Good Data and Bad Data: The Welfare Effects of Price Discrimination

Maryam Farboodi (MIT Sloan), Nima Haghpanah (Penn State), Ali Shourideh (CMU)

May 21, 2025

Firms offer group-specific prices for the same good

▶ What are the welfare consequences? Pigou (1920), ..., BBM (2015), ...,

Firms offer group-specific prices for the same good

▶ What are the welfare consequences? Pigou (1920), ..., BBM (2015), ...,

Common folk wisdom: price discrimination hurts consumers

Firms offer group-specific prices for the same good

▶ What are the welfare consequences? Pigou (1920), ..., BBM (2015), ...,

Common folk wisdom: price discrimination hurts consumers

A letter that followed a senate hearing on May 2, 2024:

large tech platforms have access to personal data [...] that <u>can be exploited</u> by corporations to set prices based on the time of day, location, or even the electronic device used by a consumer.

Firms offer group-specific prices for the same good

▶ What are the welfare consequences? Pigou (1920), ..., BBM (2015), ...,

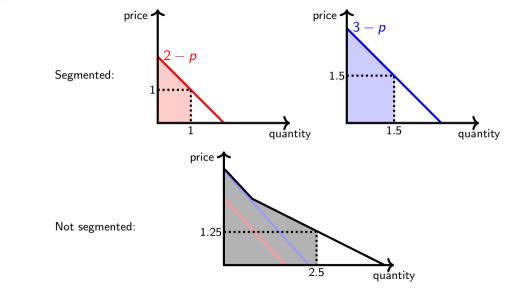
Common folk wisdom: price discrimination hurts consumers

▶ Pigou (1920): true for linear demands

A letter that followed a senate hearing on May 2, 2024:

large tech platforms have access to personal data [...] that <u>can be exploited</u> by corporations to set prices based on the time of day, location, or even the electronic device used by a consumer.

Pigou 1920: Linear demands \Rightarrow price discrimination bad for TS-CS



Sellers might have "partial" information

Sellers might have "partial" information

Regulatory question: Should the seller be allowed to collect information?

- Sellers might have "partial" information
- ② Monitoring and controlling existing and additional information might be hard

Regulatory question: Should the seller be allowed to collect information?

- Sellers might have "partial" information
- ② Monitoring and controlling existing and additional information might be hard

Regulatory question: Should the seller be allowed to collect information?

When does the answer not depend on existing and additional information?

- Sellers might have "partial" information
- ② Monitoring and controlling existing and additional information might be hard

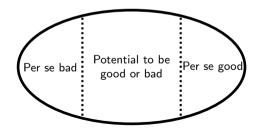
Regulatory question: Should the seller be allowed to collect information?

- > When does the answer not depend on existing and additional information?
 - Information is "per se" good or bad

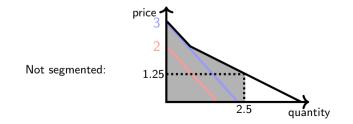
- Sellers might have "partial" information
- **2** Monitoring and controlling existing and additional information might be hard

Regulatory question: Should the seller be allowed to collect information?

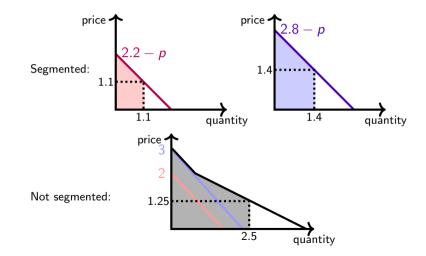
- When does the answer not depend on existing and additional information?
 - Information is "per se" good or bad



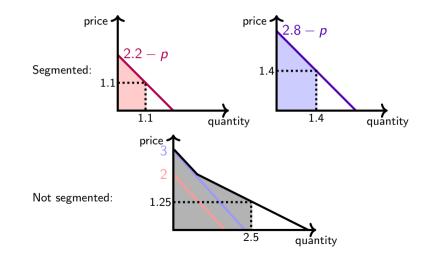
Extended Pigou logic: Linear demands \Rightarrow Per se bad for TS-CS



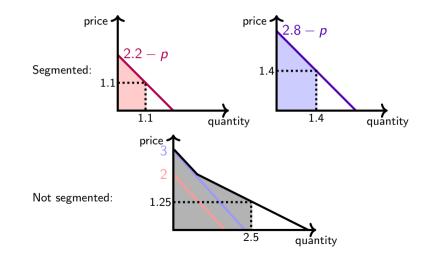
Extended Pigou logic: Linear demands \Rightarrow Per se bad for TS-CS



Extended Pigou logic: Linear demands ⇒ Per se bad for TS-CS Information (potentially) changes output

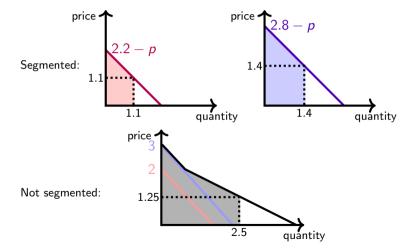


Extended Pigou logic: Linear demands \Rightarrow Per se bad for TS-CS Information (potentially) changes output: "output effect" = 0



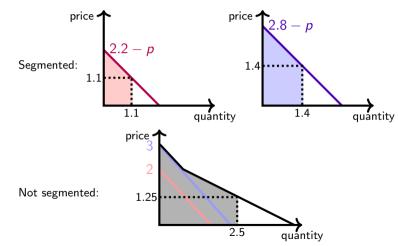
Extended Pigou logic: Linear demands \Rightarrow Per se bad for TS-CS

- **()** Information (potentially) changes output: "output effect" = 0
- Sells that output at different prices



