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The seller of an asset has the option to buy hard information about the value of
the asset from an intermediary. The seller can then disclose this information before
selling the asset in a competitive market. We study how the intermediary designs
and sells hard information to robustly maximize the intermediary’s revenue across
all equilibria. Even though the intermediary could use an accurate test that reveals
the asset’s value, we show that robust revenue maximization leads to a noisy test
with a continuum of possible scores. In addition, the intermediary always charges
the seller for disclosing the test score to the market, but not necessarily for running
the test. This enables the intermediary to robustly appropriate a significant share
of the surplus resulting from the asset sale. JEL Codes: D82, G24.

I. INTRODUCTION

This article studies settings in which individuals purchase
hard information from an intermediary that they can verifiably
disclose to influence the actions of others. Such settings are ubiq-
uitous: entrepreneurs often seek evidence that they can disclose to
venture capitalists to obtain more funding, sellers of physical and
financial assets routinely pay for evaluations that enable them to
get better prices, and workers commonly seek certification before
applying for positions.

As a concrete example, consider the market for credit ratings.
Credit rating agencies rate a variety of financial instruments,
from bonds to mortgage-backed securities, as well as the corpo-
rations, cities, or countries that issue them. The choice to obtain
a credit rating is made by the issuer, and the rating affects the
profitability of issuing the financial instrument. Some financial
instruments can be issued with or without credit ratings.1

∗We have benefited from the thoughtful and constructive feedback of the coed-
itor and four referees. We thank Simone Galperti, Navin Kartik, Vijay Krishna,
Elliot Lipnowski, Philipp Strack, Rakesh Vohra, Zhe Wang, Yuval Yatskan, and
various seminar audiences for useful comments.

1. For example, around 30% of the municipal bonds issued between March
1977 and December 1980 were not rated by either Moody’s or Standard and Poor’s
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620 THE QUARTERLY JOURNAL OF ECONOMICS

Who pays for credit ratings and at what stage of the rating
process? Since the 1970s, the credit rating industry has adopted
an “issuer-pays” model, in which the issuer pays for the credit
rating. The credit rating agency often provides the issuer with an
informal “preliminary credit rating” (or a “shadow rating”), and
based on this preliminary rating, the issuer chooses whether to
complete the credit rating process. The issuer typically pays for
the credit rating when the rating process is completed, but may
pay a lower fee if the issuer chooses not to complete the process
after the preliminary rating.2

As a result, an issuer can shop for a rating, disclose it if it
is favorable, and conceal it if it is unfavorable. According to a Se-
curities and Exchange Commission (SEC) report (Securities and
Exchange Commission 2009), “registrants, among others, can so-
licit preliminary credit ratings from a rating agency [...] investors
are not aware of when registrants seek a preliminary rating or
when registrants obtain additional credit ratings but choose not
to use them.” The credit rating agency, in turn, may design rat-
ing schemes that are attractive to issuers but do not necessarily
provide accurate information to investors. “Ratings shopping” and
the incentives of credit rating agencies are discussed in a theoret-
ical and empirical literature on credit ratings and disclosure, and
in SEC reports (including the aforementioned one) and proposals
to amend disclosure rules.3

Our goal is to shed some light on the strategic behavior of
information intermediaries—such as credit rating agencies—and
those who pay for their services. We consider a stylized game
in which the owner of an asset first chooses whether to purchase
hard information from a profit-maximizing intermediary, and then

(Reeve and Herring 1986). In 2019, nonrated municipal bonds accounted for
more than half of the Bloomberg Barclays benchmark high-yield municipal index;
see https://www.lordabbett.com/en/perspectives/fixedincomeinsights/municipal-
bonds-muni-matters-demystifying-nonrated-bonds.html.

2. Describing the fee structure for credit ratings, an SEC report states that
“Typically, the rating agency is paid only if the credit rating is issued, though
sometimes it receives a breakup fee for the analytic work undertaken even if the
credit rating is not issued” (Securities and Exchange Commission 2008).

3. Sangiorgi and Spatt (2017a) survey the theoretical literature, which we
discuss in detail below. He, Qian, and Strahan (2012, 2016) and Griffin, Nickerson,
and Tang (2013) present evidence that the market takes into account both the
issuers’ ability to censor unfavorable credit ratings and the incentive of credit
rating agencies to cater to issuers.
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chooses whether to disclose the information before selling the as-
set. We focus on the intermediary’s design problem: should the
intermediary offer accurate or noisy information? What fee struc-
ture should be used? How much of the surplus resulting from the
sale of the asset can the intermediary extract?

To answer these questions, we abstract from several features
of real-world interactions. One such feature is the productive role
that an intermediary may play. For example, the information pro-
vided by an intermediary may help match less risky products with
more risk-averse investors, or alleviate moral hazard or adverse
selection. Our analysis highlights how information can be used
to generate revenue for the intermediary even without serving a
productive role. We also abstract from ex ante asymmetric infor-
mation. This shuts down signaling and focuses our analysis on
voluntary disclosure. It is also consistent with some credit rating
settings in which a central challenge is not asymmetric informa-
tion but the difficulty of evaluating the risk associated with the
products. An example is a local government that issues a bond
and has no particular expertise in evaluating it. Another example
is structured products, such as mortgage-backed securities, which
are complex and present an evaluation challenge even for credit
rating agencies. Accordingly, much of the literature on “ratings
shopping” (discussed in the related literature) assumes that all
players have symmetric information at the outset.

In our model, an agent owns an asset that he would like to sell
in a competitive market. Both the agent and the market have sym-
metric information about the asset’s market value. Before selling
the asset, the agent can purchase additional information from an
intermediary about the asset’s value that he can disclose to the
market to improve the terms of trade. The intermediary specifies
a test, which stochastically maps the asset’s value to a score that
can be verifiably disclosed (where a score is the posterior expected
value of the asset), a testing fee, and a disclosure fee. If the agent
chooses to pay the testing fee, the test is run and he observes
the resulting score. He then chooses whether to pay the disclo-
sure fee to disclose the score to the market as hard information.
The market cannot distinguish between the agent not disclosing
the score and the test not having been run. Because the market
is competitive, the market price for the asset following disclosure
or nondisclosure equals the asset’s expected value conditional on
all the information available to the market and the equilibrium
choices of the agent.
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We show that by choosing a test that generates noisy infor-
mation and charging a disclosure fee, the intermediary is able to
guarantee herself a significant share of the surplus arising from
trade even when the equilibrium played by the other parties is
chosen adversarially to her interests. This is true even though the
information in our model is neither socially valuable nor ex ante
valuable to the agent. The driving force, as we argue, is the agent’s
inability to commit not to use the intermediary’s services. This im-
plies that the presence of profitable intermediaries in an industry
is not, in itself, evidence that the provision of hard information im-
proves the welfare of other market participants. Moreover, even if
an intermediary’s services generate value, the same profit motive
may incentivize her to provide inaccurate information and charge
a disclosure fee.

To see how the intermediary can guarantee herself a high
revenue in our model, we first observe that the agent’s outside
option depends on the market’s expectation of the agent’s behavior.
If the market expects the agent to pay the testing fee with some
probability but the agent attempts to opt out of the disclosure
game by not paying the testing fee, he cannot prove to the market
that he chose to opt out. Instead, when the market sees no score
being disclosed, it rationally concludes that the test may have
been run but the agent chose not to disclose a low score. The
market weights this “bad news” contingency and the “no news”
contingency in which the agent decided not to pay the testing fee,
where the weights depend on what the market believes the agent
does in equilibrium. Thus, unlike in a standard mechanism design
problem, the agent’s outside option depends on both the test-fee
structure and the equilibrium played in the induced game between
the agent and the market.

If the intermediary can select the equilibrium of the induced
game, then an optimal test-fee structure comprises a fully reveal-
ing test, a high testing fee, and no disclosure fee. The intermediary
selects an equilibrium in which the agent always pays the testing
fee, and when the agent chooses not to disclose the score, the mar-
ket believes the test revealed that the asset has its lowest possible
value (say, θ ). The agent discloses the test score whenever it re-
veals that the asset’s value is not the lowest possible value. The
high testing fee charged by the intermediary extracts all of the
agent’s expected surplus (minus θ) from selling the asset, so his
expected payoff is θ . This is consistent with a key intuition from
standard mechanism design: because the agent’s payoff beyond
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what is needed to satisfy his individual rationality constraint is
due to information rents, when the agent starts with no private
information, the designer can keep the agent’s payoff at his indi-
vidual rationality level, extract the full surplus, and achieve this
by charging an upfront fee.4

But the game induced by this test-fee structure has another
equilibrium, in which the agent never pays the testing fee so the
intermediary’s revenue is zero. In this equilibrium, the market
treats nondisclosure as “no news,” and the resulting market price
is the asset’s ex ante expected value. Given this, it is optimal for
the agent not to pay for the intermediary’s services. Thus, choos-
ing this test-fee structure leaves the intermediary vulnerable to
obtaining zero revenue. We show in Proposition 1 that this is
not an accident: any test-fee structure that has an equilibrium in
which the intermediary extracts (approximately) all the surplus
also has an equilibrium in which the intermediary’s revenue is
(approximately) zero.

Motivated by the above discussion, we identify robustly opti-
mal test-fee structures, namely those that guarantee the highest
revenue to the intermediary across all equilibria of the induced
game. This corresponds to the intermediary choosing the test-fee
structure that maximizes her revenue, assuming that the equilib-
rium of the induced game is selected adversarially to her interests.
Our motivation for studying robustly optimal test-fee structures
is twofold. First, the intermediary may be unable to coordinate the
behavior of the agent and the market on her most preferred equi-
librium. The uncertainty about which equilibrium will be played
could motivate her to be cautious and therefore use test-fee struc-
tures that guarantee her a high revenue across all equilibria.5

Second, for any test-fee structure, the sum of the agent and the
intermediary’s revenue is constant across equilibria and equal to
the asset’s ex ante expected value, so the intermediary’s least pre-
ferred equilibrium is the agent’s most preferred equilibrium. The
agent and the market may coordinate on the agent’s preferred
equilibrium.

4. The intermediary can also extract all the surplus by using a binary score
test, making testing free, and charging a high disclosure fee.

5. Our focus on adversarial equilibrium selection is shared by a rapidly
growing literature in mechanism and information design, including Bergemann,
Brooks, and Morris (2017), Du (2018), Dworczak and Pavan (2020), Halac, Kremer,
and Winter (2020), Inostroza and Pavan (2020), Mathevet, Perego, and Taneva
(2020), Ziegler (2020), Halac, Lipnowski, and Rappoport (2021), and Hoshino
(2021).
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FIGURE I

A Robustly Optimal Score Distribution

A robustly optimal score distribution if the asset quality θ is drawn from [0,1],
where G is the marginal CDF on scores. The score distribution features atoms
on a low and a high score and an exponential distribution over a continuum of
intermediate scores.

Finding the robustly optimal test-fee structure involves op-
timizing across all test-fee structures while looking at the worst
equilibrium in each induced game. Different tests induce differ-
ent distributions of private information about the asset’s value
for the agent in the induced games, and different fees change the
agent’s incentives to obtain and disclose this private information.
Thus, the optimization entails comparing the equilibria of disclo-
sure games that vary in both the agent’s private information and
his disclosure costs. Despite this richness, we find that robustly
optimal test-fee structures take a relatively simple form regard-
less of the distribution of the asset’s value. A robustly optimal test
generates a marginal distribution of scores that feature an expo-
nential component over an interval of scores (even if the asset’s
value is drawn from a finite set), one atom below this interval
and possibly one atom above it. Such a “step-exponential-step”
distribution is illustrated in Figure I. The optimal disclosure fee
is always positive, but the optimal testing fee may be positive
or zero. The resulting revenue guarantee to the intermediary is
positive but bounded away from the full surplus.
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HOW TO SELL HARD INFORMATION 625

To derive these features of the robustly optimal test-fee struc-
ture, we first observe that in our model, the intermediary does not
provide any added value to the agent ex ante. This is because the
market draws correct (Bayesian) inferences and is competitive,
so for every test-fee structure and any equilibrium, the ex ante
expected market price is the ex ante expected value of the asset.
Thus, for every test and for all positive fees, the agent strictly
prefers an equilibrium in which the market expects him not to
have the asset tested and consequently offers him the asset’s ex
ante expected value. The agent then retains the full surplus and
the intermediary’s revenue is zero. If the market were to observe
whether the asset is tested, the agent could achieve this as an
equilibrium outcome by not paying the testing fee. But the mar-
ket does not observe whether the asset is tested. Therefore, the
market’s expectation of whether the asset had been tested and
the agent observed the resulting score must be consistent with
the agent’s unobserved equilibrium choice of whether to pay the
testing fee.

This is how the intermediary obtains a positive payoff ro-
bustly: she uses option value as a carrot to make it noncredible
for the agent not to pay for the asset to be tested. Because the
market only learns that the test has been run if the agent pays
the disclosure fee and discloses the test score, the intermediary
creates option value for the agent by offering a test that gener-
ates high test scores with some probability and setting sufficiently
low testing and disclosure fees. If this option value is sufficiently
high, the agent cannot credibly refrain from paying the testing
fee. The intermediary then obtains at least the testing fee in ev-
ery equilibrium. Moreover, the market then treats nondisclosure
as concealing a low score, which further motivates the agent to
pay the disclosure fee and disclose the test score. The agent is
trapped by market expectations that he has paid the testing fee
and will disclose if the test score is sufficiently high. This makes
the test an irresistible product for the agent.

But even if the agent pays the testing fee with certainty, mul-
tiple equilibria may exist. These equilibria differ in the set of
scores that the agent discloses and therefore in the probability of
disclosure and the intermediary’s revenue. The exponential score
distribution is robustly optimal because it eliminates potential
equilibria in which the agent discloses with low probability. We
develop an intuition for this result by showing that the interme-
diary can be thought of as choosing an optimal “demand curve for
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testing,” subject to the demand curve being feasible and the quan-
tity of testing demanded corresponding to the one in the equilib-
rium least favorable to the intermediary. We illustrate this ap-
proach in Section II and provide a general analysis in Sections
III, IV, and V.

Section VI describes three extensions. First, we show that if
the intermediary can charge only a testing fee, a robustly optimal
test is binary. We also show that if the intermediary can use only
binary tests, it suffices to charge only a testing fee. Second, we
consider a setting in which testing is costly for the intermediary.
We show that if testing costs increase in the Blackwell order, then
our main results continue to hold, that is, there exists a robustly
optimal test in the step-exponential-step class. Moreover, if the
cost increase is strict, then every robustly optimal test is in this
class. Third, we consider an intermediary who can sell the agent
multiple pieces of evidence, and gives him the choice of which to
disclose. We show that this additional flexibility does not increase
the intermediary’s revenue guarantee.

