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Firms offer group-specific prices for the same good
» What are the welfare consequences? Pigou (1920), ..., BBM (2015), ...,

Common folk wisdom: price discrimination hurts consumers
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Pigou 1920: Linear demands = price discrimination bad for TS-CS
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Extended Pigou logic: Linear demands = Per se bad for TS-CS
@ Information (potentially) changes output: “output effect” = 0
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Can information be per se good for CS7? Yes, iff ¢ > 1.5
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Results

A characterization of:

Potential to be EPer se good
good or bad &

Per se bad :

@ A reduction of the problem to one where there is only two types

@ A formula for the two-type case
» captures the three effects of information

8/25



Model

A set of demand curves D = {D(p, 8)}oco, a prior g € A(O). A\price
» D(-,6) downward sloping with concave revenue over [0, 5(6)] D(p, )
\
_ [ ..
p(g) quantity
J\revenue
R(p,0) = pD(p,0)
\

() quéntity

9/25



Model

A set of demand curves D = {D(p, 6) }oco, a prior g € A(O). ANPrice
» D(-,6) downward sloping with concave revenue over [0, 5(6)] D(p,0)
A segmentation: distribution s € A(A(©)) over “markets” p € A(O).
> s.t. Eus[u] = po. .
5(9) qughthy
J\revenue
R(p.0) = pD(p,0)
\

() quéntity

9/25



Model

A set of demand curves D = {D(p, 6) }oco, a prior g € A(O). ANPrice
» D(-,6) downward sloping with concave revenue over [0, 5(6)] D(p,0)
A segmentation: distribution s € A(A(©)) over “markets” p € A(O).
> s.t. Eus[u] = po.

\
» Seller chooses a price for every market u € supp(s): p(0) quantity
p*(n) € argmax, Egu[R(p, 0)]. _Arevenue
» Leads to (weighted) surplus
Ve(s) = EpuplaCS(p* (1), 0) + (1 — a)R(p* (), )] R(p,0) = pD(p. )

\
() quéntity

9/25



Model

A set of demand curves D = {D(p, 6) }oco, a prior g € A(O).

» D(-,6) downward sloping with concave revenue over [0, p(6)]

A segmentation: distribution s € A(A(©)) over “markets” p € A(O).

> s.t. Eus[u] = po.
» Seller chooses a price for every market p € supp(s):
p*(r) € argmax, Egu[R(p, 6)].
» Leads to (weighted) surplus
Ve(s) = EuolaCS(p*(u),0) + (1 — a)R(p* (1), 0)]
“Information is monotonically a-bad” (a-IMB) if Vs, s’
if “sis finer than s’": s is a mean-preserving spread of s’
= s gives a lower (a-weighted) surplus: V¢(s) < V(')

AJrice
D(p,0)
\
— 7 .
p(g) quantity
Arevenue
R(p.0) = pD(p,0)
\

() quéntity

9/25



Model

A set of demand curves D = {D(p, 6) }oco, a prior g € A(O).
» D(-,6) downward sloping with concave revenue over [0, p(6)]
A segmentation: distribution s € A(A(©)) over “markets” p € A(O).
> s.t. Eus[u] = po.
» Seller chooses a price for every market p € supp(s):
p*(r) € argmax, Egu[R(p, 6)].
» Leads to (weighted) surplus
VE(s) = EuolaCS(p* (1), 0) + (1 — ) R(p" (1), 0)]
“Information is monotonically a-good” (a-IMG) if Vs, s’
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Bridging the classic vs. modern approaches

Classic literature (Pigou 1920, Robinson 1933, Varian 1985, Aguirre et al 2010): same
primitives (D, )

» Compare only perfect segmentation and no segmentation

Modern literature (BBM): a family of unit-demand curves ademand

» Values can be perfectly learned

> They ask different questions

antit
quantity
14

We separate types from values

. , . demand
P> A type is what's maximally learnable

» Consumers of one type still have heterogeneous values

» First-degree price discrimination is impossible quantity
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@ there exist two functions fi, f, : © — R, > 0 such that

D(p,0) = A(0)D1(p) + £2(0)D2(p), V0, p € (pi, P3)
© a-IMB (a-IMG) holds for { Dy, Dy}
@ «-IMB (a-IMG) holds for { D1, D>} if and only if

_R{(P) (VA4 & \V/
R] 2 1
Va(p) — Va(p) + Rf((;f))—(R{(p) — Ra(p))

~Rie e R

is decreasing (increasing) on (pi, p3).