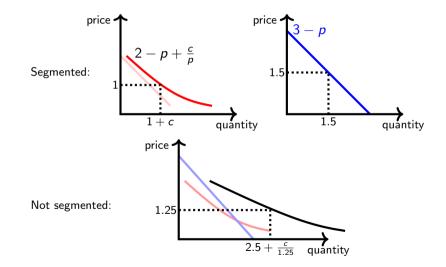
Extended Pigou logic: Linear demands \Rightarrow Per se bad for TS-CS

- **()** Information (potentially) changes output: "output effect" = 0
- Sells that output at different prices:

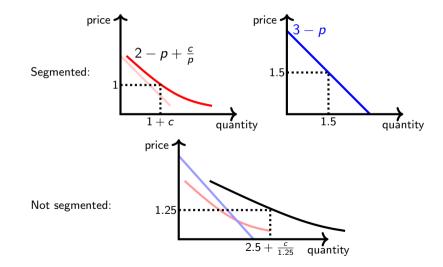


"misallocation effect" < 0

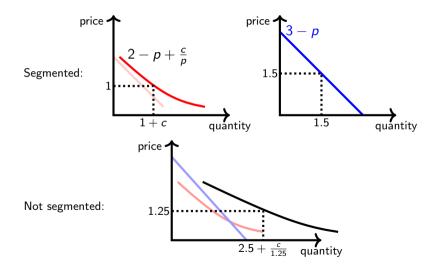
Can information be per se good for CS?



Can information be per se good for CS? Yes, iff $c \ge 1.5$



Can information be per se good for CS? Yes, iff $c \ge 1.5$ $c \uparrow \Rightarrow$ "weak" market "level" $\uparrow \Rightarrow$ benefit of PD \uparrow



Two equally likely types. Without information, price is *p*.

Two equally likely types. Without information, price is p. Split $(\frac{1}{2}, \frac{1}{2})$ into $(\frac{2}{3}, \frac{1}{3})$ and $(\frac{1}{3}, \frac{2}{3})$ with prices $p_1 < p_2$:

		p_1	р	<i>p</i> ₂
Before	Type 1	0	1	0
	Type 2	0	1	0
After	Type 1	$\frac{2}{3}$	0	$\frac{1}{3}$
	Type 2	$\frac{1}{3}$	0	$\frac{2}{3}$

Two equally likely types. Without information, price is p. Split $(\frac{1}{2}, \frac{1}{2})$ into $(\frac{2}{3}, \frac{1}{3})$ and $(\frac{1}{3}, \frac{2}{3})$ with prices $p_1 < p_2$:

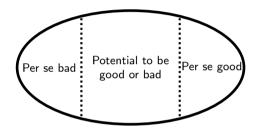
		p_1	р	<i>p</i> ₂
Before	Type 1	0	1	0
	Type 2	0	1	0
After	Type 1	$\frac{2}{3}$	0	$\frac{1}{3}$
	Type 2	$\frac{1}{3}$	0	$\frac{2}{3}$

Two equally likely types. Without information, price is p. Split $(\frac{1}{2}, \frac{1}{2})$ into $(\frac{2}{3}, \frac{1}{3})$ and $(\frac{1}{3}, \frac{2}{3})$ with prices $p_1 < p_2$:

- The within-type price change effect
- Intering the cross-types price change effect
- The price curvature effect

Results

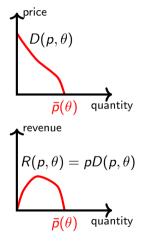
A characterization of:



A reduction of the problem to one where there is only two types

- A formula for the two-type case
 - captures the three effects of information

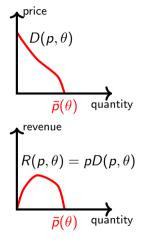
A set of demand curves $\mathcal{D} = \{D(p, \theta)\}_{\theta \in \Theta}$, a prior $\mu_0 \in \Delta(\Theta)$. $\blacktriangleright D(\cdot, \theta)$ downward sloping with concave revenue over $[0, \bar{p}(\theta)]$



A set of demand curves $\mathcal{D} = \{D(p, \theta)\}_{\theta \in \Theta}$, a prior $\mu_0 \in \Delta(\Theta)$.

• $D(\cdot, \theta)$ downward sloping with concave revenue over $[0, \bar{p}(\theta)]$ A segmentation: distribution $s \in \Delta(\Delta(\Theta))$ over "markets" $\mu \in \Delta(\Theta)$.

▶ s.t. $E_{\mu \sim s}[\mu] = \mu_0$.



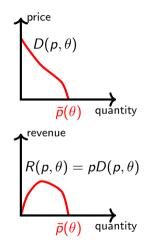
A set of demand curves $\mathcal{D} = \{D(p, \theta)\}_{\theta \in \Theta}$, a prior $\mu_0 \in \Delta(\Theta)$.

• $D(\cdot, \theta)$ downward sloping with concave revenue over $[0, \bar{p}(\theta)]$ A segmentation: distribution $s \in \Delta(\Delta(\Theta))$ over "markets" $\mu \in \Delta(\Theta)$.

▶ s.t. $E_{\mu \sim s}[\mu] = \mu_0$.

Seller chooses a price for every market μ ∈ supp(s): p^{*}(μ) ∈ arg max_p E_{θ∼μ}[R(p, θ)].

► Leads to (weighted) surplus $V^{\alpha}(s) = \mathbb{E}_{\mu,\theta}[\alpha CS(p^{*}(\mu), \theta) + (1 - \alpha)R(p^{*}(\mu), \theta)]$



A set of demand curves $\mathcal{D} = \{D(p, \theta)\}_{\theta \in \Theta}$, a prior $\mu_0 \in \Delta(\Theta)$.