Our work builds on the study of verifiable disclosure and per-
suasion games, initiated by Grossman (1981) and Milgrom (1981).
Their main insight is that if a privately informed agent can cost-
lessly and verifiably disclose evidence about his type, the unique
equilibrium involves full disclosure. The subsequent literature
suggests a number of mechanisms that dampen this force, in-
cluding exogenously costly disclosure (Jovanovic 1982; Verrecchia
1983) and lacking evidence with positive probability (Dye 1985).
Matthews and Postlewaite (1985) and Shavell (1994) consider an
uninformed agent who decides whether to take a fully revealing
test. Matthews and Postlewaite (1985) show that the unique equi-
librium involves testing and full disclosure of the test result when
disclosure is voluntary, but involves no testing when disclosure
of the test result is mandatory. Shavell (1994) assumes the agent
bears a privately known cost of testing and studies how this cost
dampens unraveling.

In our model also, the agent faces a cost of obtaining informa-
tion about her type and a cost of disclosing that information in a
verifiable form, and with positive probability, the agent may lack
evidence. But we derive these features endogenously because the
intermediary chooses the evidence structure and the cost of learn-
ing and disclosing the evidence; the probability that the market
attributes to the agent having evidence is also determined in equi-
librium. Treating these features as endogenous objects reveals a
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HOW TO SELL HARD INFORMATION 627

trade-off: all else equal, the intermediary would like the market to
unravel (so that the agent discloses with maximal probability), but
the instruments from which she earns revenue are exactly those
that counter unraveling. This “quantity-price” trade-off leads to
the price-theoretic approach to evidence generation we develop,
in which the intermediary chooses the optimal price and designs
the optimal demand curve for evidence subject to constraints that
correspond to Bayes’s rule and adversarial equilibrium selection.

A closely related strand of the disclosure literature studies
choices made by agents to influence market perceptions. Ben–
Porath, Dekel, and Lipman (2018) model how an agent chooses
projects when he obtains evidence of project returns with posi-
tive probability. Their analysis emphasizes option value from the
possibility of disclosure as motivating the agent to choose riskier
projects. DeMarzo, Kremer, and Skrzypacz (2019) study how an
agent chooses tests and disclosures to influence the market valua-
tion of his asset when the choice of test is privately observed. They
show that the test and disclosure policy are chosen to minimize
the asset’s value conditional on nondisclosure. Shishkin (2019)
considers an agent who commits upfront to a test, receives a test
score with some exogenous probability, and then chooses whether
to disclose the score to a receiver. He shows that a pass/fail test
is optimal when the probability of obtaining evidence is low.6 In
these papers, the agent generates evidence in house, whereas in
our work, evidence is generated by a revenue-maximizing inter-
mediary.7

Our work complements that of Lizzeri (1999), who is one of
the first to study how an intermediary would design and price
information. His setting differs from ours in two respects. First,
he studies signaling dynamics when the agent is perfectly and
privately informed at the outset about the value of the asset.
Second, he studies mandatory disclosure, that is, if the agent
has the asset tested, he must disclose the score. Mandatory dis-
closure effectively renders the agent’s testing decision observ-
able to the market. With these features, Lizzeri (1999) shows

6. Pass/fail tests are generally not robustly optimal in our framework, but we
show in Section VI.A that if the intermediary can charge only a testing fee, then a
binary test is robustly optimal.

7. DeMarzo, Kremer, and Skrzypacz (2019) also consider an extension in which
the agent can purchase evidence from a monopolistic intermediary when the equi-
libria are selected to favor the intermediary.
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that the intermediary can extract the full surplus using a nearly
uninformative test and a high testing fee.8 Our work focuses on
voluntary disclosure, that is, when the agent can choose to disclose
or conceal the test score. We shut down the signaling channel by
studying an agent who is ex ante uninformed. We find that once
disclosure is voluntary, the intermediary can use option value
to induce an ex ante uninformed agent to have the asset tested
with certainty in every equilibrium. By contrast, were disclosure
mandatory (as in Lizzeri 1999), an uninformed agent could obtain
the full surplus by not having the asset tested.

A number of papers have studied related issues in the con-
text of credit rating agencies, with a focus on “ratings shopping”
when the issuer pays to disclose credit scores. As the literature
has noted, a credit rating agency is then inclined to design rat-
ing schemes that induce disclosure. Skreta and Veldkamp (2009)
consider the implications of this on investors who are not suffi-
ciently sophisticated to account for selective disclosure. Mathis,
McAndrews, and Rochet (2009), Bolton, Freixas, and Shapiro
(2012), and Frenkel (2015) offer dynamic reputational models for
how credit rating agencies may commit to information structures.
Farhi, Lerner, and Tirole (2013) study how an uninformed agent
shops for credit when facing a hierarchy of competing intermedi-
aries who have different standards. Sangiorgi and Spatt (2017b)
consider equilibrium implications for credit shopping when dis-
closure is voluntary versus mandatory.

II. AN EXAMPLE

Consider an agent who will sell an asset in a competitive as-
set market. The market value of the asset, θ , is either 0 or 1, each
with equal probability. Neither the agent nor the asset market
know the asset’s value, but an intermediary can run a test that
generates information about the asset’s value. The intermediary
chooses the test, T, which stochastically maps the asset’s value to
an unbiased score s in [0,1], so s = E[θ |s]. If the agent wants the
asset tested, he has to pay the intermediary a testing fee φt. If the
asset is tested, the score is reported to the agent. The agent then

8. See Kartik, Lee, and Suen (2021) for a variant of Lizzeri’s model in which
the agent is privately and imperfectly informed about the asset’s value. Harbaugh
and Rasmusen (2018) study a related model, in which the intermediary’s objective
is to provide as much information as possible to the receiver.
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HOW TO SELL HARD INFORMATION 629

chooses whether to pay an additional disclosure fee φd to disclose
the score as hard information to the market; otherwise, no score is
disclosed to the market. If no score is disclosed, the market cannot
distinguish between (i) the asset not being tested and (ii) the asset
being tested but the agent not disclosing the score. The intermedi-
ary chooses both the test T and the fees (a test-fee structure), and
her choice induces a disclosure game between the agent and the
asset market. The price the agent obtains for the asset is equal to
the expected value of the asset conditional on all the information
available to the market and conditional on the equilibrium played.
The intermediary’s revenue is equal to the fees she collects. Some
test-fee structures have multiple equilibria, and the intermedi-
ary’s objective is to choose a test-fee structure that guarantees
her the highest revenue across equilibria.

We use this example to illustrate several features of our anal-
ysis. We show that the intermediary benefits from using noisy
tests that pool low and high asset values as intermediate scores.
We depict how our problem maps to setting a price on an optimally
chosen demand curve, and we show why the robustly optimal test
uses an exponential score distribution. To illustrate these fea-
tures, it suffices to assume that the intermediary can charge only
a disclosure fee φd (so testing is free). As we later show, these
features also arise when it is optimal to charge a testing fee.

We first describe the intermediary’s revenue guarantee if she
uses a fully revealing test, that is, a test in which the score is
equal to the asset’s value θ . Figure II, Panel (a) depicts our analy-
sis of the fully revealing test using a (inverse) demand correspon-
dence. The demand correspondence (the solid black curve) traces
for any disclosure fee in [0,1] (on the vertical axis) the correspond-
ing probabilities of disclosure consistent with the equilibria of the
induced game (on the horizontal axis). We now describe this set of
equilibria.

For any disclosure fee in [0,1], there is an equilibrium in which
the agent has the asset tested, conceals a score of 0, and discloses
a score of 1. Because the asset’s score is 1 with probability 1

2 ,
the disclosure probability is 1

2 . Segment C in Figure II, Panel (a)
depicts a disclosure probability of 1

2 for every disclosure fee in
[0,1]. To see why concealing a score of 0 and disclosing a score of
1 is an equilibrium, observe that if the market believes that the
agent is using this strategy, then the market concludes that the
agent obtained a score of 0 if no score is disclosed. Therefore, if no
score is disclosed, the market offers a price of 0 for the asset. Given
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630 THE QUARTERLY JOURNAL OF ECONOMICS

FIGURE II

Demand Correspondences

The solid black curves are the demand correspondences, and the dashed red
curves (color version online) are the robust demand curves.

this market price, the agent has no incentive to deviate: the payoff
of 1 − φd from disclosing a score of 1 weakly exceeds the payoff
from not disclosing, which is weakly higher than the payoff from
disclosing a score of 0. In this equilibrium, the resulting revenue
for the intermediary is half the disclosure fee. Thus, by charging a
disclosure fee of 1, the intermediary extracts the entire expected
market value of the asset. This equilibrium with a disclosure fee
of 1 corresponds to the highest point of segment C.

As we see in Figure II, the equilibrium described above is
unique when the disclosure fee is in (0, 1

2 ).9 But for disclosure fees
that weakly exceed 1

2 , other equilibria exist. There is an equilib-
rium in which the agent has the asset tested but never discloses
the score, so the disclosure probability is 0. Segment A in Figure II
depicts these equilibria. Because the market does not expect any
score to be disclosed, it does not draw any inferences about the as-
set’s value from nondisclosure. Therefore, if no score is disclosed,
the market offers a price of 1

2 , which is the ex ante expected mar-
ket value of the asset. Given this market price, the agent prefers
not to disclose a score of 1 (or 0) because the disclosure fee is
at least 1

2 . Because the agent does not disclose any score, the

9. If the disclosure fee is 0, then for any probability p, there is an equilibrium
in which the agent discloses a score of 1 and with probability p discloses a score of
0. Segment D in Figure II, Panel (a) depicts these equilibria.
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HOW TO SELL HARD INFORMATION 631

TABLE I
DISTRIBUTION OF SCORE s CONDITIONAL ON ASSET VALUE θ , WHERE p IS IN (0, 1

3 )

s = 0 s = 3
4 s = 1

θ = 0 1 − p p 0
θ = 1 0 3p 1 − 3p

intermediary’s revenue is 0 in this equilibrium. Thus, a disclosure
fee of 1 leads to a revenue of 0 in this equilibrium. This contrasts
with the equilibrium described in the previous paragraph where a
disclosure fee of 1 leads to a revenue equal to the entire expected
market value of the asset.

The demand correspondence also shows a mixed-strategy
equilibrium in which the agent conceals a score of 0 and discloses
a score of 1 with an interior probability. Segment B in Figure II,
Panel (a) depicts these equilibria. As segment B makes clear, a
higher disclosure fee is associated with a higher probability of
disclosure. The reason is that increasing the disclosure probabil-
ity reduces the market price following nondisclosure, which makes
the agent willing to pay a higher disclosure fee.

Since we study the intermediary’s revenue guarantee across
equilibria, we identify the “robust demand curve” for disclosure,
which maps each disclosure fee (price) to the lowest probability
of disclosure (quantity) across all the equilibria associated with
that fee. This is the dashed red curve in Figure II, Panel (a).
The revenue guarantee for a given disclosure fee is the product
of the disclosure fee and the lowest equilibrium probability of
disclosure, that is, the area of the rectangle under the robust
demand curve at the point associated with that disclosure fee.
The maximal revenue guarantee of ≈ 1

4 for the fully revealing test
is the area of the shaded rectangle in Figure II, obtained from a
disclosure fee that is slightly below 1

2 .10

Let us now see how the intermediary can improve her robust
guarantee by introducing an intermediate score that pools the as-
set’s two possible values, 0 and 1. Consider a test with three possi-
ble scores—0, 3

4 , and 1—generated by the conditional distribution
in Table I. The demand correspondence and the robust demand

10. As is common with adversarial equilibrium selection, the intermediary
cannot robustly achieve a payoff of exactly 1

4 with a disclosure fee of 1
2 , since there

is then an equilibrium in which she obtains a payoff of 0.
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curve for this test are shown in Figure II, Panel (b). For strictly
positive disclosure fees less than 1

2 , and if p is sufficiently small,
there is a unique equilibrium: the agent has the asset tested, and
discloses his score if it is 3

4 or 1; if no score is disclosed, the market
offers a price of 0. The probability of disclosure in this equilibrium
is 1+p

2 . Segment E in Figure II, Panel (b) depicts these equilibria.11

For disclosure fees higher than 1
2 , other equilibria exist, and all of

them feature a lower probability of disclosure.12

Thus, by setting a disclosure fee slightly below 1
2 , the interme-

diary obtains a revenue of 1+p
4 , which is higher than her revenue

guarantee of 1
4 from the robustly optimal fully revealing test. By

introducing the intermediate score, the intermediary increases
the quantity of disclosure demanded in the worst equilibrium be-
cause the agent pays the disclosure fee not only when the asset’s
value is 1 but also, with some probability, when its value is 0.

The intermediary is limited, however, in how much pooling
she can introduce: a value of p that is too high introduces a bad
equilibrium in which the agent has the asset tested but only dis-
closes a score of 1.13 If no score is disclosed, the market concludes
that the score is either 0 or 3

4 and offers a price of 3p
1+3p . In this

equilibrium, the probability of disclosure is 1−3p
2 , leading to a rev-

enue of 1−3p
4 < 1

4 . To rule out this equilibrium, the intermediary
sets the value of p so that if the score is 3

4 , the agent prefers to
disclose his score rather than obtain the nondisclosure price:

3
4

− φd︸ ︷︷ ︸
Disclose a score of 3

4

>
3p

1 + 3p︸ ︷︷ ︸
Nondisclosure price

.

11. If the disclosure fee is 0, then for any probability p, there is an equilibrium
in which the agent discloses scores 3

4 and 1, and with probability p discloses a
score of 0. Segment F in Figure II, Panel (b) depicts these equilibria.

12. Segment A in Figure II, Panel (b) corresponds to equilibria in which the
agent has the asset tested but never discloses the score; segment B corresponds
to equilibria in which the agent conceals scores 0 and 3

4 , and discloses a score
of 1 with an interior probability; segment C corresponds to equilibria in which
the agent conceals scores 0 and 3

4 and always discloses a score of 1; segment D
corresponds to equilibria in which the agent conceals a score of 0, discloses a score
of 1, and discloses a score of 3

4 with an interior probability.
13. This corresponds to the lowest point of segment C in Figure II, Panel (b)

moving below the dashed red line, which changes the robust demand curve and
hurts the intermediary.
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FIGURE III

Flattening the Demand Correspondence

Adding score 3
4 to the fully revealing test, thus transitioning from Panel (a)

to Panel (b), flattens the demand correspondence (in solid black) and pushes the
robust demand curve (in dashed red) to the right. Additional scores can be added
to further flatten the demand correspondence and push the robust demand curve
to the right. This ultimately leads to the optimal test (Panel (c)) with a continuum
of scores, for which the demand correspondence (in solid black) is flat and coincides
with the robust demand curve (in dashed red).

