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(Third degree) Price discrimination

Firms offer group-specific prices for the same good

▶ What are the welfare consequences? Pigou (1920), . . ., BBM (2015), . . .,

Common folk wisdom: price discrimination hurts consumers

▶ Pigou (1920): true for linear demands

A letter that followed a senate hearing on May 2, 2024:

large tech platforms have access to personal data [. . . ] that can be exploited by
corporations to set prices based on the time of day, location, or even the electronic
device used by a consumer.
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Pigou 1920: Linear demands ⇒ price discrimination bad for TS-CS
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This paper

1 Sellers might have “partial” information

2 Monitoring and controlling existing and additional information might be hard

Regulatory question: Should the seller be allowed to collect information?
▶ When does the answer not depend on existing and additional information?

▶ Information is “per se” good or bad

Per se bad Per se good
Potential to be
good or bad
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Extended Pigou logic: Linear demands ⇒ Per se bad for TS-CS

1 Information (potentially) changes output

: “output effect” = 0

2 Sells that output at different prices

: “misallocation effect” < 0
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Can information be per se good for CS?

Yes, iff c ≥ 1.5
c ↑ ⇒ “weak” market “level” ↑ ⇒ benefit of PD ↑
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The three effects of information

p1 p p2

Before
Type 1 0 1 0

Type 2 0 1 0

After
Type 1 2

3 0 1
3

Type 2 1
3 0 2

3

Two equally likely types. Without information, price is p.
Split (12 ,

1
2) into (23 ,

1
3) and (13 ,

2
3) with prices p1 < p2:

1 The within-type price change effect

2 The cross-types price change effect

3 The price curvature effect
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Results

A characterization of:

Per se bad Per se good
Potential to be
good or bad

1 A reduction of the problem to one where there is only two types
2 A formula for the two-type case

▶ captures the three effects of information
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Model

A set of demand curves D = {D(p, θ)}θ∈Θ, a prior µ0 ∈ ∆(Θ).

▶ D(·, θ) downward sloping with concave revenue over [0, p̄(θ)]

A segmentation: distribution s ∈ ∆(∆(Θ)) over “markets” µ ∈ ∆(Θ).

▶ s.t. Eµ∼s [µ] = µ0.

▶ Seller chooses a price for every market µ ∈ supp(s):
p∗(µ) ∈ argmaxp Eθ∼µ[R(p, θ)].

▶ Leads to (weighted) surplus
V α(s) = Eµ,θ[αCS(p

∗(µ), θ) + (1− α)R(p∗(µ), θ)]

p̄(θ)

D(p, θ)

quantity

price

p̄(θ)

R(p, θ) = pD(p, θ)

quantity

revenue
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“Information is monotonically α-good” (α-IMG) if ∀s, s ′

if “s is finer than s ′”: s is a mean-preserving spread of s ′

⇒ s gives a higher (α-weighted) surplus: V α(s) ≥ V α(s ′)
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Bridging the classic vs. modern approaches

Classic literature (Pigou 1920, Robinson 1933, Varian 1985, Aguirre et al 2010): same
primitives (D, µ)

▶ Compare only perfect segmentation and no segmentation

Modern literature (BBM): a family of unit-demand curves

▶ Values can be perfectly learned

▶ They ask different questions

We separate types from values

▶ A type is what’s maximally learnable

▶ Consumers of one type still have heterogeneous values

▶ First-degree price discrimination is impossible

θ

quantity

demand

quantity

demand
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Theorem

Let D1,D2 be demands in {D(p, θ)}θ with lowest and highest monopoly price p∗1 , p
∗
2 .