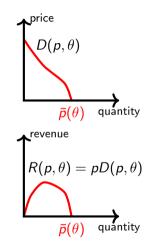
• $D(\cdot, \theta)$ downward sloping with concave revenue over $[0, \bar{p}(\theta)]$ A segmentation: distribution $s \in \Delta(\Delta(\Theta))$ over "markets" $\mu \in \Delta(\Theta)$.

• s.t. $E_{\mu \sim s}[\mu] = \mu_0$.

- Seller chooses a price for every market μ ∈ supp(s): p*(μ) ∈ arg max_p E_{θ∼μ}[R(p, θ)].
- ► Leads to (weighted) surplus $V^{\alpha}(s) = \mathbb{E}_{\mu,\theta}[\alpha CS(p^{*}(\mu), \theta) + (1 - \alpha)R(p^{*}(\mu), \theta)]$

"Information is monotonically α -bad" (α -IMB) if $\forall s, s'$

- if "s is finer than s": s is a mean-preserving spread of s'
- \Rightarrow s gives a lower (lpha-weighted) surplus: $V^{lpha}(s) \leq V^{lpha}(s')$



A set of demand curves $\mathcal{D} = \{D(p, \theta)\}_{\theta \in \Theta}$, a prior $\mu_0 \in \Delta(\Theta)$.

• $D(\cdot, \theta)$ downward sloping with concave revenue over $[0, \bar{p}(\theta)]$ A segmentation: distribution $s \in \Delta(\Delta(\Theta))$ over "markets" $\mu \in \Delta(\Theta)$.

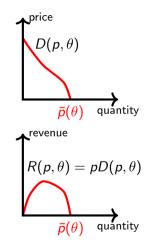
• s.t. $E_{\mu \sim s}[\mu] = \mu_0$.

- Seller chooses a price for every market μ ∈ supp(s): p*(μ) ∈ arg max_p E_{θ∼μ}[R(p, θ)].
- ► Leads to (weighted) surplus $V^{\alpha}(s) = \mathbb{E}_{\mu,\theta}[\alpha CS(p^{*}(\mu), \theta) + (1 - \alpha)R(p^{*}(\mu), \theta)]$

"Information is monotonically α -good" (α -IMG) if $\forall s, s'$

if "s is finer than s'": s is a mean-preserving spread of s'

 \Rightarrow s gives a higher (lpha-weighted) surplus: $V^{lpha}(s) \geq V^{lpha}(s')$



Bridging the classic vs. modern approaches

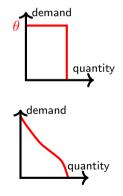
- Classic literature (Pigou 1920, Robinson 1933, Varian 1985, Aguirre et al 2010): same primitives (\mathcal{D}, μ)
 - Compare only perfect segmentation and no segmentation

Modern literature (BBM): a family of unit-demand curves

- Values can be perfectly learned
- They ask different questions

We separate types from values

- A type is what's maximally learnable
- Consumers of one type still have heterogeneous values
- First-degree price discrimination is impossible



• α -IMB (α -IMG) holds for $\{D(p, \theta)\}_{\theta}$ if and only if

Theorem

Let D_1, D_2 be demands in $\{D(p, \theta)\}_{\theta}$ with lowest and highest monopoly price p_1^*, p_2^* . • α -IMB (α -IMG) holds for $\{D(p, \theta)\}_{\theta}$ if and only if

Theorem

Let D_1, D_2 be demands in $\{D(p, \theta)\}_{\theta}$ with lowest and highest monopoly price p_1^*, p_2^* . • α -IMB (α -IMG) holds for $\{D(p, \theta)\}_{\theta}$ if and only if

```
• \alpha-IMB (\alpha-IMG) holds for {D_1, D_2}
```

2 α -IMB (α -IMG) holds for { D_1, D_2 } if and only if

Theorem

Let D_1, D_2 be demands in $\{D(p, \theta)\}_{\theta}$ with lowest and highest monopoly price p_1^*, p_2^* .

- α -IMB (α -IMG) holds for $\{D(p, \theta)\}_{\theta}$ if and only if
 - there is no exclusion: $p^*(\theta) \leq \bar{p}(\theta')$ for all $\theta, \theta' \in \Theta$
 - $\textbf{ b there exist two functions } f_1, f_2: \Theta \to R_+ \geq 0 \text{ such that }$

 $D(p, heta)=f_1(heta)D_1(p)+f_2(heta)D_2(p), orall heta, p\in (p_1^*,p_2^*)$

• α -IMB (α -IMG) holds for { D_1, D_2 }

2 α -IMB (α -IMG) holds for { D_1, D_2 } if and only if

Theorem

Let D_1, D_2 be demands in $\{D(p, \theta)\}_{\theta}$ with lowest and highest monopoly price p_1^*, p_2^* .

- α -IMB (α -IMG) holds for $\{D(p, \theta)\}_{\theta}$ if and only if
 - there is no exclusion: $p^*(\theta) \leq \bar{p}(\theta')$ for all $\theta, \theta' \in \Theta$
 - **(**) there exist two functions $f_1, f_2 : \Theta \to R_+ \ge 0$ such that

 $D(p, heta) = f_1(heta) D_1(p) + f_2(heta) D_2(p), orall heta, p \in (p_1^*, p_2^*)$

• α -IMB (α -IMG) holds for { D_1, D_2 }

2 α -IMB (α -IMG) holds for { D_1, D_2 } if and only if

$$V_2(p)-V_1(p)+rac{-rac{R_1'(p)}{R_2'(p)}V_2'+V_1'}{-rac{R_1'(p)}{R_2'(p)}R_2''+R_1''}(R_1'(p)-R_2'(p))$$

is decreasing (increasing) on (p_1^*, p_2^*) .