With a disclosure fee slightly below 1
2 , the above inequality holds

for p less than 1
9 . The revenue guarantee is attained by setting p =

1
9 and charging a disclosure fee slightly below 1

2 . This restriction
on p is a “cross-equilibrium” constraint, which ensures that a low-
revenue equilibrium is not created. Cross-equilibrium constraints
lead to the exponential score distribution in the robustly optimal
tests.

To see why, let us return to the demand curve approach.
Adding the score 3

4 to the fully revealing test “flattens” the de-
mand curve, which pushes the robust demand curve to the right,
as illustrated in the transition from Figure III, Panel (a) to Fig-
ure III, Panel (b). Additional scores further flatten the demand
curve and push the robust demand curve to the right. The degree
to which this can be done is limited by the cross-equilibrium con-
straints, and this leads to tests that induce a rectangular demand
correspondence like the one in Figure III, Panel (c): intuitively,
whenever the demand correspondence or the robust demand curve
are not a rectangle, there is some slack that the intermediary can
use to change the test in a way that increases the probability
of disclosure (by having more pooling) in the equilibrium that
has the lowest probability of disclosure, that is, without violating
cross-equilibrium constraints.
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Which tests lead to rectangular demand correspondences?
Those whose marginal score distribution includes an exponen-
tially distributed component. To see why, notice that with a rect-
angular demand correspondence, there is a disclosure fee φd for
which there is an interval of equilibrium disclosure probabilities.
In Figure III, Panel (c), this disclosure fee is φd = 1

2 . This contin-
uum of equilibria implies that there is a continuum of scores s for
which

s − φd = E[s′|s′ � s].(1)

The left side above is the payoff from disclosing a score s, and the
right side is that from not disclosing when the set of scores that
do not disclose are those weakly below s. Thus, when equation (1)
holds, there is an equilibrium with a disclosure threshold of s.
Using G(s) as the marginal CDF on scores and G(s′|s′ � s) as the
conditional CDF on scores no higher than s, the right side can
be rewritten as

∫ s
0 (1 − G(s′|s′ � s))ds′. It follows then that equa-

tion (1) is equivalent to

φd =
∫ s

0
G(s′|s′ � s)ds′ =

∫ s
0 G(s′)ds′

G(s)
=

(
d
ds

ln
(∫ s

0
G(s′)ds′

))−1

.

(2)

Because the above is true for an interval of scores s, it defines a dif-
ferential equation whose solution is G(s) = αe

s
φd for some constant

α, that is, the exponential score distribution.14

We illustrate this solution in Figure IV, where Panel (a) shows
the marginal score distribution in the robustly optimal test. This
marginal distribution is generated by a test in which if the value
of the asset is 0, with probability 2

e the test score is 0 and with

14. The exponential score distribution may bring to mind the work of Roesler
and Szentes (2017) and Condorelli and Szentes (2020). In those papers and in our
work, a player optimally chooses a demand curve by manipulating an information
structure or a distribution of values. In those papers, a buyer optimally chooses a
unit-elastic demand curve that leads a seller to charge a low price and be indiffer-
ent between that price and higher prices. In a similar vein, Ortner and Chassang
(2018) show that a principal can reduce the cost of monitoring by paying a monitor
wages that generate a unit-elastic demand curve for bribes. In our work, adver-
sarial equilibrium selection leads the intermediary to choose a test that generates
a rectangular demand curve, which corresponds to an exponential distribution of
scores. The driving force is not to generate indifference but to eliminate equilibria
in which the agent does not disclose intermediate scores.
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FIGURE IV

The Robustly Optimal Distribution of Scores

The robustly optimal distribution of scores where (Panel (a)) G(·) is the marginal
probability, (Panel (b)) G(·|0) is the conditional probability of scores for θ = 0, and
(Panel (c)) G(·|1) is the conditional probability for θ = 1.

complementary probability the test score is distributed exponen-
tially on [ 1

2 , 1], as shown in Figure IV, Panel (b), and if the value
of the asset is 1, the test score is distributed exponentially on
[ 1

2 , 1], as shown in Figure IV, Panel (c). The testing fee is 0 (by
assumption), and the disclosure fee is slightly less than 1

2 . This
test-fee structure induces a game with a unique equilibrium: the
agent has the asset tested and discloses the score if it exceeds the
disclosure fee. This leads to partial pooling: if the asset value is
low, then with some probability the test generates scores that are
disclosed and coincide with those generated if the asset value is
high. If no score is disclosed the market offers a price of 0. The re-
sulting revenue for the intermediary is ≈ 1

2 (1 − 1
e ), which is more

than 1
4 but less than the full surplus of 1

2 .

III. MODEL

III.A. The Setting

A risk-neutral agent sells an asset in a competitive market
comprising two risk-neutral buyers who have a common value for
the asset. The agent and both buyers are initially symmetrically
informed about the asset’s market value, θ , knowing only that
it is drawn according to a distribution F with support � ⊆ [θ, θ ],
where 0 � θ < θ < ∞ are the lowest and highest values in �, with
an expected value of μ.

Prior to selling the asset, the agent can pay an intermediary
to evaluate the asset and has the option, for an additional fee, to
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disclose that evaluation to the market. We refer to the evaluation
scheme and the fees as a test-fee structure. A test-fee structure
comprises:

i. a test, T, that stochastically maps the asset’s value to a
score in some set S;15

ii. a testing fee, φt ∈ R, which the agent pays for the asset to
be evaluated; and

iii. a disclosure fee, φd ∈ R, which the agent pays to disclose
the score to the market.

Because the test will only be used to determine the asset’s ex-
pected value, we henceforth assume without loss of generality
that each test score is an unbiased estimate of the value. That is,
S ⊆ [θ, θ ] and for every score s in S, E[θ |s] = s. We denote the set
of all tests by T . For each test T, let GT(s) denote the probability
that if the intermediary evaluates the asset using test T, the re-
sulting score is at most s. We refer to GT as the marginal score
distribution.

Turning to fees, we denote the pair of testing and disclosure
fees by φ ≡ (φt, φd). The testing fee is the price the intermediary
charges to generate information about the asset. The disclosure
fee is the additional price to make that information hard or veri-
fiable so that the agent can disclose it to the buyers.

We denote a test-fee structure by (T, φ). A test-fee structure
(T, φ) induces a game G(T , φ) between the agent and the buyers,
in which (T, φ) is common knowledge. The game has the following
timeline:

i. Nature chooses the value θ of the asset according to the
distribution F.

ii. The agent, without observing θ , decides whether to have
the asset tested. If so, he pays the testing fee φt and ob-
serves a score s drawn according to T.

iii. The agent decides whether to disclose the score to the
market. If so, he pays the disclosure fee φd, and the buyers
observe the score. If he does not disclose, or if he does not

15. Formally, S is a Polish space and the test T : B(S) × � → [0, 1] is a Markov
kernel, where B(S) is the Borel σ -algebra on S. The interpretation is that if the
asset value is θ the test generates a random score according to T( ·, θ ). Distribution
F and test T induce a joint distribution over � × S.
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have the asset tested, the buyers observe a null message,
N.

iv. The buyers bid simultaneously for the asset, and the asset
is sold to the highest bidder, with ties broken uniformly.

The agent’s payoff is the price at which he sells the asset minus
any testing and disclosure fees that he pays. The payoff of the
buyer that buys the asset at price p is θ − p; the other buyer’s
payoff is 0.16

In the induced game G(T , φ), an agent’s (behavioral) strategy
is (σ t, σ d), where σ t in [0,1] is the probability with which he has
the asset tested and σ d: S → [0, 1] is a measurable function that
specifies the score-contingent probability with which he discloses
the score. Buyer i’s (pure) strategy σi : S ∪ {N} → R specifies buyer
i’s bid following a disclosure of score s or the null message N. A
belief system ρi specifies buyer i’s posterior belief about the asset’s
value following a disclosure of score s or the null message N. We
denote a strategy profile σ = (σ t, σ d, σ 1, σ 2) and belief system ρ

= (ρ1, ρ2) by (σ , ρ).
For a game G(T , φ), we denote the set of perfect Bayesian

equilibria (PBE) by �(T, φ).17 Because the buyers have the same
beliefs and compete in a first-price auction, each buyer’s bid is
equal to the asset’s expected value given all the available infor-
mation.

III.B. Maximal Revenue Guarantees

We study the intermediary’s maximal revenue guarantee,
namely, the highest payoff that she can guarantee herself by
choosing a test-fee structure, that is, assuming that the equilib-
rium in the induced game is chosen adversarially to her interests.

16. We have framed our analysis in terms of this market game for concreteness.
But the issues and our analysis apply to other settings in which an agent obtains
evidence to persuade others. For example, a principal may decide how much to
invest in a project based on her beliefs about the project’s success, and the agent
may acquire evidence to persuade the principal to invest more. Our model is
isomorphic to such a setting if the principal’s investment increases linearly in her
posterior expectation and the agent’s payoff increases linearly in the principal’s
investment.

17. Specifically each player behaves in a way that is sequentially rational,
beliefs μi are derived via Bayes’s rule whenever possible, and off-path beliefs
satisfy “You can’t signal what you don’t know” (Fudenberg and Tirole 1991). The
important implication for our setting is that both on and off the equilibrium path,
each buyer’s posterior expected value after the agent discloses score s is s.
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DEFINITION 1. The intermediary’s maximal revenue guarantee is

RM ≡ sup
(T ,φ)∈T ×R2

inf
(σ,ρ)∈�(T ,φ)

σt

(
φt + φd

∫
S

σd(s)dGT

)
.(3)

Recall that σ t is the probability with which the agent pays
for the intermediary to test the asset and σ d(s) is the probability
with which the agent pays to disclose a score of s. The first term
in the parenthesis in equation (3) is the intermediary’s revenue
from the testing fee, and the second term is the revenue from the
disclosure fee.

Why do we study the maximal revenue guarantee? One rea-
son is that any test-fee structure that has an equilibrium in which
the intermediary’s revenue is high also has an equilibrium in
which her revenue is low. To formalize this, consider the full in-
formational surplus RF ≡ μ − θ , where μ is the expected value of
the asset. The full informational surplus is a tight upper bound
on the intermediary’s revenue in any equilibrium.18 But any test-
fee structure that has an equilibrium in which the intermediary
obtains the full informational surplus also has an equilibrium in
which the intermediary obtains 0. We alluded to this fact in the
introduction and in the example in Section II. In fact, for any
test-fee structure in which the intermediary obtains close to the
full informational surplus in some equilibrium, there is another
equilibrium in which the intermediary obtains close to 0.

PROPOSITION 1. There exists δ > 0 such that for any small ε � 0,
any test-fee structure that has an equilibrium in which the
intermediary’s revenue is at least RF − ε also has another
equilibrium in which the intermediary’s revenue is at most
δ
√

ε.

Proposition 1 formalizes the challenge that multiple equi-
libria present to the intermediary: choosing a test-fee structure
because its most favorable equilibrium generates a high revenue
leaves the intermediary vulnerable to an equilibrium that gener-
ates low or zero revenue. An immediate implication of Proposition
1 is that the maximal revenue guarantee RM is bounded away from

18. The intermediary can extract the full informational surplus using a fully
revealing test and an appropriate testing fee. But she cannot extract more than
this because the total surplus in the economy is μ and the market price of the
asset is never lower than θ .
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the full information surplus RF. Our main result, Proposition 2,
derives a tight bound on RM that, for every μ, applies across dis-
tributions for which the asset’s expected value is μ. Because the
proof of Proposition 1 uses techniques that we develop later in
the article, we do not develop the intuition here. The proof and a
graphical intuition are in the Online Appendix.

A separate rationale for focusing on the maximal revenue
guarantee is that for any test-fee structure, an equilibrium that
minimizes the intermediary’s revenue also maximizes the agent’s
payoff.19 Thus, if the intermediary worries that the agent and the
asset market will coordinate on the agent’s preferred equilibrium,
she would choose a test-fee structure that attains her maximal
revenue guarantee.

Our analysis also shows how to maximize the intermediary’s
revenue across test-fee structures that admit a unique equilib-
rium. This maximal revenue is clearly at most RM, but because
the robustly optimal test-fee structure that we identify in Proposi-
tion 2 has a unique equilibrium, it is also a solution to this related
problem.

IV. PRELIMINARY STEPS

To simplify the problem of solving for the maximal revenue
guarantee, we take the following preliminary steps:

i. We frame the analysis of tests purely in terms of marginal
score distributions.

ii. We show that it suffices to consider only those test-fee
structures in which the agent pays the testing fee with
probability 1 in every equilibrium.

iii. For every such test-fee structure, we characterize the
equilibrium with the lowest revenue for the intermedi-
ary in terms of a score threshold for disclosure.

iv. Because finding the maximal revenue guarantee involves
optimizing with strict constraints, we formulate a relaxed
problem with weak constraints that has the same solu-
tion.

19. Notice that the equilibria that maximize the agent’s payoff are the only
Pareto-efficient ones from the perspective of the players in the game induced by
the test-fee structure.
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IV.A. Shifting from Tests to Marginal Score Distributions

For the intermediary’s revenue, all that matters about a test
is its marginal score distribution: for all fees, if two tests have the
same marginal score distribution, then they have the same equi-
libria.20 Thus, henceforth, we refer to (G, φ) as a test-fee structure,
where G is a CDF on [θ, θ ] that corresponds to the marginal score
distribution of some test T and φ is a pair of testing and disclosure
fees.

Focusing on the set of marginal score distributions induced by
all possible tests is useful because this set is easy to characterize.
Recall that a distribution G is a mean-preserving contraction of F
if its support is in [θ, θ ] and

∫ s′

θ
G(s)ds �

∫ s′

θ
F(s)ds for all s′ ∈ [θ, θ̄ ],

with equality at s′ = θ̄ . We denote by �(F) the set of distributions
that are mean-preserving contractions of F. We then have the
following classical result (Blackwell 1953; Strassen 1965).

LEMMA 0. A marginal score distribution G is induced by some (un-
biased) test if and only if G is in �(F).

We use this formulation to rewrite revenue guarantees:
for a test-fee structure (G, φ), let �̂(G, φ) be the equilibrium
set of the induced game between the agent and the market.
The revenue guarantee of (G, φ) is the lowest revenue gener-
ated across the equilibria of this test-fee structure: R(G, φ) ≡
inf (σ,ρ)∈�̂(G,φ) σt(φt + φd

∫
S σd(s)dG). The maximal revenue guaran-

tee is thus RM = sup(G,φ)∈�(F)×R2 R(G, φ).

IV.B. Using Option Value as a Carrot

We show that in every test-fee structure, either the asset is
tested with probability 1 in every equilibrium or there exists an
equilibrium in which the asset is tested with probability 0 (and
the intermediary’s revenue is 0).