Vi(p) = Vi(p) = aCSi(p) + (1 — a)Ri(p).
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Outline

@ Implications
@ Intuitions

© Examples and applications
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Ri(P) s

Va(p) — Va(p) + %( Ri(p) - Rs(p)

+(1—-«a)

_R2(p) - Rl(p) + R{(p)

/! /!
Rip) 2 T R

R
~Relcsy + cs

CS:(p) ~ Csu(p) + 2 R() - RY)

R.
R R R

0

~ R R4 R ;
(Ri(p) — R2(P))]-

Ry(p)
+ Ry

2P
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Implication 1: If a-IMB = o/-IMB Vo' > «

RVt

Va(p) = Va(P) + —&7, (1@—%@)
-7 EP; R// R{/
5(p

R

' _@gaﬁ{q / ,

= a|CS(p) = CS1(p) + — iy o (Ri(p) — R3(p))
: “Rip e R

0
(RI(P) — Ra(P))] -

_ R{(P) Ré + R{

_ i
+(1 - ) [Re(p) — Rulp) + — —
— 1

2P

Second expression is increasing over (p}, p3) : Ri(p) < 0 < R}(p).
» |If the convex combination is decreasing = decreasing for o/ > «.
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Corollary

Consider {D1, D} such that lime_,o p} = p;. There exists €, & such that for all € < €,
Q@ For all o < &, a-IMG holds for {D1, D.}.
@ For all a > &, a-IMB holds for {D1, D.}.

Example (CES demands)

Consider two demand curves (c 4 p)~%, (c 4+ p)~% for #; > 6, > 1 and some constant ¢ > 0.
Then 3-IMB holds if and only if 61 < 6, + 3.

Example (Shifting demands)

For any two Dy, Do, monotonicity is satisfied for { D1(p), Do(p) + 6} for all 6 € (61, 2),
(51 < (52.
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Outline

(1)
@ Intuitions for the three conditions

@ no exclusion
@ the expression for two demands
@ the separability condition
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Necessity of no exclusion: p*(0) < p(#') for all 0,0 € ©
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Necessity of no exclusion: p*(0) < p(#') for all 0,0 € ©
Similar to BBM'15, Pram’21.

Suppose p*(0) > p(¢'). Show IMB is violated:
» Consider s > 1 that puts almost all mass on #, some mass on 6'.
> 0 will be “excluded” in p.
» Separating some 6’ consumers is an improvement.

revenue “f+

7.
price
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The monotonicity condition for {Dy, D,}: the proof
For € [0, 1], define p(u), W(u)
0= (1 - p)Ri(p(n)) + nRs(p(1))
W(p) = (1 — pm)Va(p(u)) + nVa(p(u))
IMB < W is concave. So IMB if and only if W' is decreasing,
W' (1) =Va(p(n)) = Va(p(w)) + E[V; (p(1))]P (1)
-5 gp; Vi+ Vi

Va(p) — Va(p) + W
R:(p

(Ri(p) — Ra(p))
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The separability condition
Starting point: Strong duality of Kolotilin 2018 and Kolotilin, Corrao, Wolitzky 2024.

Proposition

Let G be distribution over (0, p). G is optimal if and only if there exists continuous functions
A(0),¢(p) such that

A(0) + C(p)Rp(p,0) = U(p, 8), G-almost surely
A(0) + C(P)Ro(p, 0) = U(p,0),¥(p,0) € I x ©
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Proposition

Let G be distribution over (0, p). G is optimal if and only if there exists continuous functions
A(0),¢(p) such that

A(0) + C(p)Rp(p,0) = U(p, 8), G-almost surely
A(0) + C(P)Ro(p, 0) = U(p,0),¥(p,0) € I x ©

@ Consider 1ig, p. No-info optimal iff 3(,V8, p € argmaxy U(p',0) — ((p")Ro(p', 6).