 $V_i(p) = V_i^{\alpha}(p) = \alpha CS_i(p) + (1 - \alpha)R_i(p).$

Outline

Implications

Intuitions

Section 2 Sec

Implication 1: If $\alpha\text{-IMB} \Rightarrow \alpha'\text{-IMB} \ \forall \alpha' > \alpha$

Implication 1: If α -IMB $\Rightarrow \alpha'$ -IMB $\forall \alpha' > \alpha$

Theorem

Let D_1, D_2 be demands in $\{D(p, \theta)\}_{\theta}$ with lowest and highest monopoly price p_1^*, p_2^* ..

- α -IMB (α -IMG) holds for $\{D(p, \theta)\}_{\theta}$ if and only if
 - there is no exclusion: $p^*(\theta) \leq \bar{p}(\theta')$ for all $\theta, \theta' \in \Theta$
 - 0 there exist two functions $f_1, f_2: \Theta \rightarrow R_+ \geq 0$ such that

 $D(p, heta) = f_1(heta) D_1(p) + f_2(heta) D_2(p), orall heta, p \in (p_1^*, p_2^*)$

- α -IMB (α -IMG) holds for { D_1, D_2 }
- **2** α -IMB (α -IMG) holds for { D_1, D_2 } if and only if

$$V_2(p) - V_1(p) + rac{-rac{R_1'(p)}{R_2'(p)}V_2' + V_1'}{-rac{R_1'(p)}{R_2'(p)}R_2'' + R_1''}(R_1'(p) - R_2'(p))$$

is decreasing (increasing) on (p_1^*, p_2^*) .

Implication 1: If α -IMB $\Rightarrow \alpha'$ -IMB $\forall \alpha' > \alpha$

$$V_{2}(p) - V_{1}(p) + \frac{-\frac{R_{1}'(p)}{R_{2}'(p)}V_{2}' + V_{1}'}{-\frac{R_{1}'(p)}{R_{2}'(p)}R_{2}'' + R_{1}''}(R_{1}'(p) - R_{2}'(p))$$

$$= \alpha \left[CS_{2}(p) - CS_{1}(p) + \frac{-\frac{R_{1}'(p)}{R_{2}'(p)}CS_{2}' + CS_{1}'}{-\frac{R_{1}'(p)}{R_{2}'(p)}R_{2}'' + R_{1}''}(R_{1}'(p) - R_{2}'(p)) \right]$$

$$+ (1 - \alpha) \left[R_{2}(p) - R_{1}(p) + \frac{-\frac{R_{1}'(p)}{R_{2}'(p)}R_{2}' + R_{1}''}{-\frac{R_{1}'(p)}{R_{2}'(p)}R_{2}'' + R_{1}''}(R_{1}'(p) - R_{2}'(p)) \right].$$

Implication 1: If α -IMB $\Rightarrow \alpha'$ -IMB $\forall \alpha' > \alpha$

$$V_{2}(p) - V_{1}(p) + \frac{-\frac{R_{1}'(p)}{R_{2}'(p)}V_{2}' + V_{1}'}{-\frac{R_{1}'(p)}{R_{2}'(p)}R_{2}'' + R_{1}''}(R_{1}'(p) - R_{2}'(p))$$

$$= \alpha \left[CS_{2}(p) - CS_{1}(p) + \frac{-\frac{R_{1}'(p)}{R_{2}'(p)}CS_{2}' + CS_{1}'}{-\frac{R_{1}'(p)}{R_{2}'(p)}R_{2}'' + R_{1}''}(R_{1}'(p) - R_{2}'(p)) \right]$$

$$+ (1 - \alpha) \left[R_{2}(p) - R_{1}(p) + \frac{-\frac{R_{1}'(p)}{R_{2}'(p)}R_{2}' + R_{1}''}{-\frac{R_{1}'(p)}{R_{2}'(p)}R_{2}'' + R_{1}''}(R_{1}'(p) - R_{2}'(p)) \right].$$

Second expression is increasing over (p_1^*, p_2^*) : $R'_1(p) < 0 < R'_2(p)$.

• If the convex combination is decreasing \Rightarrow decreasing for $\alpha' > \alpha$.

Theorem

Let D_1, D_2 be demands in $\{D(p, \theta)\}_{\theta}$ with lowest and highest monopoly price p_1^*, p_2^* .

- α -IMB (α -IMG) holds for $\{D(p, \theta)\}_{\theta}$ if and only if
 - there is no exclusion: $p^*(\theta) \leq \bar{p}(\theta')$ for all $\theta, \theta' \in \Theta$
 - there exist two functions $f_1, f_2 \ge 0$ such that

 $D(p, heta)=f_1(heta)D_1(p)+f_2(heta)D_2(p), orall heta, p\in (p_1^*,p_2^*)$

- α -IMB (α -IMG) holds for { D_1, D_2 }
- **2** α -IMB (α -IMG) holds for { D_1, D_2 } if and only if

$$V_2(p) - V_1(p) + rac{-rac{R_1'(p)}{R_2'(p)}V_2' + V_1'}{-rac{R_1'(p)}{R_2'(p)}R_2'' + R_1''}(R_1'(p) - R_2'(p))$$

is decreasing (increasing) on (p_1^*, p_2^*) .

Corollary

Consider $\{D_1, D_{\epsilon}\}$ such that $\lim_{\epsilon \to 0} p_{\epsilon}^* = p_1^*$. There exists $\hat{\epsilon}, \hat{\alpha}$ such that for all $\epsilon < \hat{\epsilon}$,

- For all $\alpha < \hat{\alpha}$, α -IMG holds for $\{D_1, D_{\epsilon}\}$.
- **2** For all $\alpha > \hat{\alpha}$, α -IMB holds for $\{D_1, D_{\epsilon}\}$.