20. Take two test-fee structures (T, φ) and (T′, φ) such that T and T′ have the
same marginal score distribution. Take an equilibrium (σ , ρ) of G(T , φ). Suppose
that (σ , ρ) were played in G(T ′, φ) and observe that given ρ and that GT = G′

T ,
the strategy profile σ remains sequentially rational for the agent and the buyers.
Moreover, (σ , ρ) continues to satisfy Bayes’s rule and the appropriate consistency
condition. Therefore, (σ , ρ) is an equilibrium of G(T ′, φ).
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LEMMA 1. If a test-fee structure (G, φ) satisfies

(P) φt <

∫ θ̄

μ+φd

[s − (μ + φd)]dG,

then the asset is tested with probability 1 in every equilib-
rium; otherwise, there exists an equilibrium in which the
asset is tested with probability 0.

The logic of Lemma 1 is that (P) is a participation constraint
that must hold for the asset to be tested with positive probability
in every equilibrium. To see why, consider a test-fee structure (G,
φ) and an equilibrium in which the asset is tested with probability
0. Because the market expects nondisclosure with probability 1,
the price of the asset conditional on nondisclosure is μ. If the agent
deviates and has the asset tested, he optimally pays φd to disclose
the score whenever it is higher than μ + φd. This deviation is
strictly profitable if

μ < −φt +
∫ θ

θ

max{μ, s − φd}︸ ︷︷ ︸
Option Value

dG,

which, by rearranging, yields (P). Thus, the asset is tested with
positive probability in every equilibrium if and only if (P) holds.
The proof of Lemma 1 shows that if (P) holds, the asset is in fact
tested with probability 1 in every equilibrium.

This result also allows us to show that it suffices to restrict
attention to nonnegative fees: for any test-fee structure with a
negative testing or disclosure fee, the intermediary can improve
her revenue guarantee by using a test-fee structure that has non-
negative fees.

LEMMA 2. For any test-fee structure (G, φ) with φd < 0 or φt < 0,
there exists a test-fee structure (G′, φ′) with nonnegative fees
such that R(G, φ) < R(G′, φ′).

IV.C. Adversarial Disclosure Thresholds

For any test-fee structure that satisfies (P), an adversarial
equilibrium minimizes the disclosure probability while having the
asset tested with probability 1. We show that such equilibria are
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threshold equilibria in which the agent discloses the score if it
strictly exceeds the threshold.

With Lemmas 1 and 2 in hand, we restrict attention to test-
fee structures that satisfy (P) and have nonnegative disclosure
fees. Given a test-fee structure (G, φ), consider thresholds τ that
weakly exceed sG, where sG is the lowest score in the support of
G. We say that such a threshold τ is an equilibrium threshold for
a test-fee structure (G, φ) if

τ − φd = EG[s|s � τ ].(4)

If τ satisfies equation (4), then there is an equilibrium in which
the agent discloses the score if and only if it strictly exceeds τ . To
see why, suppose that the agent behaves in this way and equa-
tion (4) holds. Then the left side of equation (4) is the difference
between the market price of the asset when a score of τ is disclosed
and the disclosure fee, and the right side is the market price for
the asset when no score is disclosed. Thus, the agent is indifferent
between disclosing and not disclosing a score of τ . Because the
market price following disclosure increases in the score but
the market price following nondisclosure is constant in the score,
the agent strictly prefers not to disclose scores lower than τ and
to disclose scores higher than τ .

A test-fee structure may have multiple equilibrium thresh-
olds. It may also have other equilibria, in which if the agent
obtains a threshold score, he chooses to disclose his score with
strictly positive probability rather than probability 0. The mixed
strategy equilibria for the fully revealing and the three-score
tests in Sections II are examples of such equilibria. We prove
in Lemma 3 that from the standpoint of adversarial equilibrium
selection, it suffices to focus on equilibria in which the agent dis-
closes his score only if it strictly exceeds the threshold.

We proceed as follows. For each test-fee structure, we show
that a highest equilibrium threshold exists and provide a charac-
terization of the highest equilibrium threshold that we later use
to find the robustly optimal test-fee structure. We then show that
this highest equilibrium threshold corresponds to an adversarial
equilibrium in which the agent discloses his score if and only if it
strictly exceeds this threshold.

LEMMA 3. If a test-fee structure (G, φ) satisfies (P) and φd � 0, then
the following are true:
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τ − E[s|s ≤ τ ]

Fee

θ Threshold Scoreτ1 τ3τ2 θ

θ − μ

φd

FIGURE V

Characterizing the Highest Equilibrium Threshold

The adversarial equilibrium for a given disclosure fee is the equilibrium with
the highest equilibrium threshold. For example, with a disclosure fee of φd, the
highest equilibrium threshold is τ3.

i. A highest equilibrium threshold τ exists.
ii. A score threshold τ � sG is the highest equilibrium

threshold if and only if

τ − φd = EG[s|s � τ ],

τ ′ − φd > EG[s|s � τ ′] ∀τ ′ > τ.
(HE)

iii. There exists an adversarial equilibrium in which the
agent discloses score s if and only if s > τ , where τ is
the highest equilibrium threshold.

Figure V illustrates our characterization of the highest equi-
librium threshold.

IV.D. A Relaxed Problem with an Identical Value

We have seen that if a test-fee structure satisfies (P), then
the agent takes the test with probability 1 and the adversarial
equilibrium is characterized by the highest equilibrium threshold.
The revenue guarantee in the robustly optimal test-fee structure
is therefore

RM = sup
(G,φ,τ )∈�(F)×R3

φt + φd(1 − G(τ )) s.t. (P) and (HE)
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The intermediary’s maximization problem has constraints with
strict inequalities, but we show that the problem’s value RM is
unchanged if those inequalities are made weak. These are the
weak participation constraint,

φt �
∫ θ̄

μ+φd

[s − (μ + φd)]dG(w-P)

and the weak-highest equilibrium constraint (which defines the
weak-highest equilibrium threshold),

τ − φd = EG[s|s � τ ]

τ ′ − φd � EG[s|s � τ ′] ∀τ ′ > τ.
(w-HE)

We write the relaxed problem as

max
(G,φ,τ )∈�(F)×R3

φt + φd(1 − G(τ )) s.t. (w-P) and (w-HE).

In addition to having a solution and the same value as the
original problem, the relaxed problem has several attractive fea-
tures. First, for any test-fee structure that solves the relaxed prob-
lem, there is a “nearby” test-fee structure whose revenue guaran-
tee is close to the maximal revenue guarantee RM. Second, for any
convergent sequence of test-fee structures that achieves the maxi-
mal revenue guarantee, the limiting test-fee structure is a solution
to the relaxed problem. Thus, solutions to the relaxed problem
identify necessary and sufficient features of test-fee structures
whose revenue guarantees approximate RM. We call these solu-
tions robustly optimal test-fee structures.

Let us formalize this discussion. A sequence of test-fee struc-
tures {(Gn, φn)}n=1, 2, . . . converges to a test-fee structure (G, φ) if
Gn converges weakly to G and φn converges to φ. For a test-fee
structure (G, φ) and equilibrium threshold τ , we denote the as-
sociated revenue for the intermediary by R̂(G, φ, τ ). We use this
notation to link the relaxed and original problems.

LEMMA 4.
i. An optimal solution (G, φ, τ ) to the relaxed problem exists

and RM = R̂(G, φ, τ ).
ii. Consider any optimal solution (G, φ, τ ) to the relaxed

problem. Then there exists a sequence of test-fee struc-
tures and thresholds {(Gn, φn, τn)}n=1, 2, . . . such that (a)
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FIGURE VI

A Step-Exponential-Step Distribution G

for each n, (Gn, φn, τn) satisfies (P) and (HE), (b) (Gn, φn)
converges to (G, φ), and (c) RM = limn→∞ R̂(Gn, φn, τn).

iii. Consider any sequence of test-fee structures and thresh-
olds {(Gn, φn, τn)}n=1, 2, . . . such that (a) for each n, (Gn, φn,
τn) satisfies (P) and (HE), (b) (Gn, φn) converges to a test-
fee structure (G, φ), and (c) RM = limn→∞ R̂(Gn, φn, τn).
Then there exists τ such that (G, φ, τ ) satisfies (w-P) and
(w-HE), and RM = R̂(G, φ, τ ).

V. ROBUSTLY OPTIMAL TEST-FEE STRUCTURES

This section contains our main result. We show that robustly
optimal test-fee structures use tests that have a “step-exponential-
step” form; that is, the distributions over scores are exponential
over an interval, have up to two mass points, one above and one
below the interval, and have zero density everywhere else. We
also show that the optimal disclosure fees are strictly positive, and
we derive a tight bound on the intermediary’s maximal revenue
guarantee.

As illustrated in Figure VI, a test-fee structure (G, φ) is in the
step-exponential-step class if there exists κ ∈ [0, 1] and thresholds
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τ 0 < τ 1 < τ 2 � τ 3 such that

(5) G(s) =

⎧⎪⎨
⎪⎩

κ if s ∈ [τ0, τ1)

κe
s−τ1
τ1−τ0 if s ∈ [τ1, τ2]

1 if s � τ3,

G assigns probability 0 to [0, τ 0) ∪ (τ 2, τ 3), and the fees are

φd = τ1 − τ0,(6)

φt =
(
1 − κe

τ2−τ1
φd

)
(τ3 − (μ + φd)).(7)

PROPOSITION 2. For any distribution F of the asset’s value, the
following hold:

i. There exists a test-fee structure in the step-exponential-
step class that is robustly optimal.

ii. Every robustly optimal test-fee structure has a strictly
positive disclosure fee.

iii. If (G, φ) is a robustly optimal test-fee structure, then the
testing fee φt is strictly positive if and only if scores in
(μ + φd, θ ] arise with positive probability.

iv. The maximal revenue guarantee is at most (θ − μ)(1 −
e

θ−μ

θ−μ ), and this bound is attained when the support of F is
binary, that is, {θ, θ}.

Proposition 2 partially characterizes the robustly optimal
test-fee structures and provides a tight upper bound on the maxi-
mal revenue guarantee.21 There is always a robust solution in the
step-exponential-step class, the disclosure fee is strictly positive
in any robust solution, and the testing fee is strictly positive if
and only if the robustly optimal score distribution has a step at
the top.

In the robustly optimal test in the step-exponential-step class,
the score τ 0 can be interpreted as a “failing” score and the scores
in [τ 1, τ 3] can be interpreted as “passing” scores. Even if the sup-
port of the distribution of asset values is finite, the test uses a
continuum of scores. Because the passing scores are distributed
exponentially with a potential step at the top, the robustly

21. Proposition 1 already established that the maximal revenue guarantee is
bounded away from full surplus, but the bound provided was not tight.
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FIGURE VII

How an Intermediary Gains from “Flattening” the Robust Demand Curve

Panel (a) depicts a demand curve in dark gray (blue; color version online), and
by flattening the demand curve the intermediary can induce a higher probability
of disclosure at disclosure fee φd. Panel (b) shows that this can be done without
changing the score distribution above μ + φd, which guarantees that (P) continues
to be satisfied without changing the testing fee.

optimal test assigns higher passing scores more frequently than
lower passing scores.

We show after the proof of Proposition 2(i) that if the inter-
mediary uses this test, and charges the testing fee in equation (7)
and a disclosure fee slightly below those in equation (6), then this
test-fee structure has a unique equilibrium. In this equilibrium,
the asset is tested with probability 1 and the agent discloses his
score whenever it exceeds τ 1. If the agent does not disclose a score,
he obtains a market price of τ 0. Therefore, the distribution of mar-
ket prices involves an atom at τ 0, an exponential distribution on
[τ 1, τ 2], and potentially an atom at τ 3.

We can use the robust demand curve approach described in
Section II to obtain an intuition for Proposition 2(i). Consider a
test-fee structure with disclosure fee φd in which the probability
of disclosure in an adversarial equilibrium is q. Suppose, as is
shown in Figure VII, Panel (a), that the demand correspondence
is not flat to the left of the point (q, φd). Then we can modify the
test-fee structure and improve the intermediary’s robust revenue
as follows: flatten the demand correspondence to the left of (q,
φd) and push it to the right of (q, φd) by changing the test score
distribution. Doing this increases the disclosure probability in the
adversarial equilibrium for any disclosure fee slightly lower than
φd. Moreover, as seen in Figure VII, Panel (b), this modification
can be done without changing the score distribution on scores
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above μ + φd, so the option value of a test, given by the right side
of (P), remains unchanged. Therefore, this modification does not
generate a new equilibrium in which the agent doesn’t pay the
testing fee. Thus, the intermediary can increase the probability
of disclosure by decreasing the disclosure fee arbitrarily slightly
and without changing the testing fee, which improves her revenue
guarantee.22

A similar logic shows that in fact every robustly optimal test-
fee structure has a score distribution that is exponential over
a nondegenerate interval (Lemma 11 in the Appendix). Outside
of that interval, there is some flexibility because scores below
τ 1 are those that the agent strictly prefers not to disclose, and
scores above μ + φd, which exceeds τ 2, are those for which (HE)
is slack. In the step-exponential-step distribution scores below τ 1
are pooled as a single score and scores above μ + φd are pooled
as a single score. This creates a score distribution that is a mean-
preserving contraction of the distribution F of the asset value.
But there may be other robustly optimal distributions that are
the same on the interval [τ 1, τ 2] and are also mean-preserving
contractions of F.

Turning to disclosure fees, we prove Proposition 2(ii) by con-
tradiction. We show that if the intermediary did not charge a dis-
closure fee, then the maximal revenue guarantee would come from
charging only a testing fee and using a binary test. But we can im-
prove on this by using a test-fee structure with a step-exponential
distribution and a strictly positive disclosure fee.

Proposition 2(iii) follows from the participation constraint (P).
If scores in (μ + φd, θ ] arise with positive probability, then even if
the market expects the asset to not be tested, the agent strictly
prefers to have the asset tested at a testing fee of 0 and a disclo-
sure fee of φd. Increasing the testing fee slightly while keeping
the disclosure fee unchanged increases the intermediary’s rev-
enue in the adversarial equilibrium and does not generate a new
equilibrium in which the asset is not tested. We use this logic in

22. A reader may wonder how this is possible while the total surplus is con-
stant and (w-P) binds. This is because (w-P) is a nonstandard participation con-
straint. The modification to the test decreases the agent’s payoff in the adversarial
equilibrium without affecting his indifference between paying the testing fee and
not paying it if the market expects him not to pay it, which is what (w-P) repre-
sents.
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Proposition 4 to provide conditions on primitives that guarantee a
strictly positive testing fee. Building on this logic, Proposition 9 in
the Online Appendix shows that extracting revenue with a testing
fee is in fact the only reason that scores above μ + φd may exist.
Namely, if the intermediary is restricted to only use disclosure
fees (i.e., testing must be free), there exists a test-fee structure
in the step-exponential-step class that is robustly optimal and in
which there is no score above μ + φd.

