our results for two types extend to this setting, as does our key finding 
(for any number of types) that first-best consumer surplus is achievable only for 
nonscreening markets. Our results extend to this setting because if a type is allocated 
a product, then all higher types obtain information rents.

We leave further investigations of the welfare effects of price discrimination in 
environments not covered by our results for future work. One direction is to inves-
tigate the maximum consumer surplus across all segmentations when first-best 
consumer surplus is not achievable. This will likely require a new approach; we 
consider a two-type, two-product example in the online Appendix.
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