Corollary

 $\textit{Consider } \{D_1, D_{\epsilon}\} \textit{ such that } \lim_{\epsilon \to 0} p_{\epsilon}^* = p_1^*. \textit{ There exists } \hat{\epsilon}, \hat{\alpha} \textit{ such that for all } \epsilon < \hat{\epsilon},$

- For all $\alpha < \hat{\alpha}$, α -IMG holds for $\{D_1, D_{\epsilon}\}$.
- **2** For all $\alpha > \hat{\alpha}$, α -IMB holds for $\{D_1, D_{\epsilon}\}$.

Example (CES demands)

Consider two demand curves $(c + p)^{-\theta_1}$, $(c + p)^{-\theta_2}$ for $\theta_1 > \theta_2 > 1$ and some constant c > 0. Then $\frac{1}{2}$ -IMB holds if and only if $\theta_1 \le \theta_2 + \frac{1}{2}$.

Corollary

 $\textit{Consider } \{D_1, D_{\epsilon}\} \textit{ such that } \lim_{\epsilon \to 0} p_{\epsilon}^* = p_1^*. \textit{ There exists } \hat{\epsilon}, \hat{\alpha} \textit{ such that for all } \epsilon < \hat{\epsilon},$

- For all $\alpha < \hat{\alpha}$, α -IMG holds for $\{D_1, D_{\epsilon}\}$.
- **2** For all $\alpha > \hat{\alpha}$, α -IMB holds for $\{D_1, D_{\epsilon}\}$.

Example (CES demands)

Consider two demand curves $(c + p)^{-\theta_1}$, $(c + p)^{-\theta_2}$ for $\theta_1 > \theta_2 > 1$ and some constant c > 0. Then $\frac{1}{2}$ -IMB holds if and only if $\theta_1 \le \theta_2 + \frac{1}{2}$.

Example (Shifting demands)

For any two D_1, D_2 , monotonicity is satisfied for $\{D_1(p), D_2(p) + \delta\}$ for all $\delta \in (\delta_1, \delta_2)$, $\delta_1 < \delta_2$.

Outline

Implications

Intuitions for the three conditions

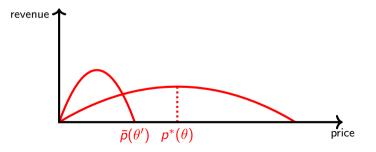
- on exclusion
- the expression for two demands
- S the separability condition
- Section 2 Sec

Necessity of no exclusion: $p^*(\theta) \leq \bar{p}(\theta')$ for all $\theta, \theta' \in \Theta$

Necessity of no exclusion: $p^*(\theta) \leq \bar{p}(\theta')$ for all $\theta, \theta' \in \Theta$ Similar to BBM'15, Pram'21.

Suppose $p^*(\theta) > \bar{p}(\theta')$. Show IMB is violated:

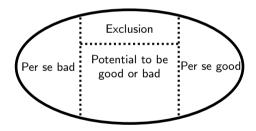
- Consider $s \ni \mu$ that puts almost all mass on θ , some mass on θ' .
- \triangleright θ' will be "excluded" in μ .
- Separating some θ' consumers is an improvement.



But can it be good even without that?

- But can it be good even without that?
 - Yes, if one of other two conditions is violated!

- But can it be good even without that?
 - Yes, if one of other two conditions is violated!



The monotonicity condition for $\{D_1, D_2\}$: the proof

$$0 = (1 - \mu)R'_1(p(\mu)) + \mu R'_2(p(\mu))$$
$$W(\mu) = (1 - \mu)V_1(p(\mu)) + \mu V_2(p(\mu))$$

$$0 = (1 - \mu)R'_1(p(\mu)) + \mu R'_2(p(\mu))$$

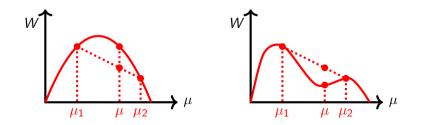
$$W(\mu) = (1 - \mu)V_1(p(\mu)) + \mu V_2(p(\mu))$$

 $\mathsf{IMB} \Leftrightarrow W \text{ is concave.}$

$$0 = (1 - \mu)R'_1(p(\mu)) + \mu R'_2(p(\mu))$$

$$W(\mu) = (1 - \mu)V_1(p(\mu)) + \mu V_2(p(\mu))$$

 $\mathsf{IMB} \Leftrightarrow W$ is concave.

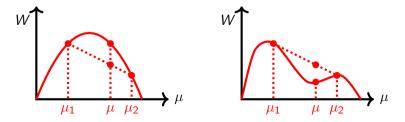


$$0 = (1 - \mu)R'_1(p(\mu)) + \mu R'_2(p(\mu))$$
$$W(\mu) = (1 - \mu)V_1(p(\mu)) + \mu V_2(p(\mu))$$

 $\mathsf{IMB} \Leftrightarrow W$ is concave. So IMB if and only if W' is decreasing,

W'

$$egin{aligned} &(\mu) = &V_2(p(\mu)) - V_1(p(\mu)) + \mathbb{E}[V_i'(p(\mu))]p'(\mu) \ &V_2(p) - V_1(p) + rac{-rac{R_1'(p)}{R_2'(p)}V_2' + V_1'}{-rac{R_1'(p)}{R_2'(p)}R_2'' + R_1''}(R_1'(p) - R_2'(p)) \end{aligned}$$



$$egin{aligned} & \mathcal{W}''(\mu) = (p'(\mu))^2 \ \mathbb{E}\Big[\mathcal{V}_i''(p(\mu))\Big] \ & +2p'(\mu) \ & \Big[\mathcal{V}_2'(p(\mu)) - \mathcal{V}_1'(p(\mu))\Big] \ & +p''(\mu) \ \mathbb{E}\Big[\mathcal{V}_i'(p(\mu)\Big] \end{aligned}$$

$$egin{aligned} & \mathcal{W}''(\mu) = (p'(\mu))^2 \ \mathbb{E}\Big[\mathcal{V}_i''(p(\mu))\Big] \ & +2p'(\mu) \ \left[\mathcal{V}_2'(p(\mu)) - \mathcal{V}_1'(p(\mu))
ight] \ & +p''(\mu) \ \mathbb{E}\Big[\mathcal{V}_i'(p(\mu)\Big] \end{aligned}$$

Two equally likely types. Without information, price is *p*.