@ IMB iff no-info optimal for all po: 3¢, Vp, 8, p € argmaxy U(p',0) — ((p, p')Rp(p,0).
One direction: suppose D(0) = f1(0)D(61) + £(8)D(62) and {D(61), D(62)} IMB:

Q 3(,Vp,0 € {01,602}, p € argmaxy U(p',0) — {(p, p')Rp(P', 0).

(2] Vp,0 € O, p € argmaxy U(p',0) — ((p, P)Rp(P,0).
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Example 1: The class aD + b.

Proposition

a-IMB (a-IMG) holds for D = {a(e)D(p) + b(e)}e if and only if

pD'(p)
(20é - ]-)P + Oé( R//(p) )

is increasing (decreasing) over [mein p*(9), max p*(0)].
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is increasing (decreasing) over [mein p*(9), max p*(0)].

Write conditions for & = 0.5 in terms of density function f(p) = —D’(p):
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Write conditions for & = 0.5 in terms of density function f(p) = —D’(p):
@ 0.5-IMB holds if and only if p?f(p) is log-concave.

@ Sufficient: f is log-concave, e.g., uniform f(p) = ¢ (generalizing Pigou's observation).

@ 0.5-IMG holds if and only if p?f(p) is log-convex.
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Example 1: The class aD + b.
Proposition
a-IMB (a-IMG) holds for D = {a(e)D(p) + b(O)}G if and only if

pD'(p) )
R//(p)

is increasing (decreasing) over [mein p*(0), max p*(0)].

(2a—1)p+ of

Feur Three cases for how information affects CS and TS. Consider f(p) = ut}#)c

Good for TS but bad for CS Good for both TS and CS Bad for both TS and CS

\
c

O mummnn=
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Conclusions
A characterization of:

Per se bad : Potential to be

good or bad §Per se good

More in the paper: Approaching unit demands , More examples

Methodologically:

» We apply modern frameworks (endogenous segmentation) and tools (concavification and
duality) to study a classical problem

Thanks!
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Connections to output and misallocation effects
Price discrimination has two effects
© Output effect
@ Missallocation effect (which is bad for TS)
Aguirre, Cowan, Vickers 2010:
@ Making the “weak” demand more convex increases output and marginal benefit of output.
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Example 2: Binary class (61 — p)<, (62 — p)¢, 0 < 0; < 6, and ¢ € (0, 1].

1-IMB holds if and only if there is no exclusion.
» E.g., ¢ = 1: linear demands.

As ¢ — 0, these demands approach unit-demand curves.
» Information remains monotonically bad if and only if there is no exclusion
» No exclusion is violated as ¢ — 0 because 1% > f1, so IMB doesn't hold.
» BBM: in the limit, there is some information that benefits consumers.

ademand

25 /25



What if we approach unit-demand curves without violating no exclusion?

ademand

25 /25



What if we approach unit-demand curves without violating no exclusion?

ademand AJevenue

01 0> price

25 /25



What if we approach unit-demand curves without violating no exclusion?

Corollary

Consider D¢ that uniformly converges to a family of unit-demand curves as ¢ — 0 and revenue
is concave for every € > 0. For small enough €, the partial-inclusion condition is violated and
therefore information is neither monotonically good nor bad.

ademand

arevenue

01 0> price
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Example 3: The three effects have same sign = monotonicity

Example (Sufficient Condition for a-IMG and a-IMB)

Consider two demand curves D(p, ;) = a; — p + % for i € {1,2} and a;, ¢; > 0. Without loss
of generality assume a; < a. Then a-IMG holds for all « if

az
c—o>(ax— 31)?-

a-IMB holds for all o > 1 if
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