We prove Proposition 2(iv) by considering a relaxed problem
in which the score distribution need not be a mean-preserving con-
traction of distribution F, while still having the same expectation,
that is, EG[s] = EF[θ ]. We solve this relaxed problem completely,
and its value provides an upper bound on the maximal revenue
guarantee. This bound is tight when the support of F is binary
because the mean-preserving contraction condition is then equiv-
alent to EG[s] = EF[θ ]. The following result describes the complete
solution for this case.

PROPOSITION 3. Suppose that the support of distribution F is {θ, θ}.
The unique robustly optimal test-fee structure includes:

i. No testing fee but a strictly positive disclosure fee: φ∗
t = 0

and φ∗
d = θ − μ.

ii. The following marginal score distribution that has an
atom at θ , a gap above it, and then an exponential form
(with no atom at the top):

(8) G∗(s) =
{

e
θ−μ

θ−μ if s ∈ [θ, θ + θ − μ)

e
s−θ

θ−μ if s ∈ [θ + θ − μ, θ ].

The resulting revenue guarantee is RM = (θ − μ)(1 − e
θ−μ

θ−μ ).

Proposition 3 shows that for binary asset values {θ, θ}, there is
a unique robustly optimal test-fee structure. The robustly optimal
test has an atom at the lowest possible score θ and an exponential
distribution on the interval [θ + θ − μ, θ ]. The disclosure fee is the
only source of revenue. In the adversarial equilibrium, the asset
is always tested and the agent pays the disclosure fee whenever
the realized score is in (θ + θ − μ, θ ].

The test and equilibrium can be interpreted as follows.
The score θ is a “failing” score and the scores in the interval
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(θ + θ − μ, θ ] are “passing” scores. If the asset value is high, the
test always generates a passing score. But if the asset value is
low, the test generates a passing score with an interior probabil-
ity. The test is “noisy” in that passing scores partially pool low
and high asset values.23 By partially pooling low and high asset
values, the intermediary obtains revenue not only when the asset
value is high but also with positive probability when the asset
value is low.

Let us compare this maximal revenue guarantee with the
maximal revenue the intermediary could obtain if she could se-
lect not only the test-fee structure but also the equilibrium. Re-
call from Section III.B that if the intermediary could select the
equilibrium, then she could extract the full informational surplus
RF = μ − θ by using a fully revealing test and charging a high
testing fee. We consider the ratio RM

RF
, where RM is the revenue

guarantee from Proposition 3. Holding θ and θ fixed in the binary
case, the ratio RM

RF
is decreasing in the expected value μ of the

asset. In other words, the impact of adversarial equilibrium selec-
tion on the intermediary’s revenue increases with the probability
that the asset value is high.

We know from Proposition 2 that the robustly optimal disclo-
sure fee is always strictly positive; Proposition 3 shows that the
robustly optimal testing fee may be 0. We now provide a sufficient
condition on the distribution F for the optimal testing fee to be
strictly positive.

PROPOSITION 4. If the distribution F of the asset’s value is log-
concave and has a strictly positive density, then any robustly
optimal test-fee structure includes a strictly positive testing
fee.

Several commonly studied distributions, such as the uniform
distribution over [θ, θ ] and the truncated normal and Pareto dis-
tributions, are log-concave (Bagnoli and Bergstrom 2005). Log-
concavity requires the tail of the distribution to be less heavy
than the tail of the exponential distribution.

23. If the asset value is low, the agent obtains a passing score with probability

1 − θ−θ

θ−μ
e

θ−μ

θ−μ . Holding the high and low values fixed, increasing the probability
of the high value (i.e., a first-order stochastically dominating shift of the value
distribution F) increases the conditional probability that a low-value asset ob-
tains a passing score. Holding the ex ante probability of the high value fixed, this
conditional probability does not vary with the low and high values.
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VI. EXTENSIONS

This section considers three extensions. Section VI.A de-
scribes a connection between charging only testing fees and bi-
nary certification. Section VI.B shows that our results also hold
when testing is costly for the intermediary. A special case is when
the set of tests available to the intermediary is restricted. Section
VI.C shows that the intermediary does not gain from being able
to offer the agent multiple pieces of evidence.

VI.A. Binary Certification and Testing Fees

A commonly observed form of certification is when the inter-
mediary uses a test with only two possible scores (e.g., pass/fail).
We show that such binary certification is robustly optimal if the
intermediary can charge only a testing fee. We also show that if
the intermediary is restricted to using binary certification, then
charging only a testing fee is sufficient. Thus, our analysis draws a
connection between binary certification and charging only upfront
fees.

To see this, suppose first that the intermediary can charge
only a testing fee. We say that a test G is binary if its support
comprises two (distinct) scores.

PROPOSITION 5. If the intermediary is restricted to charging only a
testing fee, there exists a robustly optimal test-fee structure
that includes:

i. A binary test with a high score sH ≡ E[θ |θ � μ] and a low
score sL ≡ E[θ |θ < μ].

ii. A strictly positive testing fee that makes the agent’s par-
ticipation constraint (w-P) bind.

Proposition 5 shows that if the intermediary can charge only
a testing fee, she can achieve her maximal revenue guarantee
with a binary test. Moreover, the robustly optimal binary test,
which is unique up to specifying which score to assign to an asset
value that is exactly equal to μ, has an appealing structure. It dis-
tinguishes above-average asset values from those that are below
average: the high score sH pools together all above-average asset
values, and the low score sL pools together all below-average asset
values.
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To see why Proposition 5 holds, it is helpful to contrast the
setting here with our general model. In the general model, the
intermediary’s revenue guarantee comes from the agent paying
the testing fee and, with some probability, the disclosure fee. For
a fixed positive disclosure fee, changing the test to maximize the
option value enables the intermediary to charge a higher test-
ing fee. But changing the test may also introduce equilibria in
which the agent discloses the score with low probability, so the
intermediary’s revenue guarantee may in fact decrease. In the
setting of Proposition 5, the intermediary cannot charge a dis-
closure fee. Therefore, the option value of a test is the interme-
diary’s only source of revenue, so she chooses a test that maxi-
mizes this option value. The binary test described above achieves
this.24

In the opposite direction, suppose that the intermediary can
use only binary tests.

PROPOSITION 6. If the intermediary is restricted to using only bi-
nary tests, there exists a robustly optimal test-fee structure
that includes:

i. The binary test described in Proposition 5.
ii. No disclosure fee and a strictly positive testing fee that

makes the agent’s participation constraint (w-P) bind.

The argument underlying Proposition 6 is that once restricted
to binary tests, the intermediary cannot guarantee herself a rev-
enue higher than the option value of the test. The “above / below
average” binary test identified in Proposition 5 maximizes this op-
tion value. She can then extract the entire option value by charg-
ing the testing fee that makes the participation constraint (w-P)
bind. She does not gain from using a disclosure fee because any
increase in revenue from the disclosure fee is offset by a reduction
in the testing fee required to satisfy (w-P).

Propositions 5 and 6 connect two features that appear in some
markets for hard information: the use of testing fees (without dis-
closure fees) and binary certification. Our analysis shows that if
an intermediary is restricted to choosing a test-fee structure that
satisfies one of these two features, then it is robustly optimal for
her to choose a test-free structure that satisfies the other feature.

24. In fact, any test that assigns scores weakly higher than μ to asset values
higher than μ and scores lower than μ to asset values lower than μ maximizes
the option value. Thus, a fully revealing test is also robustly optimal when the
intermediary can charge only testing fees.
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This also shows that the value of charging disclosure fees and
using richer tests, as in Proposition 2, comes from the interme-
diary’s ability to do both simultaneously. Relatedly, we see from
this analysis that regulations that restrict the intermediary to
charging only a testing fee or using only binary tests can improve
the agent’s welfare. But these results also imply that even with
these restrictions, the intermediary can still extract surplus from
the agent.

VI.B. Costly Tests

Our analysis assumed that testing is costless for the inter-
mediary, but in reality, evaluating the asset may be costly for
her. Suppose that the intermediary incurs a cost of c(G) when
conducting a test whose marginal score distribution is G. We as-
sume that c is monotone in the Blackwell order, that is, garbling
a test weakly reduces its cost; in other words, whenever G′ is a
mean-preserving contraction of G, c(G′) � c(G).25 This condition is
standard when information acquisition is costly and corresponds
to a less informative test being less costly.26 A special case is when
the intermediary starts with a finite set of initial tests and can
costlessly garble those tests to obtain additional tests.

The following is a corollary of our existing results.

PROPOSITION 7. With costly testing, there exists a robustly optimal
test-fee structure in the step-exponential-step class, and ev-
ery robustly optimal test-fee structure uses a strictly positive
disclosure fee.

Proposition 7 is a corollary of Lemma 11 in the Appendix,
which is one of the steps in the proof of Proposition 2. Lemma 11
shows that for any test-fee structure (G, φ), there exists a test-
fee structure in the step-exponential-step class that uses a mean-
preserving contraction of G and has a weakly higher revenue guar-
antee. Because such a test-fee structure is a garbling of G, it has a
weakly lower cost. Therefore, there exist a robustly optimal test-
fee structure in the step-exponential-step class.27 The argument

25. To guarantee that a solution to the relevant maximization problem exists,
we assume that c is lower semi-continuous with respect to the weak* topology.

26. Two recent studies that assume monotonicity in the Blackwell order are
De Oliveira et al. (2017) and Pomatto, Strack, and Tamuz (2020).

27. Moreover, if costs are strictly monotone in the Blackwell order, this ar-
gument implies that every robustly optimal test-fee structure is in the step-
exponential-step class.
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used to prove Proposition 2 proves that the optimal disclosure fee
is strictly positive.

VI.C. Multiple Pieces of Evidence

Our analysis assumed that the intermediary provided the
agent with a single piece of evidence that he could verifiably dis-
close. One could envision the intermediary providing the agent
with multiple pieces of evidence and a choice of which to disclose.
We show that this additional generality does not change the ro-
bustly optimal test-fee structures.

To see this, suppose that the intermediary designs, along with
the test-fee structure, an arbitrary evidence structure, which spec-
ifies a message space M and the set of messages available for each
score, described by M : S ⇒ M. We call this an evidence-test-fee
structure. Our baseline model corresponds to M(s) = {s} for every
score s. The agent first decides whether to have the asset tested
and pay the testing fee φt. If he pays the testing fee, he observes
the test score s. Then, if the agent pays the disclosure fee φd, he
can disclose a message m in M(s) to the buyers. If the agent does
not have the asset tested or does not disclose any message, the
buyers observe the null message N. The following result shows
that using evidence-test-fee structures does not improve the max-
imal revenue guarantee.

PROPOSITION 8. For any evidence-test-fee structure and any adver-
sarial equilibrium of the induced game, there exists a test-fee
structure that has an adversarial equilibrium with the same
revenue for the intermediary.

If the intermediary chose the equilibrium in addition to the
test-fee structure, Proposition 8 would follow from the logic of the
revelation principle. But adversarial equilibrium selection intro-
duces a new consideration: because in the game induced by an
evidence-test-fee structure the agent has more actions than in the
game induced by a test-fee structure, it also has more deviations,
and these deviations may exclude strategy profiles that would
otherwise be equilibria. Thus, it is conceivable that under ad-
versarial equilibrium selection, some evidence-test-fee structure
generates a higher revenue for the intermediary than any test-fee
structure. We show this is not the case. Consider an adversar-
ial equilibrium of a game induced by an evidence-test-fee struc-
ture with fees φ. This equilibrium generates a distribution G̃ of
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equilibrium prices paid to the agent. The equilibrium also includes
a critical price p̃ such that the agent is indifferent between disclos-
ing any evidence that leads to price p̃ and nondisclosure. We show
that (G̃, φ, p̃) satisfies constraints (P) and (HE). Therefore the test-
fee structure (G̃, φ) has a highest equilibrium threshold of p̃ and
an identical revenue guarantee to that of the evidence-test-fee
structure.

VII. CONCLUSION

Sellers of financial or physical assets often disclose to buy-
ers hard information purchased from an information intermedi-
ary, such as a credit rating agency or an appraiser, about the
value of the assets. One rationale for the existence of such infor-
mation intermediaries is that their presence generates economic
value by, for example, mitigating moral hazard or facilitating as-
sortative matching. A less obvious rationale for the presence of
such intermediaries, even if they provide no economic value, is
that once sellers of assets have the option to acquire hard in-
formation from an intermediary, potential buyers may have an
unfavorable view of assets whose sellers do not disclose favorable
information.

Our article investigates the scope of this second rationale.
In a setting in which information has no social value, we study
how an intermediary designs and prices evidence for a disclosure
game between an asset owner and the asset market. Our main
finding is that even if the equilibria of the disclosure game are
chosen to minimize the intermediary’s revenue, she can still guar-
antee herself a high revenue across equilibria. We study how she
accomplishes this.

First, she uses option value as a carrot. The agent prefers
not to have the asset tested and for the market to believe that
the asset has not been tested. To prevent the agent from credibly
refraining from testing, the intermediary chooses a test-fee struc-
ture that is irresistible because of its option value: the test has
sufficiently high scores and the fees are sufficiently low that even
if the market were to believe that the agent has refrained from
testing, he cannot resist having the asset tested and disclosing
high scores. Thus, in equilibrium, the market correctly expects
the agent to have the asset tested and treats nondisclosure with
prejudice. In this way, the intermediary guarantees herself rev-
enue by exploiting the agent’s inability to commit.
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Second, the intermediary optimally uses positive disclosure
fees and noisy tests. To develop an intuition for the optimal com-
bination of test and fees, we propose a demand curve approach in
which every test corresponds to a robust demand curve, and the
intermediary can be thought of as choosing an optimal price on
an optimal robust demand curve. The optimal disclosure fee max-
imizes the area of a rectangle under the robust demand curve, so
the optimal robust demand curve has a rectangular component,
which leads to an exponential distribution of scores.

Our analysis may shed light on some strategic forces in the
context of credit ratings. In the credit rating industry, it is common
for a rating agency to offer an informal “shadow rating” to an
issuer of a financial instrument and charge the issuer only if he
would like to complete the rating process so the rating can be
disclosed to potential investors. Our work illustrates that a credit
rating agency may use shadow ratings and disclosure fees to make
it difficult for issuers to credibly refrain from obtaining a rating.
The step-exponential-step distribution identified in Proposition 2
shows that the credit rating agency should (i) use a large number
of scores even if the number of possible asset values is small,
(ii) assign higher scores more frequently than lower ones, and
(iii) generate bunching at the lowest score and sometimes at the
highest score. These normative implications are consistent with a
concern that credit rating agencies may distort rating schemes to
maximize revenue. Finally, parts ii and iii of Proposition 2 shows
that a credit rating agency should always charge a disclosure
fee but only charge a testing fee if the agency chooses to have
bunching at the highest score.