1 α-IMB (α-IMG) holds for {D(p, θ)}θ if and only if

a there is no exclusion: p∗(θ) ≤ p̄(θ′) for all θ, θ′ ∈ Θ
b there exist two functions f1, f2 : Θ → R+ ≥ 0 such that

D(p, θ) = f1(θ)D1(p) + f2(θ)D2(p),∀θ, p ∈ (p∗1 , p
∗
2 )

c α-IMB (α-IMG) holds for {D1,D2}
2 α-IMB (α-IMG) holds for {D1,D2} if and only if

V2(p)− V1(p) +
−R′

1(p)
R′
2(p)

V ′
2 + V ′

1

−R′
1(p)

R′
2(p)

R ′′
2 + R ′′

1

(R ′
1(p)− R ′

2(p))

is decreasing (increasing) on (p∗1 , p
∗
2).

Vi (p) = V α
i (p) = αCSi (p) + (1− α)Ri (p).
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Outline

1 Implications

2 Intuitions

3 Examples and applications
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Implication 1: If α-IMB ⇒ α′-IMB ∀α′ > α

13 / 25



Implication 1: If α-IMB ⇒ α′-IMB ∀α′ > α

Theorem

Let D1,D2 be demands in {D(p, θ)}θ with lowest and highest monopoly price p∗1 , p
∗
2 ..

1 α-IMB (α-IMG) holds for {D(p, θ)}θ if and only if
a there is no exclusion: p∗(θ) ≤ p̄(θ′) for all θ, θ′ ∈ Θ
b there exist two functions f1, f2 : Θ → R+ ≥ 0 such that

D(p, θ) = f1(θ)D1(p) + f2(θ)D2(p),∀θ, p ∈ (p∗1 , p
∗
2 )

c α-IMB (α-IMG) holds for {D1,D2}
2 α-IMB (α-IMG) holds for {D1,D2} if and only if

V2(p)− V1(p) +
−R′

1(p)
R′
2(p)

V ′
2 + V ′

1

−R′
1(p)

R′
2(p)

R ′′
2 + R ′′

1

(R ′
1(p)− R ′

2(p))

is decreasing (increasing) on (p∗1 , p
∗
2).

13 / 25



Implication 1: If α-IMB ⇒ α′-IMB ∀α′ > α

V2(p)− V1(p) +
−R′

1(p)
R′
2(p)

V ′
2 + V ′

1

−R′
1(p)

R′
2(p)

R ′′
2 + R ′′

1

(R ′
1(p)− R ′

2(p))

= α

[
CS2(p)− CS1(p) +

−R′
1(p)

R′
2(p)

CS ′
2 + CS ′

1

−R′
1(p)

R′
2(p)

R ′′
2 + R ′′

1

(R ′
1(p)− R ′

2(p))

]

+(1− α)
[
R2(p)− R1(p) +

����������������:0
−R′

1(p)
R′
2(p)

R ′
2 + R ′

1

−R′
1(p)

R′
2(p)

R ′′
2 + R ′′

1

(R ′
1(p)− R ′

2(p))
]
.

Second expression is increasing over (p∗1 , p
∗
2) : R

′
1(p) < 0 < R ′

2(p).

▶ If the convex combination is decreasing ⇒ decreasing for α′ > α.
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Implication 2: Monotonicity is satisfied when p∗1, p
∗
2 are close
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Theorem

Let D1,D2 be demands in {D(p, θ)}θ with lowest and highest monopoly price p∗1 , p
∗
2 .

1 α-IMB (α-IMG) holds for {D(p, θ)}θ if and only if
a there is no exclusion: p∗(θ) ≤ p̄(θ′) for all θ, θ′ ∈ Θ
b there exist two functions f1, f2 ≥ 0 such that

D(p, θ) = f1(θ)D1(p) + f2(θ)D2(p),∀θ, p ∈ (p∗1 , p
∗
2 )

c α-IMB (α-IMG) holds for {D1,D2}
2 α-IMB (α-IMG) holds for {D1,D2} if and only if

V2(p)− V1(p) +
−R′

1(p)
R′
2(p)

V ′
2 + V ′

1

−R′
1(p)

R′
2(p)