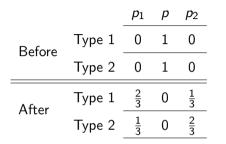
$$egin{aligned} & \mathcal{W}''(\mu) = (p'(\mu))^2 \ \mathbb{E}\Big[\mathcal{V}_i''(p(\mu))\Big] \ & +2p'(\mu) \ \left[\mathcal{V}_2'(p(\mu)) - \mathcal{V}_1'(p(\mu))
ight] \ & +p''(\mu) \ \mathbb{E}\Big[\mathcal{V}_i'(p(\mu)\Big] \end{aligned}$$

Two equally likely types. Without information, price is p. Split $(\frac{1}{2}, \frac{1}{2})$ into $(\frac{2}{3}, \frac{1}{3})$ and $(\frac{1}{3}, \frac{2}{3})$ with prices $p_1 < p_2$:

		p_1	р	<i>p</i> ₂	
Before	Type 1	0	1	0	
	Type 2	0	1	0	
After	Type 1	$\frac{2}{3}$	0	$\frac{1}{3}$	
	Type 2	$\frac{1}{3}$	0	$\frac{2}{3}$	

$$egin{aligned} \mathcal{N}''(\mu) &= (p'(\mu))^2 \ \mathbb{E}\Big[V_i''(p(\mu))\Big] \ &+ 2p'(\mu) \ &\left[V_2'(p(\mu)) - V_1'(p(\mu))
ight] \ &+ p''(\mu) \ \mathbb{E}\Big[V_i'(p(\mu))\Big] \end{aligned}$$

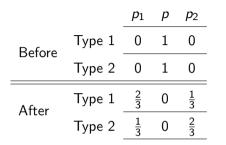
Two equally likely types. Without information, price is p. Split $(\frac{1}{2}, \frac{1}{2})$ into $(\frac{2}{3}, \frac{1}{3})$ and $(\frac{1}{3}, \frac{2}{3})$ with prices $p_1 < p_2$:



$$egin{aligned} \mathcal{W}''(\mu) &= (p'(\mu))^2 ~ \mathbb{E}\Big[V_i''(p(\mu))\Big] \ &+ 2p'(\mu) ~~ \Big[V_2'(p(\mu)) - V_1'(p(\mu))\Big] \ &+ p''(\mu) ~ \mathbb{E}\Big[V_i'(p(\mu)\Big] \end{aligned}$$

Two equally likely types. Without information, price is p.

- Split $(\frac{1}{2}, \frac{1}{2})$ into $(\frac{2}{3}, \frac{1}{3})$ and $(\frac{1}{3}, \frac{2}{3})$ with prices $p_1 < p_2$:
 - The within-type price change effect
 - The cross-types price change effect
 - The price curvature effect



$$egin{aligned} \mathcal{W}''(\mu) &= (p'(\mu))^2 \,\, \mathbb{E}\Big[V_i''(p(\mu))\Big] \ &+ 2p'(\mu) \quad \Big[V_2'(p(\mu)) - V_1'(p(\mu))\Big] \ &+ p''(\mu) \,\, \mathbb{E}\Big[V_i'(p(\mu)]\Big] \end{aligned}$$

Two equally likely types. Without information, price is p.

- Split $(\frac{1}{2}, \frac{1}{2})$ into $(\frac{2}{3}, \frac{1}{3})$ and $(\frac{1}{3}, \frac{2}{3})$ with prices $p_1 < p_2$:
 - The within-type price change effect
 - Intering the cross-types price change effect
 - Interprice curvature effect

The separability condition

Starting point: Strong duality of Kolotilin 2018 and Kolotilin, Corrao, Wolitzky 2024.

Proposition

Let G be distribution over (θ, p) . G is optimal if and only if there exists continuous functions $\lambda(\theta), \zeta(p)$ such that

$$\lambda(\theta) + \zeta(p)R_p(p,\theta) = U(p,\theta), \text{G-almost surely}$$

$$\lambda(\theta) + \zeta(p)R_p(p,\theta) \ge U(p,\theta), \forall (p,\theta) \in I \times \Theta$$

The separability condition

Starting point: Strong duality of Kolotilin 2018 and Kolotilin, Corrao, Wolitzky 2024.

Proposition

Let G be distribution over (θ, p) . G is optimal if and only if there exists continuous functions $\lambda(\theta), \zeta(p)$ such that

 $\lambda(\theta) + \zeta(p)R_p(p,\theta) = U(p,\theta), \text{ G-almost surely}$ $\lambda(\theta) + \zeta(p)R_p(p,\theta) \ge U(p,\theta), \forall (p,\theta) \in I \times \Theta$

Consider μ₀, p. No-info optimal iff ∃ζ, ∀θ, p ∈ arg max_{p'} U(p', θ) − ζ(p')R_p(p', θ).
IMB iff no-info optimal for all μ₀: ∃ζ, ∀p, θ, p ∈ arg max_{p'} U(p', θ) − ζ(p, p')R_p(p', θ).