As caveats to our analysis, let us highlight the role of a few
important assumptions. First, we have focused on two-part tar-
iffs, which are often used in practice. It would be interesting
to study a broader range of pricing structures, including disclo-
sure fees that depend on the realized test score and fees paid by
prospective buyers of the asset. Second, we have assumed that
the intermediary can commit to a rating scheme (in line with re-
cent work on information design and certification). This is often
rationalized on the basis of dynamic or reputational incentives,
but it may be interesting to investigate a model with weaker
forms of commitment.28 Third, we have focused on a monopolistic

28. In the context of credit rating agencies, Mathis, McAndrews, and Ro-
chet (2009), Bolton, Freixas, and Shapiro (2012), and Frenkel (2015) consider
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intermediary. With multiple intermediaries, the asset owner may
be able to “shop around” and disclose his favorite rating. The abil-
ity to shop around may benefit the asset owner by allowing him
to keep more of the surplus. However, this ability could also lead
the market to draw inferences from the number of scores dis-
closed, which in turn could generate a “rat race” that compels the
asset owner to disclose multiple scores. This effect would com-
plement the negative inferences the market draws from nondis-
closure in our model with a single intermediary. By increasing
pressure on the asset owner to disclose hard information, the
presence of competing intermediaries may end up hurting the
asset owner. Identifying the conditions under which one effect
dominates the other may be an interesting direction for future
research.

APPENDIX

A.1. Proof of Lemma 1

Proof. Consider a test-fee structure (G, φ) that satisfies (P).
Assume toward a contradiction that there exists an equilibrium
in which the agent has the asset tested with probability strictly
less than 1. In this equilibrium, let pN be the price that the agent
obtains when he does not disclose his score. The agent discloses
his score if s − φd > pN and does not disclose his score if s − φd <

pN. Therefore, the expected value conditional on nondisclosure is
no higher than the prior expected value: pN � μ.

Because the agent has the asset tested with probability
strictly less than 1, his equilibrium payoff is pN. Consider the fol-
lowing deviation: having the asset tested with probability 1 and
disclosing a score of s if and only if s > pN + φd. The payoff from
this deviation is −φt + ∫ θ

pN+φd
(s − φd)dG + ∫ pN+φd

θ
pNdG, where the

first term is the testing fee, the second is the payoff from disclos-
ing scores higher than pN + φd, and the third is the payoff from
concealing scores lower than pN + φd. This deviation is profitable

reputational models as underlying credit rating agencies’ ability to commit. In the
context of information design, Mathevet, Pearce, and Stacchetti (2019) and Best
and Quigley (2020) study when long-run incentives enable a designer to commit
to an information structure.
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because

−φt +
∫ θ

pN+φd

(s − φd)dG +
∫ pN+φd

θ

pNdG − pN

= −φt +
∫ θ

pN+φd

(s − pN − φd)dG

� −φt +
∫ θ

μ+φd

(s − μ − φd)dG

> 0,

where the first inequality follows from pN � μ and the second
inequality follows from (P). Therefore, the agent has the asset
tested with probability 1 in every equilibrium.

Now consider a test-fee structure (G, φ) that violates (P), so

φt �
∫ θ

μ+φd

[s − (μ + φd)]dG.(9)

Suppose the agent has the asset tested with probability 0 (and off-
path discloses scores weakly greater than μ + φd). The price fol-
lowing nondisclosure is μ. This constitutes an equilibrium. First,
the agent’s behavior is sequentially rational. Second, by deviating
and taking the test, the agent’s expected payoff is no higher than
μ:

∫ μ+φd

θ

μdG +
∫ θ

μ+φd

[s − φd]dG − φt

= μ +
∫ θ

μ+φd

[s − (μ + φd)]dG − φt � μ,

where the inequality follows from equation (9). �

A.2. Proof of Lemma 2

Proof. We first show that the intermediary can obtain positive
revenue robustly by using nonnegative fees. To see this, consider
a test-fee structure (G′, φ′), where G′ = F, φ′

d = 0, and φ′
t > 0.

Because F is nondegenerate, we have F(μ) < 1. So G′(μ + φ′
d) < 1

and the right side of (P),
∫ θ

μ+φ′
d
[s − (μ + φ′

d)]dG′, is strictly positive.
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Thus, for sufficiently small φ′
t > 0 the test-fee structure (G′, φ′)

satisfies (P). By Lemma 1, R(G′, φ′) = φ′
t > 0.

Now consider any test-fee structure (G, φ). If R(G, φ) � 0, then,
as argued already, there exists (G′, φ′) with nonnegative fees such
that R(G, φ) < R(G′, φ′), and the lemma follows. So suppose for
the rest of the proof that R(G, φ) > 0, which by Lemma 1 implies
that (G, φ) satisfies (P) and the agent has the asset tested with
probability 1.

If φd < 0, then it is straightforward to show that in every
equilibrium of (G, φ), all scores disclose, so 0 < R(G, φ) = φt +
φd. Set G′ = G, φ′

d = 0, and φ′
t = φt + φd + ε. Integration by parts

shows that the right side of (P) plus φ′
d,

∫ θ

μ+φ′
d

[s − (μ + φ′
d)]dG′ + φ′

d = −
∫ θ

μ+φ′
d

G(s)ds + θ − μ,

is increasing in φ′
d. Therefore, because φ′

d > φd, we have φt + φd <∫ θ

μ+φd
[s − (μ + φd)]dG + φd �

∫ θ

μ+φ′
d
[s − (μ + φ′

d)]dG′. So for small
enough ε > 0, (G′, φ′) satisfies (P) and R(G′, φ′) = φ′

t > R(G, φ).

Now suppose φt < 0 and φd � 0. If
∫ θ

μ+φd
[s − (μ + φd)]dG = 0,

then G(μ + φd) = 1, which implies that τ = μ + φd is the threshold
satisfying (HE), and therefore R(G, φ) = φt + 0 < 0. So it must be
that

∫ θ

μ+φd
[s − (μ + φd)]dG > 0, but then the test-fee structure (G′,

φ′), where G′ = G, φ′
d = φd, and φ′

t = 0 > φt, satisfies (P). Because
the disclosure decision does not depend on the testing fee (because
φt does not appear in (HE)), the test-fee structure (G′, φ′) has the
same highest equilibrium threshold as does (G, φ), and so R(G′,
φ′) > R(G, φ). �

A.3. Proof of Lemma 3

The following lemma is used in our proof.

LEMMA 5. Suppose f is an increasing function defined on [a, b] ⊂ R,
and g is a continuous function defined on [a, b]. If f(a)
� g(a) and f(b) � g(b), there exists x∗ ∈ [a, b] such that
f(x∗) = g(x∗). Moreover, x̄ = max{x| f (x) = g(x)} exists and
x̄ = sup{x ∈ [a, b]| f (x) � g(x)}.
Proof. Let S ≡ {x ∈ [a, b]|f(x) � g(x)} and x̄ ≡ sup S (the supre-

mum is well defined because S is nonempty and bounded above
by b). Consider an increasing sequence xn ∈ S that converges to x̄.
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Since f is an increasing function, f (x̄) � limn→∞ f (xn). Because xn
∈ S, we have f(xn) � g(xn), so

f (x̄) � lim
n→∞ f (xn) � lim

n→∞ g(xn) = g(x̄),

where the equality holds because g is continuous.
Now we prove that f (x̄) = g(x̄). Suppose toward a contradic-

tion that f (x̄) > g(x̄), so x̄ < b. Because g is continuous, f (x̄) >

g(x̄ + ε) for some ε ∈ (0, b − x̄). Because f is increasing,

f (x̄ + ε) � f (x̄) > g(x̄ + ε),

which contradicts x̄ = sup S. Moreover, since by definition f(x) <

g(x) for all x �∈ S, it follows that x̄ = max{x| f (x) = g(x)}. �
Proof of Lemma 3(i). A threshold τ is an equilibrium threshold

if and only if

EG[s|s � τ ] = τ − φd.

Define a(τ ) = EG[s|s � τ ] and b(τ ) = τ − φd. Since a(τ ) is
bounded above by μ and b(τ ) → ∞ as τ → ∞, there exists τ̄ large
enough such that a(τ ) < b(τ ) for all τ � τ̄ . So any equilibrium
threshold τ must be in [sG, τ̄ ].

We have a(sG) = sG � b(sG) and a(τ̄ ) � b(τ̄ ), a is increasing,
and b is continuous. Therefore, Lemma 5 shows that the set of
equilibrium thresholds is nonempty and a highest equilibrium
threshold exists. �

Proof of Lemma 3(ii). The “if” part is immediate from the
definition of the highest equilibrium threshold. For the “only if”
part, suppose that τ is the highest equilibrium threshold of the
test-fee structure (G, φ), so τ − φd = E[s|s � τ ] and for all τ ′ > τ ,
τ ′ − φd �= E[s|s � τ ′]. We show that in fact τ ′ − φd > E[s|s � τ ′] for
all τ ′ > τ .

Suppose toward a contradiction that for some τ ′ > τ we have
τ ′ − φd < E[s|s � τ ′]. Define a, b, τ̄ as in the proof of Lemma 3(i).
Since a(τ ′) > b(τ ′), a(τ̄ ) � b(τ̄ ), a is increasing, and b is continuous,
Lemma 5 shows that some τ ∗ in (τ ′, τ̄ ] ⊂ (τ, τ̄ ] is an equilibrium
threshold, a contradiction. �

Proof of Lemma 3(iii). We show that the agent disclosing
a score if and only if the score exceeds the highest threshold
τ is an adversarial equilibrium. Suppose there exists another
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equilibrium that gives the intermediary a lower revenue. In
this equilibrium, let τ̃ = pN + φd, where pN is the price follow-
ing nondisclosure. All scores strictly greater than τ̃ disclose and
all scores strictly lower than τ̃ conceal, so the equilibrium price
satisfies

E[s < τ̃ ] � pN � E[s|s � τ̃ ].

The intermediary’s revenue from this equilibrium is φt +
φd[1 − G(τ̃ ) + λ(G(τ̃ ) − sups<τ̃ G(s))], where λ ∈ [0, 1] is the proba-
bility that the agent discloses when s = τ̃ . Since this equilibrium
gives the intermediary a lower revenue,

1 − G(τ̃ ) + λ

(
G(τ̃ ) − sup

s<τ̃

G(s)
)

< 1 − G(τ ),

which implies τ̃ > τ . But then from part ii, the characterization of
τ , and the fact that τ̃ > τ , we have

τ̃ − φd > E[s|s � τ̃ ] � pN,

which contradicts τ̃ = pN + φd. �

A.4. Proof of Lemma 4

We prove Lemma 4 by first proving part iii, then part i, and
finally part ii. To prove part iii we use the following lemma.

LEMMA 6. If (Gn, τn) → (G, τ ), and limn→∞Gn(τn) exists, then
limn→∞Gn(τn) � G(τ ).

Proof. It suffices to show that for any c > G(τ ), there exists N
such that for n � N, Gn(τn) < c. Because G is right continuous, it
follows that for any c > G(τ ), there exists ε̄ > 0 such that

(10) c > G(τ + 2ε̄) + ε̄.

Because τn → τ , there exists N1 such that for n > N1, τn � τ + ε̄

and hence

(11) Gn(τn) � Gn(τ + ε̄).

The topology of weak convergence is metrized by the Levy met-
ric L, which for distribution G and any distribution H assigns
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distance

L(G, H) = inf{ε > 0|H(x − ε) − ε � G(x) � H(x + ε) + ε for all x}.

Thus, if Gn converges weakly to G, there exists N2 such that for
all n > N2, L(G, Gn) < ε̄ and hence

(12) G(τ + 2ε̄) + ε̄ � Gn(τ + ε̄).

Combining equations (10), (11), and (12), it follows that for every
n � max {N1, N2},

c > G(τ + 2ε̄) + ε̄ � Gn(τ + ε̄) � Gn(τn).

�

Proof of Lemma 4(iii). Let us begin by verifying (w-P). We
have

φt = lim
n→∞ φn

t � lim
n→∞

∫ θ

μ+φn
d

[
s − (

μ + φn
d

)]
dGn(s)

=
∫ θ

μ+φd

[s − (μ + φd)]dG(s),

where the equalities follow from taking limits and the inequality
follows from (Gn, φn, τn) satisfying (P). So (G, φ) satisfies (w-P).

We now turn to (w-HE). Since τn − φn
d = E[s|s � τn] � μ and

φn
d → φd, τn is uniformly bounded from above. Also τn � θ so τn is

bounded from below. By the Bolzano-Weierstrass theorem, there
exists a subsequence nk and τ such that limk→∞ τnk = τ .

For any τ ′ > τ , we show that φdG(τ ′) �
∫ τ ′

θ
G(s)ds, which by

integration by parts means that τ ′ − φd � EG[s|s � τ ′]. Indeed,
if φdG(τ ′) >

∫ τ ′

θ
G(s)ds, there exists a small enough ε such that

φdG(τ ′ + ε) >
∫ τ ′+ε

θ
G(s)ds and G is continuous at τ ′ + ε. Con-

tinuity implies that limk→∞ φ
nk
d Gnk(τ ′ + ε) = φdG(τ ′ + ε). In addi-

tion, τ ′ > τ implies that for large enough k, τ ′ + ε > τ ′ > τnk. Be-
cause (Gnk, φnk, τnk) satisfies (HE), we have τ ′ − φ

nk
d > EGnk [s|s �

τ ′], which means that φ
nk
d Gnk(τ ′ + ε) <

∫ τ ′+ε

θ
Gnk(s)ds. But then we
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have a contradiction:

φdG(τ ′ + ε) >

∫ τ ′+ε

θ

G(s)ds = lim
k→∞

∫ τ ′+ε

θ

Gnk(s)ds

� lim
k→∞

φ
nk
d Gnk(τ ′ + ε) = φdG(τ ′ + ε).

Next we show that φdG(τ ) = ∫ τ

θ
G(s)ds, which by integra-

tion by parts means that τ − φd = EG[s|s � τ ]. Since G is
right continuous and for all τ ′ > τ , φdG(τ ′) �

∫ τ ′

θ
G(s)ds, we must

have φdG(τ ) �
∫ τ

θ
G(s)ds. Because (Gnk, φnk, τnk) satisfies (HE), we

have τnk − φ
nk
d = EGnk [s|s � τnk], and from integration by parts,

φ
nk
d Gnk(τnk) = ∫ τnk

θ
Gnk(s)ds. So limk→∞ φ

nk
d Gnk(τnk) exists and equals∫ τ

θ
G(s)ds. Therefore,

φdG(τ ) � lim
k→∞

φ
nk
d Gnk(τnk) =

∫ τ

θ

G(s)ds,

where the inequality holds from Lemma 6. Therefore, φdG(τ ) =∫ τ

θ
G(s)ds. Also since limk→∞ φ

nk
d Gnk(τnk) is between φdG(τ ) and∫ τ

θ
G(s)ds, we have φdG(τ ) = limk→∞ φ

nk
d Gnk(τnk).