R ′′
2 + R ′′

1

(R ′
1(p)− R ′

2(p))

is decreasing (increasing) on (p∗1 , p
∗
2).
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Implication 2: Monotonicity is satisfied when p∗1, p
∗
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Corollary

Consider {D1,Dϵ} such that limϵ→0 p
∗
ϵ = p∗1 . There exists ϵ̂, α̂ such that for all ϵ < ϵ̂,

1 For all α < α̂, α-IMG holds for {D1,Dϵ}.
2 For all α > α̂, α-IMB holds for {D1,Dϵ}.

Example (CES demands)

Consider two demand curves (c + p)−θ1 , (c + p)−θ2 for θ1 > θ2 > 1 and some constant c > 0.
Then 1

2 -IMB holds if and only if θ1 ≤ θ2 +
1
2 .

Example (Shifting demands)

For any two D1,D2, monotonicity is satisfied for {D1(p),D2(p) + δ} for all δ ∈ (δ1, δ2),
δ1 < δ2.
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Outline

1 Implications
2 Intuitions for the three conditions

a no exclusion
b the expression for two demands
c the separability condition

3 Examples and applications
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Necessity of no exclusion: p∗(θ) ≤ p̄(θ′) for all θ, θ′ ∈ Θ

Similar to BBM’15, Pram’21.

Suppose p∗(θ) > p̄(θ′). Show IMB is violated:

▶ Consider s ∋ µ that puts almost all mass on θ, some mass on θ′.

▶ θ′ will be “excluded” in µ.

▶ Separating some θ′ consumers is an improvement.

p̄(θ′) p∗(θ) price

revenue
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Folklore: Price discrimination can be good “when it opens new markets”

▶ But can it be good even without that?

▶ Yes, if one of other two conditions is violated!

Per se bad Per se good
Potential to be
good or bad

Exclusion
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The monotonicity condition for {D1,D2}: the proof

For µ ∈ [0, 1], define p(µ),W (µ)

0 = (1− µ)R ′
1(p(µ)) + µR ′

2(p(µ))

W (µ) = (1− µ)V1(p(µ)) + µV2(p(µ))

IMB ⇔ W is concave.

So IMB if and only if W ′ is decreasing,

W ′(µ) =V2(p(µ))− V1(p(µ)) + E[V ′
i (p(µ))]p

′(µ)

V2(p)− V1(p) +
−R′

1(p)
R′
2(p)

V ′
2 + V ′

1

−R′
1(p)

R′
2(p)

R ′′
2 + R ′′

1

(R ′
1(p)− R ′

2(p))

µ

W

µ µ2µ1
µ

W

µ µ2µ1
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The monotonicity condition for {D1,D2}: the three effects of information

p1 p p2

Before
Type 1 0 1 0

Type 2 0 1 0

After
Type 1 2

3 0 1
3

Type 2 1
3 0 2

3

W ′′(µ) = (p′(µ))2 E
[
V ′′
i (p(µ))

]
+2p′(µ)

[
V ′
2(p(µ))− V ′

1(p(µ))
]

+p′′(µ) E
[
V ′
i (p(µ)

]

Two equally likely types. Without information, price is p.
Split (12 ,

1
2) into (23 ,

1
3) and (13 ,

2
3) with prices p1 < p2:

1 The within-type price change effect
2 The cross-types price change effect
3 The price curvature effect

example comparison
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The separability condition

Starting point: Strong duality of Kolotilin 2018 and Kolotilin, Corrao, Wolitzky 2024.