The separability condition

Starting point: Strong duality of Kolotilin 2018 and Kolotilin, Corrao, Wolitzky 2024.

Proposition

Let G be distribution over (θ, p) . G is optimal if and only if there exists continuous functions $\lambda(\theta), \zeta(p)$ such that

 $\lambda(\theta) + \zeta(p)R_p(p,\theta) = U(p,\theta), \text{ G-almost surely}$ $\lambda(\theta) + \zeta(p)R_p(p,\theta) \ge U(p,\theta), \forall (p,\theta) \in I \times \Theta$

- Consider μ₀, p. No-info optimal iff ∃ζ, ∀θ, p ∈ arg max_{p'} U(p', θ) ζ(p')R_p(p', θ).
 IMB iff no-info optimal for all μ₀: ∃ζ, ∀p, θ, p ∈ arg max_{p'} U(p', θ) ζ(p, p')R_p(p', θ).
 One direction: suppose D(θ) = f₁(θ)D(θ₁) + f₂(θ)D(θ₂) and {D(θ₁), D(θ₂)} IMB:
 - $\exists \zeta, \forall p, \theta \in \{\theta_1, \theta_2\}, p \in \arg \max_{p'} U(p', \theta) \zeta(p, p') R_p(p', \theta).$

Outline

Implications

- Intuitions for the three conditions
- Section 2 Sec

Proposition

$$lpha$$
-IMB ($lpha$ -IMG) holds for $\mathcal{D} = \left\{ a(\theta)D(p) + b(\theta) \right\}_{\theta}$ if and only if
 $(2lpha - 1)p + lpha(rac{pD'(p)}{R''(p)})$

is increasing (decreasing) over $[\min_{\theta} p^*(\theta), \max_{\theta} p^*(\theta)].$

Proposition

$$lpha$$
-IMB ($lpha$ -IMG) holds for $\mathcal{D} = \left\{ a(\theta)D(p) + b(\theta)
ight\}_{ heta}$ if and only if $(2lpha - 1)p + lpha(rac{pD'(p)}{R''(p)})$

is increasing (decreasing) over $[\min_{\theta} p^*(\theta), \max_{\theta} p^*(\theta)].$

Write conditions for $\alpha = 0.5$ in terms of density function f(p) = -D'(p):

Proposition

$$lpha$$
-IMB ($lpha$ -IMG) holds for $\mathcal{D} = \left\{ a(heta)D(p) + b(heta)
ight\}_{ heta}$ if and only if $(2lpha - 1)p + lpha(rac{pD'(p)}{R''(p)})$

is increasing (decreasing) over $[\min_{\theta} p^*(\theta), \max_{\theta} p^*(\theta)].$

Write conditions for $\alpha = 0.5$ in terms of density function f(p) = -D'(p): **1** 0.5-IMB holds if and only if $p^2 f(p)$ is log-concave.

2 0.5-IMG holds if and only if $p^2 f(p)$ is log-convex.

Proposition

$$lpha$$
-IMB ($lpha$ -IMG) holds for $\mathcal{D} = \left\{ a(\theta)D(p) + b(\theta) \right\}_{\theta}$ if and only if
 $(2lpha - 1)p + lpha(rac{pD'(p)}{R''(p)})$

is increasing (decreasing) over $[\min_{\theta} p^*(\theta), \max_{\theta} p^*(\theta)].$

Write conditions for $\alpha = 0.5$ in terms of density function f(p) = -D'(p):

- **0** 0.5-IMB holds if and only if $p^2 f(p)$ is log-concave.
 - Sufficient: f is log-concave, e.g., uniform f(p) = c (generalizing Pigou's observation).
- **2** 0.5-IMG holds if and only if $p^2 f(p)$ is log-convex.

Proposition

$$lpha$$
-IMB ($lpha$ -IMG) holds for $\mathcal{D} = \left\{ a(\theta)D(p) + b(\theta) \right\}_{ heta}$ if and only if
 $(2lpha - 1)p + lpha(rac{pD'(p)}{R''(p)})$

is increasing (decreasing) over $[\min_{\theta} p^*(\theta), \max_{\theta} p^*(\theta)].$

Proposition

$$lpha$$
-IMB ($lpha$ -IMG) holds for $\mathcal{D} = \left\{ a(heta)D(p) + b(heta)
ight\}_{ heta}$ if and only if $(2lpha - 1)p + lpha(rac{pD'(p)}{R''(p)})$

is increasing (decreasing) over $[\min_{\theta} p^*(\theta), \max_{\theta} p^*(\theta)].$

Four cases for how information affects CS and TS.

Proposition

$$lpha$$
-IMB ($lpha$ -IMG) holds for $\mathcal{D} = \left\{ a(\theta)D(p) + b(\theta) \right\}_{ heta}$ if and only if
 $(2lpha - 1)p + lpha(rac{pD'(p)}{R''(p)})$

is increasing (decreasing) over $[\min_{\theta} p^*(\theta), \max_{\theta} p^*(\theta)].$

Four Three cases for how information affects CS and TS.