Now that we have shown that (G, φ, τ ) satisfies (w-P) and
(w-HE), we turn to revenue:

lim
n→∞ φn

t + φn
d(1 − Gn(τn)) = φt + lim

k→∞
φ

nk
d (1 − Gnk(τnk))

= φt + φd(1 − G(τ )).

So (G, φ, τ ) generates revenue that is the limit of the revenues
generated by (Gn, (φn

d, φn
t )) and τn. �

We use the following lemma to prove Lemma 4(i) and
Lemma 4(ii).

LEMMA 7. For every test-fee structure and threshold (G, φ, τ ) that
satisfy (w-P) and (w-HE), there exists a sequence of test-fee
structures and thresholds {(Gn, φn, τn)}n=1, 2, . . . such that (i)
for each n, (Gn, φn, τn) satisfy (P) and (HE), (ii) (Gn, φn) con-
verges to (G, φ), and (iii) R̂(G, φ, τ ) � limn→∞ R̂(Gn, φn, τn).
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Proof. Consider a test-fee structure and threshold (G, φ, τ )
that satisfy (w-P) and (w-HE), so

φt �
∫ θ

μ+φd

(s − μ − φd)dG(s)

τ − φd = E[s|s � τ ]

τ ′ − φd � E[s|s � τ ′] for all τ ′ > τ.

Letting φn
d = φd − 1

n and φn
t = φt − 1

n, we have

φn
t < φt �

∫ θ

μ+φd

(s − μ − φd)dG(s) �
∫ θ

μ+φn
d

(s − μ − φn
d)dG(s),

so (P) is satisfied.
From Lemma 3, we know that under (G, φn), the highest

equilibrium threshold τ̂n exists. Moreover,

τ − φn
d > τ − φd = E[s|s � τ ]

τ ′ − φn
d > τ ′ − φd � E[s|s � τ ′] for all τ ′ > τ.

This implies that the highest threshold τ̂n satisfies τ̂n < τ . So the
revenue under (G, φn) is

φn
t + φn

d(1 − G(τ̂n)) � φn
t + φn

d(1 − G(τ )) � φt + φd(1 − G(τ )) − 2
n

,

where the last term goes to R̂(G, φ, τ ) as n → ∞. Notice that
G(τ̂n) is bounded so there exists a subsequence nk so that G(τ̂nk)
converges. Taking such a subsequence and letting k → ∞, we
have

lim
k→∞

R̂(Gnk, φnk, τnk) = lim
k→∞

φ
nk
t + φ

nk
d (1 − G(τ̂nk)) � φt + φd(1 − G(τ ))

= R̂(G, φ, τ ).
�

Proof of Lemma 4(i). Consider a sequence (Gn, (φn
t , φn

d)) and τn

satisfying (P) and (HE) and generating value Vn that converges
to RM. By Lemma 2 we can assume that the fees (φn

t , φn
d) are

nonnegative. This implies that φn
t �

∫ θ

μ
(s − μ)dGn(s) � θ − μ. Also

φn
d � θ − μ, since otherwise (P) implies that φn

t < 0.
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Now we have a sequence (Gn, (φn
t , φn

d)) such that φn
t ∈ [0, θ −

μ], φn
d ∈ [0, θ − μ], and Gn ∈ �(F). Proposition 1 of Kleiner,

Moldovanu, and Strack (2021) proves that �(F) is compact,
which implies that there exists a converging subsequence
(Gnk, (φnk

t , φ
nk
d )) → (G, (φt, φd)). From Lemma 4(iii), we can find a

τ such that (G, (φt, φd), τ ) satisfies (w-P) and (w-HE) and gen-
erates revenue RM. Moreover, by Lemma 7, any test-fee struc-
ture and threshold satisfying (w-P) and (w-HE) must generate a
revenue of at most RM, so (G, (φt, φd), τ ) is an optimal solution to
the relaxed problem. �

Proof of Lemma 4(ii). By Lemma 7, there exists a sequence
of test-fee structures and thresholds {(Gn, φn, τn)}n=1, 2, . . . such
that (i) for each n, (Gn, φn, τn) satisfies (P) and (HE), (ii)
(Gn, φn) converges to (G, φ), and (iii) limn→∞ R̂(Gn, φn, τn) �
R̂(G, φ, τ ) = RM. By definition of RM, limn→∞ R̂(Gn, φn, τn) � RM,
so limn→∞ R̂(Gn, φn, τn) = RM. �

A.5. Proof of Proposition 2

We prove Proposition 2 in reverse order, beginning with iv and
ending with i. We then prove, as discussed in the text following
Proposition 2, that slightly lowering the disclosure fee of a robustly
optimal step-exponential-step test-fee structure results in a test-
fee structure that has a unique equilibrium.

Proof of Proposition 2(iv). We consider a relaxed problem in
which the mean-preserving contraction constraints are relaxed to
requiring the score distribution to have same expectation as the
prior mean:

max
(G,φ,τ )∈�[θ,θ]×R3

R̂(G, φ, τ )(RE)

s.t. (w-P), (w-HE), and EG[s] = EF[s].

Recall that R̂(G, φ, τ ) ≡ φt + φd(1 − G(τ )) is the revenue of a test-
fee structure (G, φ) and a threshold τ . This is a relaxed problem
because G ∈ �(F) implies that G ∈ �[θ, θ ] and EG[s] = EF[s].

We use two lemmas to solve the relaxed problem. The first
lemma shows that in any optimal test-fee structure, the only pos-
sible score above μ + φd is θ . In other words, the score distribution
G is flat from μ + φd to θ , with possibly a discrete jump at θ .
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LEMMA 8. If a test-fee structure (G, φ) with a weak-highest equilib-
rium threshold τ is an optimal solution to the relaxed problem
(RE), then G(s) = G(μ + φd) for all s ∈ [μ + φd, θ ).

Proof. Using integration by parts, the testing fee of an optimal
test-fee structure is

φt =
∫ θ

μ+φd

[s − (μ + φd)]dG(s) = −
∫ θ

μ+φd

G(s)ds + (θ − (μ + φd)).

Thus, the revenue function is

R̂(G, φ, τ ) = −φdG(τ ) −
∫ θ

μ+φd

G(s)ds + (θ − μ).

The weak-highest equilibrium threshold τ satisfies φdG(τ ) =∫ τ

θ
G(s)ds. To see this, note that if G(τ ) = 0, then the equality

holds trivially. If G(τ ) > 0, then from the equality in (w-HE) and
integration by parts,

φd = τ − EG[s|s � τ ] =
τG(τ ) − ∫ τ

θ
sdG(s)

G(τ )
=

∫ τ

θ
G(s)ds

G(τ )
,

which means that φdG(τ ) = ∫ τ

θ
G(s)ds. Substituting this equality

into the expression for the revenue, we have

R̂(G, φ, τ ) = −
∫ τ

θ

G(s)ds −
∫ θ

μ+φd

G(s)ds + (θ − μ)(13)

=
∫ μ+φd

τ

G(s)ds,

where the second equality followed from the constraint that the
integral of G is θ − μ.

Now consider an optimal test-fee structure (G, φ) with a weak-
highest equilibrium threshold τ , and suppose for contradiction
that G(s) > G(μ + φd) for some s ∈ [μ + φd, θ ). Construct a distri-
bution G′ as follows. Let G′(s) = αG(s) for some α and all s � μ +
φd, and G′(s) = G′(μ + φd) for all s ∈ [μ + φd, θ ). By the assumption
that G(s) > G(μ + φd) for some s ∈ [μ + φd, θ ), there exists an α >

1 such that the areas under G and G′ are equal. Define φ′
d = φd,

and φ′
t so that the upper bound on the testing fee (w-P) holds with

equality for distribution G′.
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We now show that τ is a weak-highest equilibrium threshold
of the test-fee structure (G′, φ′) and gives higher revenue than
(G, φ). Indeed, for any τ ′ such that τ � τ ′ � μ + φd, because G′ is
equal to G multiplied by α, we have

∫ τ ′

θ
G(s)ds

G(τ ′)
=

∫ τ

θ
G(s)ds

G(τ )
.

Thus, from integration by parts, τ ′ − EG′[s|s � τ ′] = τ ′ − EG[s|s �
τ ′] � φd, with equality at τ ′ = τ . In addition, for all τ ′ � μ + φd,
since G′ is flat we have∫ τ ′

θ
G′(s)ds

G′(τ ′)
�

∫ μ+φd

θ
G(s)ds

G(μ + φd)
� φd.

It remains to show that the revenue of (G′, φ′) is higher than that
of (G, φ). This fact follows directly from equation (13), since G′ >

G below μ + φd.29 �

The second lemma that we use to solve the relaxed problem
(RE) bounds the rate at which the integral of a score distribution
can grow given the (w-HE) constraint.

LEMMA 9. Suppose that φd > 0. Let τ be a weak-highest equilib-
rium threshold. Then for any τa and τ b with τ � τa � τ b,∫ τb

θ

G(s)ds � e
1

φd
(τb−τa)

∫ τa

θ

G(s)ds,(14)

with equality if and only if (w-HE) holds with equality for all
thresholds in [τa, τ b].

Proof. Using integration by parts, (w-HE) can be written as

φd � τ ′ − E[s|s � τ ′] =
∫ τ ′

θ
G(s)ds

G(τ ′)

for all τ ′ � τ , with equality at τ ′ = τ . The right-hand side is the
inverse of the derivative of ln(

∫ τ ′

θ
G(s)ds) with respect to τ ′. Thus,

29. If τ = μ + φd, R̂(G, φ, τ ) = 0. As we have shown in the proof of Lemma 2,
the optimal revenue is strictly positive. So in an optimal test-fee structure (G, φ)
with threshold τ , τ < μ + φd.
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d
dτ ′ (ln(

∫ τ ′

θ
G(s)ds)) � 1

φd
. Integrating from τa to τ b we obtain

ln
(∫ τb

θ

G(s)ds
)

− ln
(∫ τa

θ

G(s)ds
)

� 1
φd

(τb − τa).

Taking exponents on both sides and rearranging yields equa-
tion (14), with equality if and only if (w-HE) holds with equality
for all thresholds in [τa, τ b]. �

Equipped with Lemma 8 and Lemma 9, we solve the relaxed
problem (RE).

LEMMA 10. The value of (RE) is (θ − μ)(1 − e
θ−μ

θ−μ ), which is achieved
by a unique solution φ∗

t = 0, φ∗
d = θ − μ, and

G∗(s) =
{

e
θ−μ

θ−μ if s ∈ [θ, θ + θ − μ)

e
s−θ

θ−μ if s ∈ [θ + θ − μ, θ ].

Proof. We first argue that the test-fee structure (G∗, φ∗)
achieves the revenue bound (θ − μ)(1 − e

θ−μ

θ−μ ). We later show that
(θ − μ)(1 − e

θ−μ

θ−μ ) is an upper bound on revenue and therefore (G∗,
φ∗) is optimal. We start by verifying that (G∗, φ∗) is a feasible
solution.

First, we show that (w-P) is satisfied. In fact, it holds with
equality: since μ + φ∗

d = θ ,
∫ θ

μ+φ∗
d
[s − (μ + φ∗

d)]dG∗(s) = 0 = φ∗
t .

Second, we show that the constraint EG∗ [s] = EF[s] is satis-
fied. From the definition of G∗, for any τ ′ � θ + θ − μ we have

∫ τ ′

θ

G∗(s)ds = (θ − μ)e
θ−μ

θ−μ + (θ − μ)e
s−θ

θ−μ

∣∣∣∣τ
′

θ+θ−μ

= (θ − μ)e
τ ′−θ

θ−μ .

Thus, in particular,
∫ θ

θ
G∗(s) = θ − μ and hence, by integration by

parts,

EG∗ [s] =
∫ θ

θ

sdG∗(s) = θ −
∫ θ

θ

G∗(s)ds = μ = EF[s].
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Third, we show that τ = θ + θ − μ satisfies (w-HE). For any
τ ′ � θ + θ − μ,

E[s|s � τ ′] =
∫ τ ′

θ
sdG∗(s)

G∗(τ ′)
=

τ ′G(τ ′) − ∫ τ ′

θ
G∗(s)ds

G∗(τ ′)

= τ ′ − (θ − μ)e
τ ′−θ

θ−μ

e
τ ′−θ

θ−μ

= τ ′ − φ∗
d.

Therefore, τ = θ + θ − μ satisfies (w-HE) and is a weak-highest
equilibrium threshold.

This establishes that (G∗, φ∗) is a feasible solution. The rev-
enue of the test fee structure (G∗, φ∗) with weak-highest equilib-
rium threshold τ = θ + θ − μ is

φ∗
t + φ∗

d(1 − G(θ + θ − μ)) = 0 + (θ − μ)
(
1 − e

θ−μ

θ−μ

)
.

We prove that the above is the value of (RE) by showing that
the revenue of any test-fee structure is at most (θ − μ)(1 − e

θ−μ

θ−μ ).
Consider a test-fee structure (G, φ) with a weak-highest equi-

librium threshold τ that is an optimal solution to the relaxed
problem (RE). For any τ ′ such that τ � τ ′ � μ + φd, the total area
under G is

θ − μ =
∫ τ ′

θ

G(s)ds +
∫ θ

τ ′
G(s)ds

� φde
1

φd
(τ ′−τ )G(τ ) + (θ − τ ′)G(μ + φd),(15)

where the inequality follows from Lemma 9 and the fact that
G(s) � G(μ + φd) for all s � μ + φd, and G(s) = G(μ + φd) for all
s ∈ [μ + φd, θ ) by Lemma 8. Let τ ′ = φd + μ−θ (1−G(μ+φd))

G(μ+φd) . Notice that
τ ′ ∈ [τ , μ + φd] because from the definition of τ , τ = φd + E[s|s � τ ]
� φd + E[s|s � μ + φd] = τ ′, and μ < θ implies μ−θ(1−G(μ+φd))

G(μ+φd) < μ.
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Now from equation (15) we have

G(τ ) � 1
φd

e− 1
φd

(τ ′−τ )((θ − μ) − (θ − τ ′)G(μ + φd))

= 1
φd

e− 1
φd

(τ ′−τ )
(

(θ − μ) −
(

θ − μ

G(μ + φd)
− φd

)
G(μ + φd)

)

= e− 1
φd

(τ ′−τ )G(μ + φd)

� e− 1
φd

(θ−θ− θ−μ

G(μ+φd) )G(μ + φd),

where the last inequality follows from θ + φd � τ .
We use the inequality above and Lemma 8 to bound revenue.

By Lemma 8, the distribution is flat above μ + φd, so the testing
fee is

φt =
∫ θ

μ+φd

[s − (μ + φd)]dG(s) = (1 − G(μ + φd))(θ − (μ + φd)).