Proposition

Let G be distribution over (θ, p). G is optimal if and only if there exists continuous functions
λ(θ), ζ(p) such that

λ(θ) + ζ(p)Rp(p, θ) = U(p, θ),G-almost surely

λ(θ) + ζ(p)Rp(p, θ) ≥ U(p, θ),∀(p, θ) ∈ I ×Θ

1 Consider µ0, p. No-info optimal iff ∃ζ,∀θ, p ∈ argmaxp′ U(p′, θ)− ζ(p′)Rp(p
′, θ).

2 IMB iff no-info optimal for all µ0: ∃ζ,∀p, θ, p ∈ argmaxp′ U(p′, θ)− ζ(p, p′)Rp(p
′, θ).

One direction: suppose D(θ) = f1(θ)D(θ1) + f2(θ)D(θ2) and {D(θ1),D(θ2)} IMB:

1 ∃ζ,∀p, θ ∈ {θ1, θ2}, p ∈ argmaxp′ U(p′, θ)− ζ(p, p′)Rp(p
′, θ).

2 ∀p, θ ∈ Θ, p ∈ argmaxp′ U(p′, θ)− ζ(p, p′)Rp(p
′, θ).
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1 Implications

2 Intuitions for the three conditions

3 Examples and applications
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Example 1: The class aD + b.

Proposition

α-IMB (α-IMG) holds for D =
{
a(θ)D(p) + b(θ)

}
θ
if and only if

(2α− 1)p + α(
pD ′(p)

R ′′(p)
)

is increasing (decreasing) over [min
θ

p∗(θ),max
θ

p∗(θ)].

Write conditions for α = 0.5 in terms of density function f (p) = −D ′(p):

1 0.5-IMB holds if and only if p2f (p) is log-concave.

1 Sufficient: f is log-concave, e.g., uniform f (p) = c (generalizing Pigou’s observation).

2 0.5-IMG holds if and only if p2f (p) is log-convex.
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cases for how information affects CS and TS.

Consider f (p) = (1+cp)c

p2

c
0−1

Bad for both TS and CSGood for TS but bad for CS Good for both TS and CS
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Related Literature

Full vs. no segmentation, focus on either TS or CS:

▶ Pigou 1920; Robinson 1933; Varian 1985; Aguirre, Cowan, Vickers 2010; . . .

▶ “Output” and “misallocation” effects are related to our three effects comparison

All segmentations based on values:

▶ Bergemann, Brooks, Morris 2014

Duality approaches in persuasion:
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24 / 25



Conclusions
A characterization of:

Per se bad Per se good
Potential to be
good or bad

More in the paper: Approaching unit demands here , More examples here

Methodologically:

▶ We apply modern frameworks (endogenous segmentation) and tools (concavification and
duality) to study a classical problem

Thanks!
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Connections to output and misallocation effects
Price discrimination has two effects

1 Output effect
2 Missallocation effect (which is bad for TS)

Aguirre, Cowan, Vickers 2010:
1 Making the “weak” demand more convex increases output and marginal benefit of output.
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Example 2: Binary class (θ1 − p)c , (θ2 − p)c , 0 ≤ θ1 < θ2 and c ∈ (0, 1].

1-IMB holds if and only if there is no exclusion.
▶ E.g., c = 1: linear demands.

As c → 0, these demands approach unit-demand curves.
▶ Information remains monotonically bad if and only if there is no exclusion

▶ No exclusion is violated as c → 0 because θ2
1+c > θ1, so IMB doesn’t hold.

▶ BBM: in the limit, there is some information that benefits consumers.
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What if we approach unit-demand curves without violating no exclusion?

Corollary

Consider Dϵ that uniformly converges to a family of unit-demand curves as ϵ → 0 and revenue
is concave for every ϵ > 0. For small enough ϵ, the partial-inclusion condition is violated and
therefore information is neither monotonically good nor bad.
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Example 3: The three effects have same sign ⇒ monotonicity

Example (Sufficient Condition for α-IMG and α-IMB)

Consider two demand curves D(p, θi ) = ai − p + ci
p for i ∈ {1, 2} and ai , ci ≥ 0. Without loss

of generality assume a1 ≤ a2. Then α-IMG holds for all α if

c1 − c2 ≥ (a2 − a1)
a2
2
.

α-IMB holds for all α ≥ 1
2 if

c1 ≤ c2 ≤
a21
4
.

Back to the three effects
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