Proposition

$$lpha$$
-IMB ($lpha$ -IMG) holds for $\mathcal{D} = \left\{ a(\theta)D(p) + b(\theta) \right\}_{ heta}$ if and only if
 $(2lpha - 1)p + lpha(rac{pD'(p)}{R''(p)})$

is increasing (decreasing) over $[\min_{\theta} p^*(\theta), \max_{\theta} p^*(\theta)].$

Four Three cases for how information affects CS and TS. Consider $f(p) = \frac{(1+cp)^c}{p^2}$

Good for TS but bad for CS Good for both TS and CS Bad for both TS and CS
$$-1$$
 0

Related Literature

Full vs. no segmentation, focus on either TS or CS:

- Pigou 1920; Robinson 1933; Varian 1985; Aguirre, Cowan, Vickers 2010; ...
- "Output" and "misallocation" effects are related to our three effects comparison

All segmentations based on values:

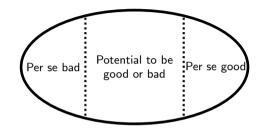
Bergemann, Brooks, Morris 2014

Duality approaches in persuasion:

 Kolotilin 2018; Dworczak, Martini 2019; Kolotilin, Corrao, Wolitzky 2023; Smolin, Yamashita 2023; Dworczak, Kolotilin 2023

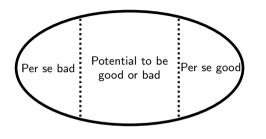
Conclusions

A characterization of:



Conclusions

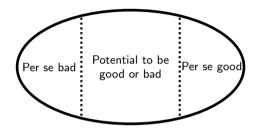
A characterization of:



More in the paper: Approaching unit demands (here), More examples (here)

Conclusions

A characterization of:



More in the paper: Approaching unit demands here, More examples here

Methodologically:

We apply modern frameworks (endogenous segmentation) and tools (concavification and duality) to study a classical problem

Price discrimination has two effects

- Output effect
- Ø Missallocation effect (which is bad for TS)

Price discrimination has two effects

- Output effect
- Missallocation effect (which is bad for TS)

Aguirre, Cowan, Vickers 2010:

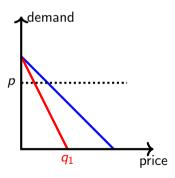
1 Making the "weak" demand more convex increases output and marginal benefit of output.

Price discrimination has two effects

- Output effect
- Missallocation effect (which is bad for TS)

Aguirre, Cowan, Vickers 2010:

• Making the "weak" demand more convex increases output and marginal benefit of output.

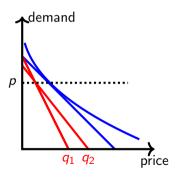


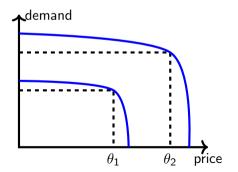
Price discrimination has two effects

- Output effect
- Missallocation effect (which is bad for TS)

Aguirre, Cowan, Vickers 2010:

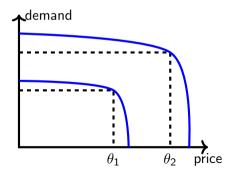
• Making the "weak" demand more convex increases output and marginal benefit of output.





1-IMB holds if and only if there is no exclusion.

 \blacktriangleright E.g., c = 1: linear demands.



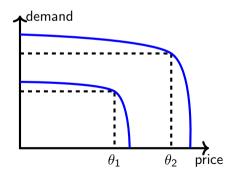
1-IMB holds if and only if there is no exclusion.

- E.g., c = 1: linear demands.
- As $c \rightarrow 0$, these demands approach unit-demand curves.
 - ▶ Information remains monotonically bad if and only if there is no exclusion



1-IMB holds if and only if there is no exclusion.

- E.g., c = 1: linear demands.
- As $c \rightarrow 0$, these demands approach unit-demand curves.
 - Information remains monotonically bad if and only if there is no exclusion
 - ▶ BBM: in the limit, there is some information that benefits consumers.

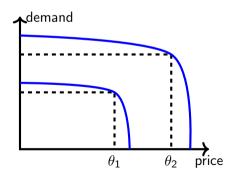


1-IMB holds if and only if there is no exclusion.

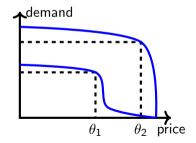
E.g., c = 1: linear demands.

As c
ightarrow 0, these demands approach unit-demand curves.

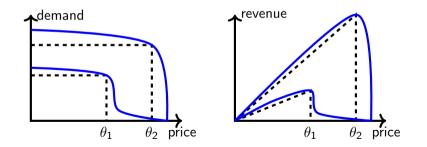
- ▶ Information remains monotonically bad if and only if there is no exclusion
 - ▶ No exclusion is violated as $c \to 0$ because $\frac{\theta_2}{1+c} > \theta_1$, so IMB doesn't hold.
- ▶ BBM: in the limit, there is some information that benefits consumers.



What if we approach unit-demand curves without violating no exclusion?



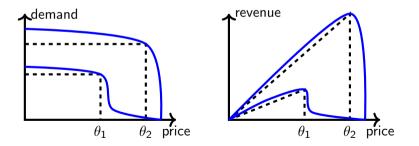
What if we approach unit-demand curves without violating no exclusion?



What if we approach unit-demand curves without violating no exclusion?

Corollary

Consider \mathcal{D}^{ϵ} that uniformly converges to a family of unit-demand curves as $\epsilon \to 0$ and revenue is concave for every $\epsilon > 0$. For small enough ϵ , the partial-inclusion condition is violated and therefore information is neither monotonically good nor bad.



Example 3: The three effects have same sign \Rightarrow monotonicity

Example (Sufficient Condition for α -IMG and α -IMB)

Consider two demand curves $D(p, \theta_i) = a_i - p + \frac{c_i}{p}$ for $i \in \{1, 2\}$ and $a_i, c_i \ge 0$. Without loss of generality assume $a_1 \le a_2$. Then α -IMG holds for all α if

$$c_1 - c_2 \ge (a_2 - a_1) \frac{a_2}{2}$$

 α -IMB holds for all $\alpha \geq \frac{1}{2}$ if

$$c_1 \leq c_2 \leq rac{a_1^2}{4}.$$

Back to the three effects