The revenue is therefore

R̂(G, φ, τ ) � φd

[
1 − e− 1

φd
(θ−θ− θ−μ

G(μ+φd) )G(μ + φd)
]

+ (1 − G(μ + φd))(θ − (μ + φd)).

The above expression is increasing in φd. Since φd � θ − μ, an
upper bound on the revenue is obtained by substituting φd = θ − μ

into the above expression, which yields

(θ − μ)
(

1 − e− θ−θ

θ−μ
+ 1

G(μ+φd) G(μ + φd)
)

.

This expression is increasing in G(μ + φd). Because G(μ + φd) �
1, an upper bound on the revenue is obtained by substituting G(μ
+ φd) = 1 into the above expression, which yields (θ − μ)(1 − e

θ−μ

θ−μ )
and completes the proof. �

Proof of Proposition 2(iv). The solution to the relaxed problem
in Lemma 10 is (θ − μ)(1 − e

θ−μ

θ−μ ). Therefore, (θ − μ)(1 − e
θ−μ

θ−μ ) is an
upper bound on the revenue of any test-fee structure. Moreover, if
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HOW TO SELL HARD INFORMATION 671

the support of the prior is binary (i.e., {θ, θ}), G ∈ �(F) is equivalent
to G ∈ �[θ, θ ] and EG[s] = EF[s], so the bound is attained. �

Proof of Proposition 2(iii). Proof. In a robustly optimal test-
fee structure, the constraint (w-P) must bind, otherwise the in-
termediary can strictly increase the revenue by increasing φt, so
φt = ∫ θ̄

μ+φd
[s − (μ + φd)]dG. Now,

∫ θ̄

μ+φd
[s − (μ + φd)]dG > 0 if and

only if G(μ + φd) < 1, which then implies the result. �

Proof of Proposition 2(iv). Proof. Suppose toward a contra-
diction that there exists a robustly optimal test-fee structure (G,
φ) with φd = 0. By (w-P), the revenue guarantee is

φt �
∫ θ

μ

(s − μ)dG(s) = (θ − μ) −
∫ θ

μ

G(s)ds,

which is maximized when the inequality holds as an equality
and

∫ θ

μ
G(s)ds is minimized. Since

∫ θ

μ
G(s)ds �

∫ θ

μ
F(s)ds for any G

that is a mean-preserving contraction of F, we have
∫ θ

μ
G(s)ds =∫ θ

μ
F(s)ds. Now consider a test G′ with support {sL, sH} that is

obtained from F by pooling all scores strictly below μ into sL and
similarly pooling all scores weakly above μ into sH. We have sL

< sH since F is nondegenerate. Since
∫ θ

μ
G′(s)ds = ∫ θ

μ
F(s)ds, the

test-fee structure (G′, φ) satisfies (w-P) and so it is also robustly
optimal.

The revenue guarantee of (G′, φ) is the testing fee

∫ θ

μ

(s − μ)dG′(s) = (sH − μ)(μ − sL)
sH − sL

.(16)

However, by Lemma 10, there exists a test-fee structure (G′′, φ′)

with revenue guarantee (sH − μ)(1 − e
sL−μ

sH −μ ) such that G′′ ∈ �[sL,
sH] and EG′′ [s] = EG′ [s]. Since the support of G′ is binary, EG′′ [s] =
EG′[s] implies that G′′ is a mean-preserving contraction of G′ and
therefore of F. Because μ ∈ (sL, sH), the revenue guarantee of
(G′′, φ′) is strictly higher than equation (16), contradicting the
optimality of (G′, φ). �
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Proof of Proposition 2(i). The following lemma is the main
step in the proof of Proposition 2(i). It shows that for any test-
fee structure, there exists a test-fee structure that is in the
step-exponential-step class and has a weakly higher revenue
guarantee. The lemma further establishes that any robustly opti-
mal test must be exponential over an interval.

LEMMA 11. For any test-fee structure (G, φ) with φd > 0 and a
weak-highest threshold τ 1, there exists a mean-preserving
contraction G′ of G, a fee structure φ′ with 0 � φ′

t � φt, and
a threshold τ ′

1 such that the test-fee structure (G′, φ′) is in
the step-exponential-step class, τ ′

1 is a weak-highest thresh-
old, and the revenue of (G′, φ′, τ ′

1) weakly exceeds the rev-
enue of (G, φ, τ 1). Furthermore, if (G, φ) is robustly optimal
and has weak-highest equilibrium threshold τ 1, then φd > 0
and there exists a threshold τ 2 ∈ [τ 1, μ + φd] such that G
is exponential from τ 1 to τ 2 and is flat from τ 2 to μ + φd,
that is,

G(s) = G(τ1)e
1

φd
(s−τ1) for all s ∈ [τ1, τ2],

G(s) = G(μ + φd) for all s ∈ [τ2, μ + φd].

Proof. Consider a test-fee structure (G, φ) with a weak-highest
threshold τ 1. By definition of τ 1 we have τ 1 = EG[s|s � τ 1] + φd �
μ + φd. Suppose that τ 1 = μ + φd. Then EG[s|s � τ 1] = μ so G(τ 1)
= 1. The intermediary’s revenue from the disclosure fee is φd(1 −
G(τ 1)) = 0. Moreover, from (w-P), the revenue from the testing fee
is at most

∫ θ

μ+φd
[s − (μ + φd)]dG = 0 since G(μ + φd) = 1. So the

intermediary receives zero revenue, which is never optimal. We
thus assume that τ 1 < μ + φd.

We first consider the case G(μ + φd) = G(τ 1). Let τa = EG[s|s
� τ 1] and τ b = EG[s|s > μ + φd]. From the definition of τ 1, we have
τa = EG[s|s � τ 1] = τ 1 − φd. The mean constraint requires that
G(τ 1)τa + (1 − G(τ 1))τ b = μ, which implies that G(τ1) = τb−μ

τb−τa
.

Given the test G, and to satisfy (w-P), the highest testing fee
the intermediary can charge is φt = ∫ θ̄

μ+φd
[s − (μ + φd)]dG(s). The

revenue from the disclosure fee under equilibrium threshold τ 1 is
φd(1 − G(τ 1)). So the intermediary’s robust revenue under test G
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is at most

∫ θ

μ+φd

[s − (μ + φd)]dG(s) + φd(1 − G(τ1))

= θ − μ − φd −
∫ θ

μ+φd

G(s)ds + φd − φdG(τ1)

=
∫ μ+φd

θ

G(s)ds −
∫ τ1

θ

G(s)ds

=
∫ μ+φd

τ1

G(s)ds

= G(τ1)(μ + φd − τ1)

= (τb − μ)(μ − τa)
τb − τa

.

We now construct the following distribution G′ in the step-
exponential-step class with a null last step:

G′(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if s ∈ [θ, τa)
e

τa−μ

τb−μ if s ∈ [τa, τa + τb − μ)

e
s−τb
τb−μ if s ∈ [τa + τb − μ, τb]

1 if s ∈ [τb, θ ].

Observe that G′ is a mean-preserving contraction of G, and
τ ′

1 = τa + τb − μ is a weak-highest equilibrium threshold for the
test-fee structure (G′, φ′) with φ′

d = τb − μ and φ′
t = 0 � φt. In this

equilibrium, the intermediary’s revenue is (τb − μ)(1 − e
τa−μ

τb−μ ) >
(τb−μ)(μ−τa)

τb−τa
.

Now consider the case G(μ + φd) > G(τ 1). We construct a class
of distributions Gα parametrized by α ∈ [0, 1]:

(17)

Gα(s) =
⎧⎨
⎩

αG(s) if s � τ1

min{αG(τ1)e
1

φd
(s−τ1)

, G(μ + φd)} if τ1 < s < μ + φd
G(s) if s � μ + φd.

Notice that Gα is well defined since φd > 0, and is increasing and
between 0 and 1. Therefore, Gα is a distribution.
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We first show that there exists an α � 1 such that the integrals
of Gα and G are equal. We do this with a continuity argument. Let
τ 2(α) be the lowest score τ ′ > τ 1 such that Gα(τ ′) = Gα(μ + φd).
Consider α = 1. We have∫ τ2(α)

θ

G1(s)ds = e
1

φd
(τ2(α)−τ1)

∫ τ1

θ

G1(s)ds = e
1

φd
(τ2(α)−τ1)

∫ τ1

θ

G(s)ds

�
∫ τ2(α)

θ

G(s)ds,(18)

where the inequality follows from Lemma 9. As a result, because
G1 is weakly higher than G for all scores above τ 2(α), we have∫ θ

θ
G1(s)ds �

∫ θ

θ
G(s)ds. Further,

∫ μ+φd

θ

G0(s)ds = 0 �
∫ μ+φd

θ

G(s)ds.

As a result, since G0 and G are equal above μ + φd, we have∫ θ

θ
G0(s)ds �

∫ θ

θ
G(s)ds. The integral of Gα increases continuously

in α. Therefore, there exists some α � 1 such that the inte-
grals of Gα and G are equal. For the rest of the proof, fix such
an α.

We now show that Gα is a mean-preserving contraction of G.
Since α � 1, the integral of Gα up to any threshold τ ′ � τ 1 is weakly
lower than that of G. For τ ′ � τ 2(α), since the overall integrals of
G and Gα are equal and Gα is weakly higher than G above μ + φd,
we have

∫ τ ′

θ
Gα(s)ds �

∫ τ ′

θ
G(s)ds. Finally, for any τ ′ such that τ 1 �

τ ′ � τ 2(α) we have∫ τ ′

θ

Gα(s)ds = e− 1
φd

(τ2(α))−τ ′)
∫ τ2(α)

θ

Gα(s)ds � e− 1
φd

(τ2(α)−τ ′)
∫ τ2(α)

θ

G(s)ds

�
∫ τ ′

θ

G(s)ds,

where the second inequality follows from Lemma 9. Thus, Gα is a
mean-preserving contraction of G.

Test-fee structure (Gα, φ) has a weakly higher revenue guar-
antee than (G, φ). Because the two distributions are equal above μ

+ φd, the (w-P) constraint is satisfied for (Gα, φ). Furthermore, τ 1
is a weak-highest equilibrium threshold for (Gα, φ). Since α � 1, we
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have Gα(τ 1) � G(τ 1), which implies that R̂(Gα, φ, τ1) � R̂(G, φ, τ1).
In fact, if α < 1, then R̂(Gα, φ, τ1) > R̂(G, φ, τ1).

To see the first statement of the lemma, consider a score dis-
tribution G′ that is equal to Gα except that it pools the scores
below τ 1 and also pools the scores above τ 2. Formally,

G′(s) =
⎧⎨
⎩

Gα(τ1) if s ∈ [τ0, τ1],
Gα(s) if s ∈ [τ1, τ2],
1 if s ∈ [τ3, θ ],

where τ 0 and τ 3 are such that the integrals of G′ and Gα are equal.
Notice that the test-fee structure (G′, φ) is in the step-exponential-
step class, with a nondegenerate exponential part because τ 2 >

τ 1. Distribution G′ is a mean-preserving contraction of Gα and
therefore of G. Finally, the robust revenue of the test-fee structure
(G′, φ) with weak-highest equilibrium threshold τ 1 is equal to that
of (Gα, φ), and therefore is at least that of (G, φ). This establishes
the first statement of the lemma.

To see the second statement, suppose that (G, φ) is optimal.
Then φd > 0 by Proposition 2(ii). Recall that if α < 1, the robust
revenue of (Gα, φ) is strictly higher than that of (G, φ). There-
fore, α = 1. Now let τ 2 = τ 2(1). By definition, G is flat from τ 2
to μ + φd. Further, equation (18) holds with equality for α =
1, that is, e

1
φd

(τ2−τ1) ∫ τ1

θ
G(s)ds = ∫ τ2

θ
G(s)ds. Then Lemma 9 implies

that (w-HE) holds with equality for all thresholds in [τ 1, τ 2]. Thus,
for any τ ′ ∈ [τ 1, τ 2],

(
d

dτ ′

(
ln

(∫ τ ′

θ

G(s)ds

)))−1

=
∫ τ ′

θ
G(s)ds

G(τ ′)
= τ ′ − E[s|s � τ ′] = φd.

The solution to this differential equation is G(s) = G(τ1)e
1

φd
(s−τ1) for

all s ∈ [τ 1, τ 2]. �

Proof of Proposition 2(i). Consider any robustly optimal test-
fee structure (G, φ). By Proposition 2(ii), φd > 0. By Lemma 11,
the robust revenue of (G, φ) is at most the robust revenue of
some step-exponential-step test-fee structure (G′, φ) where G′ is a
mean-preserving contraction of G. This (G′, φ) is therefore robustly
optimal. �
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1. Uniqueness of Equilibrium with Slightly Lower Disclosure
Fee. As mentioned in the discussion that followed Proposition 2,
we show in addition that there is a unique equilibrium under any
robustly optimal step-exponential-step test-fee structure with a
slightly lower disclosure fee. Let (G, φ) be a robustly optimal step-
exponential-step test-fee structure:

G(s) =

⎧⎪⎨
⎪⎩

κ if s ∈ [τ0, τ1)

κe
s−τ1
τ1−τ0 if s ∈ [τ1, τ2)

1 if s � τ3,

,

the disclosure fee is φd = τ 1 − τ 0, and the testing fee is φt =
(1 − κe

τ2−τ1
τ1−τ0 )(τ3 − (μ + φd)). Notice that for any τ ∈ [τ 1, τ 2],

EG[s|s � τ ] = τ −
∫ τ

θ
G(s)ds

G(τ )
= τ − κ(τ1 − τ0)e

τ−τ1
τ1−τ0

κe
τ−τ1
τ1−τ0

= τ − τ1 − τ0

= τ − φd.

For τ > τ 2, EG[s|s � τ ] � τ − φd. For τ ∈ [τ 0, τ 1), EG[s|s � τ ] = τ 0
< τ − φd.

Consider a test-fee structure (G, φ′) with φ′
t = φt and φ′

d =
φd − ε for ε < τ 1 − τ 0. Then there exists a unique threshold τ ′ = τ 1
− ε satisfying (HE). Moreover, since (G, φ) satisfies (w-P), (G, φ′)
satisfies (P) because

∫ θ̄

μ+φd
[s − (μ + φd)]dG <

∫ θ̄

μ+φd−ε
[s − (μ + φd −

ε)]dG. Therefore, in the unique equilibrium under (G, φ′), the asset
is tested with probability 1 and the agent discloses all the scores
above τ 1.

A.6. Proof of Proposition 3

Proof. With binary support, the mean-preserving contraction
constraints become EG[s] = EF[θ ]. Therefore, the proposition fol-
lows from Lemma 10. �
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SUPPLEMENTARY MATERIAL

An Online Appendix for this article can be found at The
Quarterly Journal of Economics online.
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